
Journal of Computer and Communications, 2021, 9, 1-21
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2021.911001 Nov. 8, 2021 1 Journal of Computer and Communications

Application of Weighted Cross-Entropy Loss
Function in Intrusion Detection

Ziyun Zhou1, Hong Huang1,2*, Binhao Fang1

1School of Computer Science and Engineering, Sichuan University of Science and Engineering, Yibing, China
2Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationalization and Internet of Things,
Yibing, China

Abstract
The deep learning model is overfitted and the accuracy of the test set is re-
duced when the deep learning model is trained in the network intrusion de-
tection parameters, due to the traditional loss function convergence problem.
Firstly, we utilize a network model architecture combining Gelu activation
function and deep neural network; Secondly, the cross-entropy loss function
is improved to a weighted cross entropy loss function, and at last it is applied
to intrusion detection to improve the accuracy of intrusion detection. In or-
der to compare the effect of the experiment, the KDDcup99 data set, which is
commonly used in intrusion detection, is selected as the experimental data
and use accuracy, precision, recall and F1-score as evaluation parameters. The
experimental results show that the model using the weighted cross-entropy
loss function combined with the Gelu activation function under the deep neur-
al network architecture improