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Abstract 
Market beta is a measure of the volatility or systematic risk of a security or 
portfolio compared to the market as a whole. This paper considers the distri-
buted estimation of market beta in the case of massive data, and obtains the 
consistency and asymptotic normality of the estimator. Further, simulations 
show the finite sample properties of this estimator. 
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1. Introduction 

Distributed statistical inference, as a hot topic and an effective method, has been 
widely discussed in the past ten years, and a lot of research results have been ac-
cumulated. Its representative work are: In theory, Chen and Zhou (Chen and 
Zhou) [1] put forward the distributed Hill estimator and prove its Oracle prop-
erty; Volgushev et al. (2017) [2] propose distributed inference for quantile re-
gression processes, and propose a method to calculate the efficiency of this infe-
rence, which requires almost no additional computational cost. In application, 
Mohammed et al. (2020) [3] propose a technique to divide a Deep Neural Net-
works (DNN) in multiple partitions, which reduces the total latency for DNN 
inference; Smith and Hollinger (2018) [4] propose a distributed inference-based 
multi-robot exploration technique that uses the observed map structure to infer 
unobserved map features, resulting in a reduction in the cumulative exploration 
path length in the trial; Ye (2017) [5] started to study the stability of the beta 
coefficient of the Chinese stock market and found the best beta estimation time. 
Mitra (2019) [6] uses a smooth linear transfer function to measure the amplitude 
and direction of market movement, and the proposed classification can better 
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capture the asymmetric behavior of beta. 
Market beta, also known as systematic risk or equity beta, is a measure of a 

stock’s sensitivity to overall market movements. The development of market be-
ta can be traced back to the early 20th century when economists and financial 
analysts began to understand the importance of systematic risk in determining 
asset returns. One of the pioneering works in this area is the paper of Markowitz 
(1952) [7] on portfolio selection, which laid the foundation for modern portfolio 
theory, and emphasized the importance of diversification. Black and Scholes 
(1973) [8] introduced the concept of beta to measure the systematic risk of indi-
vidual securities or stock. Banks with a higher beta are expected to suffer from 
larger capital losses in the event of an extremely adverse shock in the financial 
system. 

Estimating market beta involves analyzing historical data on a stock’s returns 
and its correlation with the market returns. The usually used econometric model 
is that the stock’s returns are regressed against the market returns over a specific 
time period, which has been used to evaluate beta of financial returns on com-
modities, currencies (Atanasov and Nitschka (2014) [9]; Lettau et al. (2013)) [10], 
stocks (Post and Versijp (2004)) [11], and active trading strategies (Mitchell and 
Pulvino 2001) [12]. However, in extreme cases, conditional regression is based 
on a small number of tail observations, which may produce a relatively large va-
riance of the estimator, and the data of the financial market are mostly heavy 
tail, which may further increase error. To avoid these situations, Oordt and 
Zhou (2017) [13] proposed a new method to estimate market β . 

Let X and Y be continuous random variables with distribution functions XF  
and YF , respectively. Assume that 1 XF−  and 1 YF−  be heavy-tail with tail 
index xα  and yα , respectively. This means that 

( ) ( ) ( ) ( )1 and 1 ,yx
X x Y yF u u l u F u u l uαα −−− = − =          (1.1) 

where ( )xl u  and ( )yl u  are slowly varying functions as u →∞ . Let  
( ) ( )1X XQ p F p←= −  with small p , relation of X and Y restricted under ex-

treme X is given by 

( ), for ,XY X X Q pβ ε= + >                   (1.2) 

ε  is the error term that is assumed to be independent of the X under the 
condition ( )XX Q p> . 

To get estimator under the EVT method, we consider the following tail de-
pendence measure from multivariate EVT (see, e.g, Hult and Lindskog (2002)) 
[14], 

( ) ( ) ( )( )
0 0

1: lim lim ,X Yp p
p P X Q p Y Q p

p
τ τ

→ →
= = > >  [14],       (1.3) 

where ( )YQ p  denotes the quantile function of Y defined as  
( ) ( )1Y YQ p F p←= − . And we assume that the usual second-order condition (see, 

e.g, de Haan and Stadtmüller (1996)) [15] for X, which quantifies the speed of 
convergence in this relation as 
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( )
( )

( )
1lim

1

x

x
x

u
x

x

P X ux
x

P X u xx
a u

α
ρα

α

ρ
α

−

−

→∞

>
−

> −
=  [15],           (1.4) 

where ( ) ( )
1

1x xa u A
F u

 
=   − 

 and ( )lim 0xu
A u

→∞
= , 0ρ ≤ . 

Suppose (1.4) hold, under the linear model in (1.2), with 2y xα α> , 0β ≥ , 
the following conclusion is given in Oordt and Zhou (2017) [13]: 

( )( ) ( )
( )

1

0
lim x

Y

p
X

Q p
p

Q p
ατ β

→
=  [13].                (1.5) 

Naturally, consider independent and identically distributed (i.i.d.) observa-
tions ( ) ( ) ( )1 1 2 2, , , , , ,n nX Y X Y X Y  with the i.i.d. unobserved error terms 

1, , nε ε , we mimic the limit procedure 0p →  by considering only the lowest 
k observations in the tail region, such that ( ):k k n= →∞  and 0k n →  as 
n →∞ , Oordt and Zhou (2017) [13] gives an estimator of β  as 

( ) ( )
( )

ˆ1
ˆ

ˆ ˆ: ˆ
x Y

X

Q k n
k n

Q k n
αβ τ=  [13].                (1.6) 

And to prove asymptotic normality, the second-order condition for Y is given 
by: 

( )
( )

( )
1lim

1

y

y
y

u
y

y

P Y uy
y

P Y u yy
a u

α
ρ α

α

ρ
α

−
′

−

→∞

>
−

> −
=

′
 [15],           (1.7) 

where ( ) ( )
1

1y ya u A
F u

 
=   − 

 is an eventually positive or negative function, 

( )lim 0yu
A u

→∞
= , 0ρ′ ≤ . Then, Drees and Huang (1998) [16] define  

( ) ( ) ( )( )1, , ,X YR x y p P X Q px Y Q py
p

= > > . For this dependence structure, we 

assume that, ( ) ( ), , ,R x y p R x y→  as 0p →  for some positive function 

( ),R x y , with a speed of convergence as follows: there exists a 0θ >  for which, 
as 0p → , 

( ) ( ) ( ), , ,R x y p R x y O pθ− =                  (1.8) 

for all ( ) [ ] ( ){ }2, 0,1 0,0x y ∈ . And we can simply get 

( )
0

lim 1,1, .
p

R p τ
→

=                       (1.9) 

Under condition (1.4), (1.7) and (1.8) hold, suppose ( )k O nζ= , where 

2 2 2 3min , , , ,
1 2 2 2 2x y y

θ ρ ρζ
θ ρ α ρ α α

 ′
<   ′+ + + +   

Oordt and Zhou (2017) [13] prove the asymptotic normality of β̂ . 
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This estimation method can be used not only for the assessment of investment 
risks, but also for banking (Oordt and Zhou (2018)) [17], insurance and other 
fields. However, due to confidentiality, banks may not share their operating 
losses with each other, and insurance companies cannot share any observation 
results with the outside world in order to protect the privacy of customers. 
Therefore, banks and insurance companies can only make statistics based on 
their own data and share the results, and cannot re-identify individual data from 
the shared information. Distributed statistical inference is a good way to deal 
with these situations, it can analyze data stored in multiple machines, and it 
usually requires a divide-and-conquer algorithm that estimates the required pa-
rameters on each machine, transmits the results to a central machine that com-
bines all the results, usually by simple averaging, to arrive at a computationally 
feasible estimator. 

The objective of this paper is to apply divide-and-conquer idea to estimating 
market β . Considering independent and identically distributed (i.i.d.) observa-
tions ( ) ( ) ( )1 1 2 2, , , , , ,n nX Y X Y X Y  are distributed across k different machines, 
each machine has m observations, n mk= , and we assume as n →∞ , 

( ) ( ): , : , .
log

mk k n m m n
k

= →∞ = →∞ →∞            (1.10) 

We follow a divide-and-conquer algorithm, first estimating ,
ˆ

n jβ  in each 
machine, and then taking the average of k machines as the distributed estimator 
ˆ

Dβ  for β , 

,
1

1ˆ ˆ .
k

D n j
jk

β β
=

= ∑                       (1.11) 

Sort the observations 1 2, , , m
j j jX X X  in the j-th machine, we get the order 

statistic ( ) ( ) ( )1 2 m
j j jX X X≥ ≥ ≥ , and only the first d are selected to estimate β , 

where ( ):d d n= →∞ , 0d
m
→  as n →∞ . From (1.5), we have 

1
ˆ

,

ˆ
ˆ ˆ ,

ˆ

j

Y
j

n j j
X
j

dQ
d m

dm Q
m

α
β τ

 
     =       
 
 

                 (1.12) 

where, the tail index is estimated using the Hill estimator given in Hill (1975) 
[18]: 

( ) ( )( )1

1

1 1: log log
ˆ

d
i d

j j
ij

X X
dα

+

=

= −∑  [18]. 

The estimator of dependence measure is provided by multivariate EVT, see 
Embrechts et al. (2000) [19], that is 

( ) ( ){ }1 1,1

1ˆ 1 ,d dt t
j jj j

m

j Y Y X Xt

d
m d

τ + +> >=

  = 
 

∑  [19] 

where ( )1d
jY +  is the ( )1d + -th highest order statistic of jY . Finally,  
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( )1ˆ dX
j j

dQ X
m

+  = 
 

, ( )1ˆ dY
j j

dQ Y
m

+  = 
 

. 

When lim sup 0
n

d
m

τ
→∞

  = 
 

, we require some additional conditions to ensure the 

asymptotic normality of the Hill estimator: 

lim , .
logxn

m dd A
d m

λ
→∞

  = < ∞ → +∞ 
 

             (1.13) 

Suppose there would exist a sequence 0np →  as n →∞  such that, for suf-
ficient large n, we have np p< , which implies that the linear model in (1.2) ap-
plies for sufficiently large n. 

The remainder of this paper is organized as follows. Section 2 provides the 
main results; finite behaviors of ˆ

Dβ  are considered in Section 3; all proofs are 
deferred to Section 4. 

2. Main Innovations and Results 

The innovations of this paper are: 
• Under extreme market conditions, with less data and heavy tails, a new beta 

estimator is proposed by using the distributed idea. 
• In the numerical simulation, the profile of data pollution is considered, and 

the expected effect is achieved, and the data is more inclusive. 
The results of this paper are: 
 The consistency of ˆ

Dβ . 
Theorem 2.1. Under the linear tail model in (1.2), assume (1.1) and (1.4) 

hold. (1.13) holds when ( )
0

lim 0
p

pτ
→

= . Then, as n →∞ , ˆ P

Dβ β→ . 

 The asymptotic normality of ˆ
Dβ . 

Theorem 2.2. Assume that the conditions in Theorem 2.1 hold,  
( ) ( )( )P Y u O P Y u< − = >  as u →∞ . Suppose both (1.7) and (1.8) hold,  

( ) ( )
0

lim 0,1
p

pτ τ
→

= ∈ , Further assume that ( )kd O nζ= , where 

2 2 2 2min , , , .
1 2 2 1 2 1 3 y

θ ρ ρζ
θ ρ ρ α

 ′
<   ′+ − − +   

Then, as n →∞ , 

( ) ( )
2

2
2

1 2ˆ 0, 2log log 1 3 log .
d

D
x

kd N ββ β τ τ τ
τ τα

  − → + − ⋅ − −  
    

3. Simulation 

We conduct two sets of simulations to demonstrate the finite sample perfor-
mance of the distributed beta estimator ˆ

Dβ . For each simulation, we consider 
three linear models, that is, 1.5, 1, 0.5β = . We generate samples with samples 
size n = 10,000. Based on r = 1000 repetitions, we obtain the finite sample 
squared bias, variance and Mean Squared Error (MSE) for our estimator. 
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3.1. Compare for Different Level of d 

In the first set of simulations, we vary the level of d in the distributed beta esti-
mator to verify the theoretical results on the oracle property. The oracle sample 

1, , nX X  contains n = 10,000 observations stored in k machines with m ob-
servations each. We fix k = 20 and m = 500, compare the finite sample perfor-
mance of the distributed beta estimator with that of the oracle beta estimator for 
different values of d. Since the Student’s t-distribution is known to be 
heavy-tailed with the tail index equal to the degrees of freedom, we perform si-
mulations of X and ε based on random draws from a Student’s t-distribution 
with Four degree of freedom. According to Lemma 1.3.1 in Embrechts et al. 
(1997) [20], the sum of two heavy-tailed random variables is also a heavy-tailed 
random variable, and the tail index of the sum is controlled by smaller tail index. 
Then, the observations for Y are constructed by aggregating the simulated X and  

ε, which could guarantees Y is also heavy-tailed and 1
2y xα α> . 

The first column of Figure 1 compares the Mean Square Error of the distri-
buted beta estimator ˆ

Dβ  and the oracle beta estimator β̂ . Firstly, Mean 
Square Error gradually decreases with the increase of β. Theoretically, τ increas-
es with the increase of β, while Mean Square Error decreases with the increase of  

 

 
Figure 1. Finite sample performance for the distributed beta estimator and the oracle beta estimator for different levels of d. The 
blue report the simulation results for distributed EVT approach; the yellow lines report those for the EVT approach. 

https://doi.org/10.4236/jamp.2023.1111232


S. Y. Zhu 
 

 

DOI: 10.4236/jamp.2023.1111232 3682 Journal of Applied Mathematics and Physics 
 

τ. Therefore, the simulation results are in agreement with the theoretical results. 
Secondly, the second and third columns of Figure 1 show decomposition of the 
MSE into squared bias and variance, we observe a trade off between the bias and 
varience for the both estimators: as d increase, the bias increase while the va-
riance decreases, and when the number of observations is small, the variance of 
the oracle beta estimator is smaller than that of the distributed beta estimator, 
and as the number of observations increases, the variance becomes equal, which 
is in line with the result of Theorem 2.2. 

3.2. Data Is Contaminated 

In the second set of simulations, we want to know whether distributed estima-
tors have good properties when the data is contaminated. We simulate three 
cases of X being contaminated, ε being contaminated and both X and ε being 
contaminated respectively. The total number of observations does not change, 
that is, n = 10,000 is divided into k = 20 machines with m = 500 observations in 
each machine. 

Figure 2 shows the Mean Square Error, square deviation and variance of the 
two estimators when X is contaminated. We also model 10,000 observations of ε  

 

 
Figure 2. X is contaminated, finite sample performance for the distributed beta estimator and the oracle beta estimator for differ-
ent levels of p. The blue lines represent the simulation results of the distributed beta estimator, and the red lines represent the 
corresponding Oracle results. 
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from a Student’s t-distribution with 4 degrees of freedom, observations of X are 
drawn from a standard normal distribution with probability 0.1 and a Student’s 
t-distribution with 4 degrees of freedom with probability 0.9, this means that 
1000 out of 10,000 observations are contaminated. We then sort the observations 
in each machine and use (1.12) to get ,

ˆ
n jβ . 

The third column in Figure 2 shows the variance of the two estimators when 
d takes different values, which is almost the same as the result when the observa-
tions are not contaminated. When the number of observations is small, the va-
riance of the distributed estimator is larger than that of the Oracle estimator, and 
with the increase of d, the variance is close to zero. Observe the first column, the 
Mean Square Error is less than 0.05, the estimation effect is good. 

Figure 3 shows the Mean Square Error, square deviation and variance of the 
two estimators when ε is contaminated. We also model 10,000 observations of X 
from a Student’s t-distribution with 4 degrees of freedom, observations of ε are 
drawn from a standard normal distribution with probability 0.1 and a Student’s 
t-distribution with 4 degrees of freedom with probability 0.9, this means that 
1000 out of 10,000 observations are contaminated. We then sort the observations 
in each machine and use (1.12) to get ,

ˆ
n jβ . Obviously, Figure 3 is basically  

 

 
Figure 3. ε is contaminated, finite sample performance for the distributed beta estimator and the oracle beta estimator for differ-
ent levels of p. The blue lines represent the simulation results of the distributed beta estimator, and the red lines represent the 
corresponding oracle results. 
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consistent with Figure 1, indicating that the selection of ε does not affect the 
properties of the estimator, which is consistent with the theory that the random 
error can be thin-tailed. 

Figure 4 shows the Mean Square Error, square deviation and variance of the 
two estimators when both ε and X are contaminated. Observations of ε and X 
are drawn from a standard normal distribution with probability 0.1 and a Stu-
dent’s t-distribution with 4 degrees of freedom with probability 0.9, this means 
that 1000 out of 10,000 observations are contaminated. We then sort the obser-
vations in each machine and use (1.12) to get ,

ˆ
n jβ . Similar to Figure 1, this is 

consistent with the theoretical results, indicating that distributed estimators can 
be treated similarly when the data is contaminated. 

4. Proof 

In order to prove the main results, we need the following two lemmas. 
Lemma 4.1. Assuming that (1.3) and (1.7) hold, ( )kd O nζ= ,  

2 2min ,
2 1 2 1

ρ ρζ
ρ ρ

′ 
<  ′− − 

, then as n →∞ , we have 

 

 
Figure 4. Both ε and X are contaminated, finite sample performance for the distributed beta estimator and the oracle beta estima-
tor for different levels of p. The blue lines represent the simulation results of the distributed beta estimator, and the red lines 
represent the corresponding Oracle results. 
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lim 0; lim 0.x yn n

m mkd A kd A
d d→∞ →∞

   = =   
     

Proof. According to theorem 2.3.3 in de Haan and Ferrira (2006) [21], as 
t →∞ , ( )xA t  is a regular function with parameter 0ρ < , then 

( )

( )

1
2

1
2

1
1 2
2

lim lim

lim

lim

lim

x xn n

xn

xn

xn

m m mkd A kd l
d d d

mkd n l
d

mn l
d

n nkd l
kd kd

ρ

ρ ρ

ζ ρ ρ

ζ ρ ρ
ζ ρ ρ

→∞ →∞

−

→∞

 − + 
 

→∞

 − +    − + 
 

→∞

     =     
     

 =  
 

 =  
 

   =    
     

where xl  is a slowly varying function, since 2
2 1

ρζ
ρ

<
−

, we have  

1 0
2

ζ ρ ρ − + < 
 

, then, 

lim 0,xn

mkd A
d→∞

  = 
   

similarly, lim 0yn

mkd A
d→∞

  = 
 

. 

Let 

( ) ( ){ }: , ;Y XC Y Q py X Q px= > >
 

( )( ) ( ) ( ){ }1 : 1 , , ;Y X YC X Q py X Q px Q pyβ δ ε δ= > + > > −
 

( )( ) ( ){ }21 : 1 , ;Y XC X Q py X Q pxβ δ= > − >
 

( ) ( ){ }22 : ,Y XC Q py X Q pxε δ= > >
 

with ( ): 0pδ δ= >  to be specified later. It’s clear that for any 0 1δ< < ,  

1 21 22C C C C⊂ ⊂ ∪ . 

Lemma 4.2. Suppose ( ) ( )( )P Y u O P Y u< − = >  as u →∞ , Further as-

sume that (1.4) and (1.7) hold, ( )kd O nζ= , where 

2 2 2 2min , , , ,
1 2 2 1 2 1 3 y

θ ρ ρζ
θ ρ ρ α

 ′
<   ′+ − − +   

then as n →∞ , 

0;n Y
dkd P Q
m

ε δ  > →  
  

                  (4.1) 

0;n Y
dkd P Q
m

ε δ  ≤ − →  
  

                 (4.2) 
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( )1 0.

x

X

Y n

Y

dQ
m d mkd P X Q

dd m Q
m

α

β
β δ

            > ± − =              

      (4.3) 

Proof. Let ( ) 1 2
n kd κδ δ − −= = , 0 1 2 yκ α< < , such that 

1 3 1 .
2 2yκ α

ζ
 + + < 
   

Notice that 2
3y

ζ
α

<
+

, the choice of κ  is feasible. And we have that 

lim 0nn
kdδ

→∞
=  and lim 0y

nn

dkd
m

αδ −

→∞
= . We first prove that as n →∞ ,  

n Y
dQ
m

δ   → ∞ 
 

. 

From the heavy-tailed property of the distribution function of Y in (1), we obtain 

that ( ) ( )
1

y
Y yQ p p l pα

−

=  , yl  is a slowly varying function as 0p → , then 

( )

( )

1
1
2

1 1 1
2

1 1 1
1 1 1 2

2

lim lim

lim

lim

y

y y

y y
y y

n Y yn n

yn

yn

d kd kdQ kd l
m n n

kdn l
n

kd kdkd l
n n

ακ

ζ κ
α α

ζ κ
α αζ κ

α α

δ
−

− −

→∞ →∞

 
 − + + 
 

→∞

 
 + + −    − + +   

 
→∞

     =     
     

 =  
 

   =    
   







 

Since 2
3y

ζ
α

<
+

, 0 1 2 yκ α< < , we have 
1 1 1 0
2 y y

ζ κ
α α

 
+ + − <  

 
, together 

with 0d
m
→ , as n →∞ , we have 

.n Y
dQ
m

δ   → ∞ 
 

                       (4.4) 

Then we prove (4.1) first: Notice that 

( )

( )( )
( )

,

~ .y

n Y X

n Y
X

n Y X

n Y

Y

n

dP Q X Q p
mdP Q

m P X Q p
dP Y Q Q p
m
p
d dP Y Q
m m

pdP Y Q
m

d
m
p

α

ε δ
ε δ

δ β

δ

δ −

  > >       > =   >  
  > +    ≤

  >     ≤ ⋅
  >     
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The penultimate step is based on (4.4). As n →∞ , since 0y
n

dkd
m

αδ − → , 

then, 

0.n Y
dkd P Q
m

ε δ  > →  
    

Next, we prove (4.2): for some 0D > , we write 

( )

( )

1,
1

1
1

1
1
1

1

1
1
1

1

n Y X n Y

n Y

X n Y

n Y

n Y

n Y

n Y

d dP Q Q p X Q
m mdP Q

m dP Q p X Q
m

dP Y Q
m

dp P X Q
m

dP Y Q
m

D
dp P X Q
m

ε δ δ
β

ε δ
δ

β

δ
β

δ
β

δ
β

δ
β

    ≤ − ≤ ≤    +       ≤ − =         ≤ ≤   +   
  ≤ −   +   ≤
  − ≥   +   
  ≥   +   ≤
  − ≥  +  

,


 
   

The last step uses the condition that ( ) ( )( )P Y u O P Y u< − = > . By (4.4), the 
denominator converges to p , which is positive and finite. Same as (4.1), we 
have 

0.n Y
dkd P Q
m

ε δ  ≤ − →  
    

Then, we prove (4.3): by Lemme (4.1), we know that 0x X
dkda Q
m

   →  
  

. 

Recalling the second-order condition (1.4), we have 

( )
( )

lim 0,x

u

P X ux
kd x

P X u
α−

→∞

 >
− =  >   

substituting ux and u by ( )1Y n
dQ
m

δ β  ± 
 

 and X
dQ
m

 
 
 

, together with the 

fact that 
( ) 11

x
Y n

X

dQ
m

dQ
m

α
δ

τ
β

−

  ± 
  →

 
 
 

, we get that 

( )
( )1

lim 1 0,

x

Y n

Y nn

X

dQ
m d mkd P X Q

dd m Q
m

α

δ
β δ

β

−

→∞

    ±        > ± − =                

Compared with (4.3), since 

https://doi.org/10.4236/jamp.2023.1111232


S. Y. Zhu 
 

 

DOI: 10.4236/jamp.2023.1111232 3688 Journal of Applied Mathematics and Physics 
 

( )

( )

1
lim

lim 1 1

lim

x x

x

x

Y n Y

n

X X

Y

nn

X

Y

n

X

d dQ Q
m mkd

d dQ Q
m m

dQ
m kd
dQ
m

dQ
m
dQ
m

α α

α

α

α

δ

β β

δ
β

β

− −

→∞

−

−

→∞

−

→∞

        ±             −       
               

  
      = ⋅ ± −   
    

  
    =
  
    

( ) 1

0.

x

x
n xkd x αδ α − −⋅ ⋅ ⋅ − ⋅

=  
The penultimate step uses Lagrange’s mean value theorem, where x is between 

1 and 1 nδ± . Hence, (4.3) is proved since lim 0nn
kdδ

→∞
= . 

Proof of Theorem 2.1. Since 

1
ˆ

,
1 1

1
ˆ

1 1
ˆ

1

ˆ
1 1ˆ ˆ ˆ

ˆ

ˆˆ
1

ˆ

j

j

j x

Y
jk k

D n j j
Xj j
j

Y
j j Xk

Xj
Y j

dQ
d m

dk k m Q
m

d d dQ Q
d dm m m

d d dk m mQ Q
m m m

α

α

α α

β β τ

τ
τ τ

τ

= =

−

=

  
       = =        
    

      
                = × × × ×          
            

∑ ∑

∑
1

,1 ,2 ,3 ,4 ,5
1

1: ,

x
Y

X

k

j j j j j
j

dQ
m
dQ
m

I I I I I
k

α

=

 
                        

 

 = ⋅ ⋅ ⋅ ⋅ ∑

(4.5) 

where, 
1
ˆ

1 1
ˆ

,1 ,2 ,3

ˆˆ
; ; ;

j

j x

Y
j j

j j j

Y

d dQ
dm mI I I

d dm Q
m m

α

α α
τ

τ
τ

−
    

           = = =         
          

1

,4 ,5; ,
ˆ

x
X Y

j j
X
j X

d dQ Q
dm mI I

d dmQ Q
m m

α
τ

   
        = =        
   
     

here we show that ( ),1 1 1j pI o= + , ( ),2 1 1j pI o= + , ( ),3 1 1j pI o= + ,  
( ),4 1 1j pI o= + , ( ),5 1j pI oβ= +  uniformly for 1,2, ,j k=   separately. 

We first deal with ,1jI . For ( ),x y  in the neighborhood of (1, 1), denote 

( )
,1

1, 1 ,
t t
j X j Y

m

j d dX Q x Y Q yt m m

x y
d

τ     > >    =     

= ∑

 
then ( )ˆ j d mτ  can be written as 
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( )( )( ) ( )( )( )1 1ˆ 1 , 1 ,d d
j j X j Y j

d m mF X F Y
m d d

τ τ + +   = − −   
   



 

and ( )( )( ) ( )( )( )1 11 , 1d d
X j Y j

m mF X F Y
d d

+ + − − 
 

 is in the neighborhood of (1, 1). 

According to Corollary 2.2.2 in de Haan and Ferrira (2006) [21], as n →∞ , 

( ), 1 ~ 0,1 ,m d m
md Z N
d −

 − 
   

where ( ) 1 1ZF a a= − , 1, 2, ,m m m mZ Z Z≤ ≤ ≤ . Combining with  

( )( ), 1

1
1

d
m d m d

X j

Z
F X

− +
=

−
, we have 

( )( ) ( )
1

1 1 ~ 0,1
1 d

X j

md N
d F X +

 
 −
  − 

, then, as 

n →∞ , 

( )( )( ) ( )11 1 ~ 0,1 .d
X j

md F X N
d

+ − − 
   

Hence, for any 0δ > , as n →∞ , we have 

( )( )( )
1

1 21 1 0.d
X j

mP F X d
d

δ− ++ 
− − > →  

   
A similar relation for Y holds. Therefore, in order to prove that ,1 1

P

jI → , we 
will prove a more general result that 

( ),
1

Pj x y
d
m

τ

τ
→

 
 
 



 
uniformly for all 1,2, ,j k=  , ( ) 1 2 1 2, 1 ,1x y d dδ δ− + + ∈ − +   for some  
0 1 2δ< < . 

Since the tail dependence function  

( ), , ,X Y
m d dR x y d m P X Q x Y Q y
d m m

    = > >    
    

, denote 

( ),
,1

1, 1 ,
t t
j X j Y

m

n j d dX Q x Y Q yt m m

x y
m

ξ     > >    =     

= ∑  

since the observed values of different machines are independent and identically 
distributed, we have 

( )

( )
( )

,1

,1

,

,

1 1
,

, , ,

1 1

,

,
.

,

t t
j X j Y

t t
j X j Y

m

d dX Q x Y Q yt m mj

X Y

m

d dX Q x Y Q yt m m

X Y

n j

n j

dx y
d m d dR x y P X Q x Y Q y
m d m m

m

d dP X Q x Y Q y
m m

x y
E x y

τ

ξ
ξ

    > >    =     

    > >    =     

=
      > >            

=
    > >        

=

∑

∑



 

https://doi.org/10.4236/jamp.2023.1111232


S. Y. Zhu 
 

 

DOI: 10.4236/jamp.2023.1111232 3690 Journal of Applied Mathematics and Physics 
 

Applying Chebyshev’s inequality, as n →∞ , we have 

( )
( )

( ) ( ) ( )( ) ( )
( )

,

,

,
, , , 22

,

2

,
1

,

,
, , ,

,

1 , 1 ,

,

n j

n j

n j
n j n j n j

n j

X Y X Y

X Y

x y
P

E x y

Var x y
P x y E x y E x y

E x y

d d d dP X Q x Y Q y P X Q x Y Q y
m m m m m

d dP X Q x Y Q y
m m

ξ
ε

ξ

ξ
ξ ξ ε ξ

ε ξ

ε

 
 − >
 
 

= − > ≤

           > > − > >                      =
     ⋅ > >          

2

2

2

1 ,

,

1 ,
0.

X Y

X Y

X YP P

d dP X Q x Y Q y
m m

m d dd P X Q x Y Q y
d m m

d dP X Q x Y Q y
m m
d

ε

ε τ

    − > >        =
    ⋅ > >        

    − > >        → →  

The penultimate step using the convergence of ( ), ,R x y p , that is (1.9), then 

as n →∞ , 
( ),

1
, ,

Pj x y
dR x y
m

τ
→

 
 
 



. 

Hence, what remains to be proved is that 
, ,

lim 1
n

dR x y
m

d
m

τ
→∞

 
 
  =
 
 
 

 holds uniform-

ly for all ( ) 1 2 1 2, 1 ,1x y d dδ δ− + − + ∈ − +  . If 0β = , as n →∞ , 

, ,
lim lim 1.
n n

d m d dR x y x ym d m m
m d dd
d m mm

τ
→∞ →∞

 
⋅ ⋅ 

  = =
  ⋅ ⋅ 
   

If 0β > , applying Lemma 1 in Oordt and Zhou (2017) [13] with p d m=  
directly gives that 

, ,
lim 1

max ,

n

Y

X

dR x y
m

dQ y
m dmP X Q x
d mβ

→∞

 
 
  =

   
       >     

      

holds uniformly for all ( ) 1 2 1 2, 1 ,1x y d dδ δ− + − + ∈ − +  . We further simplify the 
denominator as follows: as n →∞ , 
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max ,

max ,

~ min ,

x

Y

X

Y

X

X

X X

Y X

dQ y
m dmP X Q x
d m

dQ y
dmP X Q x
m

dP X Q
m

d dQ Q
m m

d dQ y Q x
m m

α

β

β

β

   
       >     
  

  
   
       >     

    =
  >     

      
          

     
           

,

xα 
 
 
 
  
 

 

the last step uses the second order condition of X, that is (1.4). 

From (1.5), as n →∞ , we get that ~

x

X

Y

dQ
dm

d mQ y
m

α

β
τ

  
            

    

 holds uniformly 

for 1 21y d δ− +− ≤ . In addition, as n →∞ , 1
X P

X

dQ
m

dQ x
m

 
 
  →
 
 
 

 holds uniformly for 

1 21x d δ− +− ≤ . Combine with 1d
m

τ   ≤ 
 

, we get that 

lim max ,
Y

Xn

dQ y
m d dmP X Q x
d m m

τ
β→∞

   
         ⋅ > =        

      
holds uniformly for ( ) 1 2 1 2, 1 ,1x y d dδ δ− + − + ∈ − +  , as n →∞ . Hence, we 

proved that 
ˆ

1
j P

d
m
d
m

τ

τ

 
 
 →
 
 
 

, together with the consistency of ˆ1 jα , we have 

1
ˆ

,1

ˆ
1

j

j P

j

d
mI
d
m

α
τ

τ

  
    = →

  
    

 uniformly for 1,2, ,j k=  , thus, ( ),1 1 1j pI o= + . 

Next, we deal with 

1 1
ˆ

,2
j x

j
dI
m

α α
τ

−
  =   

  
. Note that the observations of differ-

ent machines are independently and identically distributed, similar to the proof 

in Oordt and Zhou (2017) [13], if lim sup 0
n

d
m

τ
→∞

  > 
 

, then the consistency of 
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ˆ jα  leads to ,2 1
P

jI → , as n →∞ ; If lim sup 0
n

d
m

τ
→∞

  = 
 

, to prove that as n →∞ , 

there is 2 1
P

I → , equivalent to prove 

1 1 log 0.
ˆ

P

j x

d
m

τ
α α

   − →         

Theorem 3.2.5 in de Haan and Ferrira (2006) [21] guarantees the asymptotic 
normality of ˆ jα  under conditions (1.3) and (1.13): as n →∞ , 

( )

2
1 1 1 1, ,
ˆ 1

d

j x x x

d N
α α α ρ α

     − →      −       

that is, 

( )1 1 1 ,
ˆ

d

p
j x

d O
α α

 
− →  

   

therefore, it only remains to prove that ( )log d o d
m

τ   = 
 

. 

If 0β = , d d
m m

τ   = 
 

, by (1.13), 
log

d
m
→ +∞ , then, 

( )

log log log

log log

.

d d m
m

d md
d d

o d

τ   = − 
 

 
= − 

 

=
 

If 0β > , by (1.5), for sufficiently large n, we have 

1

1

~

,

x

x

x

yx

x

y

x

y

x

y

dQ
d m

dm Q
m

dl
d m

dm l
m

dD
m

α

α

α
αα

α
δ

α

β
τ

β
−

− +

  
           
    

  
      =      
    

 >  
 





 
for some 0D >  and 0δ > , the last step uses the Potter inequality. Therefore, 

( )log d o d
m

τ   = 
 

. Thus, ,2 1
P

jI → , ( ),2 1 1j pI o= +  uniformly for  

1, 2, ,j k=  . 

For ,3jI , according to Theorem 2.2.1 in de Haan and Ferrira (2006) [21], as 
n →∞ , for 1,2, ,j k=  , we have 
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( )

( )
1

0,1 ,

d
j Y d

Y

dY Q
md N

d dQ
m m

+  −     →
  ′       

then 

( )

( )
1

1 .

d
j Y

p

Y

dY Q
md O

d dQ
m m

+  −      =
  ′       

Since ( ) ( )
1

y
Y yQ p p l pα

−

=  , 

( )
( )

( ) ( )

( )

( )
( )

1 11

10 0 0

1

1 1lim lim lim .

y y

y

y y
y yY

p p p
Y y yy

y

p p l p p l p
l ppQ p

p
Q p l p

p l p

α α

α

α

α α

− − −

→ → →−

 
 ′− ⋅ +
  ′′  = = − + ⋅ = −

 







 

The last step exploits the properties of slowly varying functions, then we have 
( )

( )
1 1 11 1 ,

d Pj
p

y
Y

Y
O

d dQ
m

α

+

→ −
 
 
   

then ( ),3 1 1j pI o= −  uniformly for 1,2, ,j k=  . 

For ,4jI , same as ,3jI , we know 
( )

( )
1 1 11 1

d Pj
p

x
X

X
O

d dQ
m

α

+

→ −
 
 
 

, then 

( ) ( ),4 1
1 1 .

X

j pd
j

dQ
mI o

X +

 
 
 = = −

 

Finally, according to (1.5), 

1

,5
x

Y

j

X

dQ
d mI

dm Q
m

α
τ β

 
     = →      
 
 

, then  

( ),5 1j pI oβ= + . 

From the above analysis, 

ˆ .
P

Dβ β→  
 

Proof of Theorem 2.2. From (4.5), , ,1 ,2 ,3 ,4 ,5
ˆ

n j j j j j jI I I I Iβ = ⋅ ⋅ ⋅ ⋅ , let’s analyze 

,1 ,2 ,3 ,4 ,5, , , ,j j j j jI I I I I  separately. Deal with ,1jI  first. By definition, ( ),R x y  is 

a homogeneous function of the first degree. According to Lemma 2 in Oordt and 

Zhou (2017) [13], for 0x > , we have ( ) ( ),1 min ,R x x τ= . Thus, for x
y

τ> , 
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( ), ,1xR x y yR y
y

τ
 

= = 
 

; for x
y

τ< , ( ), ,1xR x y yR x
y

 
= = 

 
, hence, the partial 

derivatives of R at the neighborhood of (1, 1) exist as ( )1 1,1 0R =  and 

( )2 1,1R τ= , where 1 2,R R  denotes the partial derivatives of R with respect to x 

and y, respectively. Due to tail stable dependency function  
( ) ( ), ,l x y x y R x y= + − , Theorem 2 in Section 2 of Huang (1992) [22] gives the 

asymptotic normality of ( )ˆ ,l x y  as m →∞ , 
2

1 2d o m
θ
θ+

 
=   

 
, we have 

( ) ( )( ) ( )ˆ , , , ,
d

d l x y l x y B x y− →
 

where 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2

1 2

, : , , ,0 , 0, ,

, , , , , ,

B x y W x y l x y W x l x y W y

l x y l x y l x y l x y
x y

= − −

∂ ∂
= =
∂ ∂  

( ),W x y  is a continuous zero-mean Gaussian process, its covariance is 

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 2 2

1 2 1 1 2 2 1 1 2 2 1 2

1 2 2 1 1 2 1 2

, ,

, , , ,

, , , ,

EW x y W x y

l x x y l x x y l x y y l x y y

l x y l x y l x x y y

= ∧ + ∧ + ∧ + ∧

− − − ∧ ∧  
and ( ) ( )1 11,1 1 1,1 1l R= − = ; ( ) ( )2 21,1 1 1,1 1l R τ= − = − ; ( ) ( )1,1 2 1,1R lτ = = − , 
then we have 

( ) ( ) ( ) ( )ˆ 1 0,1 1,0 1,1 .
d

j j j j
d dd W W W
m m

τ τ τ    − → − + −    
      

Let 
1
ˆ

,1

ˆ
1 ,

j

j

j

d
mS d
d
m

α
τ

τ

 
   

     = − 
        

   
then 

( ) ( ) ( ) ( )

1 1 1
ˆ ˆ ˆ

,1

1 1 1
ˆ ˆ

ˆ

1 ˆ
ˆ

1 1 1 0,1 1,0 1,1 ,

j j j

j j

j j

j
j

d

j j j
x

d d dS d
m m m

d d d dd
m m m m

W W W

α α α

α α

τ τ τ

τ τ τ τ
α

τ
α τ

−

− −

  
       = −               

         = −         
         

 → − + − 



 

the second step uses the Delta method, where d
m

τ  
 
 
  is between d

m
τ  
 
 

 and 

ˆ j
d
m

τ  
 
 

. Thus, ,1 ,1
1 1j jI S
d

= + , and 
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( ) ( ) ( ) ( ),1
1 1 1 0,1 1,0 1,1 .

d

j j j j
x

S W W Wτ
α τ

 → − + −           (4.6) 

Next we deal 

1 1
ˆ

,2
j x

j
dI
m

α α
τ

−
  =   

  
. According to Theorem 3.2.5 in de Haan 

and Ferrira (2006) [21], we know that Gaussian process can also control the 
convergence of the tail exponents, i.e., 

( ) ( ) ( )1
00

1 1 1 d 1,0 1,0 1 ,
ˆ 1j j p

j x x

s md W s W d A o
s dα α α ρ

     − = − + +       −    
∫

 
where ( ),jW x y  is the same zero-mean Gaussian process as above, as n →∞ , 

0~x
m mA A
d d

   
   
   

. Use Delta method, let ( )
1

x
x

dg x
m

α
τ

−
  =   

  
,  

( )
1

log
x

x
dg x
m

α
τ τ

−
  ′ =   

  
, 1 log

x

g τ
α
 
′ = 
 

, we have 

( ) ( ) ( )

1 1
ˆ

1
00

1

1 d 1log ,0 1,0 log .
1

j x

P

j j
x

dd
m

s mW s W d A
s d

α α
τ

τ τ
α ρ

− 
   −      
 
    → − +     −    

∫

 

From Lemma 4.1, as n →∞ , 0 0
Pmd A

d
 → 
 

, then, 

( ) ( ) ( )
1 1
ˆ 1

0

1 d1 log ,0 1,0 .
j x d

j j
x

d sd W s W
m s

α α
τ τ

α

−        − → −              
∫

 
Let 

1 1
ˆ

,2 1 ,
j x

j
dS d
m

α α
τ

− 
   = −      
   

thus, ,2 ,2
1 1j jI S
d

= +  and 

( ) ( ) ( )1
,2 0

1 dlog ,0 1,0 .
d

j j j
x

sS W s W
s

τ
α

  → −  
  
∫            (4.7) 

For 
( )1

,3

d
j

j

Y

Y
I

dQ
m

+

=
 
 
 

. According Theorem 4 in Chen et al. (2021) [23], we 

know that 

( )

( ) ( )
1 11 0,1 1 ,

d
j

j p
y

Y

Y
d W o

dQ
m

α

+
 
 
 − = +

  
      
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let 
( )1

,3 1
d

j
j

Y

Y
S d

dQ
m

+
 
 
 = −
  

    

, then ,3 ,3
1 1j jI S
d

= + , and 

( ),3
1 0,1 .

d

j j
y

S W
α

→                       (4.8) 

Finally, we deal with ( ),4 1

X

j d
j

dQ
mI

X +

 
 
 = . Similar to ,3jI , we know that 

( )

( ) ( )
1 11 1,0 1 ,

d
j

j p
x

X

X
kd k W o

dQ
m

α

+
 
 
 − = +

  
      

use Delta method, let ( ) 1g x
x

= , then ( ) 2

1g x
x

′ = − , ( )1 1g ′ = − , 

( ) ( )1

11 1,0 .
X P

jd
xj

dQ
md W

X α+

  
    − → −

 
 
   

Let ( ),4 1
1

X

j d
j

dQ
mS d

X +

  
    = −

 
 
 

, then ,4 ,4
1 1j jI S
d

= +  and 

( ),4
1 1,0 .

d

j j
x

S W
α

→ −                      (4.9) 

Thus, 

( ) ( ),1 ,2 ,3 ,4
1 1

1

ˆ 1 11 1 .

x

k k
D

j j j j p j
j j

Y

X

kd S S S S o S
d k kQ
m
dQ
m

α

β

τ

= =

 
 
 
 
 

 − = + + + + =        
       

∑ ∑

 

where ( ),1 ,2 ,3 ,4 1j j j j j pS S S S S o= + + + + , combine (4.6), (4.7), (4.8) and (4.9), 
we have 

( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( )1

0

1 1 1 0,1 1,0 1,1

log d 1 1,0 1,0 0,1 1,0 .

d

j j j j
x

j j j j
x y x

S W W W

sW s W W W
s

τ
α τ

τ
α α α

→ − + −

 + − + − 
 ∫

 
Based on the expression for ( ),l x y , we get 0,j jES VarS→ →Σ , where 
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( )2
2

1 1 22log log 1 3 log .
x

τ τ τ
τ τα
 Σ = + − ⋅ − − 
   

And jS  is independent and identical distributed on different machines, use 
the Central Limit Theorem, 

( )
1

ˆ
1 0, ,

x

d
D

Y

X

kd N
dQ
m
dQ
m

α

β

τ

 
 
 
 
 

− → Σ 
     

         
where, 

( )2
2

1 1 22log log 1 3 log .
x

τ τ τ
τ τα
 Σ = + − − − 
   

Therefore, what remains to be proved is the following deterministic relation 

1

lim 1 0.

x
Y

X

n

dQ
m
dQ
mkd

ατ

β→∞

  
    
  
    − = 

 
 
 
  
   

According to (1.5), we know that 
1

lim 0x
y

n

x

dQ
m
dQ
m

αβ τ
−

→∞

 
 
  = ⋅ >
 
 
 

, use Delta me-

thod, the above relation is equivalent to 

lim 0.

x

X

n

Y

dQ
mkd
dQ
m

α

τ β
→∞

         − =   
       

 

Next, from (1.8) and (1.9), we have ( ) ( )p O pθτ τ− = , combine with  

( )kd O nζ= , 2 1 2ζ θ θ< + , we get that 

( )
11
22lim lim lim 0,

n n n

d dkd kd n
m m

θ ξ θ θ
τ τ

 + − 
 

→∞ →∞ →∞

    − = = =    
      

what remains to be proved is 

lim 0.

x

X

n

Y

dQ
d mkd

dm Q
m

α

τ β
→∞

           − =            

            (4.10) 
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Notice that Lemma 1 in Oordt and Zhou (2017) [13] can be written as 

0

,
lim 1,

max ,

X Y

p

Y

X

d dP X Q Y Q
m m

dQ
dmP X Q
mβ

→

    > >         =
   
       >     

    

           (4.11) 

when 
dp
m

=  and 1x y= = . And by (1.5), we have  

( )
( )

( )
( )

1

0 0
lim lim xY Y

p p
X x

Q p Q p
Q p Q p

ατ β
τ→ →

= ⋅ = , then, for any 1zτ < < , for sufficiently small 

p, we have ( ) ( )y XQ p Q zpβ≥ ⋅ , then, for sufficiently large n,  

X X Y
d d dQ Q z Q

mm m
β     < <          

. Thus, (4.11) is equal to 

0 0

0

, ,
lim lim

max ,

,
lim

X Y X Y

p p

YY

X

X Y

p

d d d dP X Q Y Q P X Q Y Q
m m m m

dd QQ
mdm P XP X Q

m

m d dP X Q Y Q
d m m

Q
P X

ββ

→ →

→

          > > > >                    =
       

               >>       
       

    > >        =

>

0
lim 1,

xp

Y Y

X

X

d
m

d dQm m
dQ
m

dP X Q
m

α

τ

β
β

−→

 
 
 = =

                
    ⋅        
  >     

 

i.e., as n →∞ , we have 

0.

x

X P

Y

dQ
d m

dm Q
m

α

τ β

  
      − ⋅ →     
      

Let’s just prove that the convergence rate is kd . By referring to the set 

0 1 21 22, , , ,C C C C C , without loss of generality, let 
kd dp
n m

= = , 1x y= = , by 

Lemma 4.2, 
We prove (4.10) by dealing with the three sets 1 21 22, ,C C C . The limit relation 

in (4.3) implies that 

( )
( )

21lim 0,
1

x

X

n

Y n

dQ
m mkd P C

dd Q
m

α

β

δ
→∞

         − =   ⋅ ±         
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and the limit relation in (4.1) implies that 

( )22lim 0.
n

mkd P C
d→∞

=
 

For C1, due to X and ε independent, we have that 

( ) ( )

( )

1 , 1

1 ,

Y X Y

Y Y

m m mP C P Q P X Q X Q
d d d

m mP Q P X Q
d d

ε δ β δ

ε δ β δ

        = > − > > +        
        

      = > − > +      
        

the limit relation (4.2) implies that lim 1 0Yn

mkd P Q
d

ε δ
→∞

   > − − =   
   

. To-

gether with (4.3), we have 

( )1lim 0.

x

X

n

Y

dQ
m mkd P C

dd Q
m

α

β

→∞

         − =   
         

Since 1 21 22C C C C⊂ ⊂ ∪ , combining ( )1P C , ( )21P C  and ( )22P C , we 
have 

( )lim 0,

x

X

n

Y

dQ
m mkd P C

dd Q
m

α

β

→∞

         − =   
         

then 

lim 0.

x

X

n

Y

dQ
d mkd

dm Q
m

α

β
τ

→∞

           − =              
Therefore, 

( ) ( )
2

2
2

1 2ˆ 0, 2log log 1 3 log .
d

D
x

kd N ββ β τ τ τ
τ τα

  − → + − − −  
    
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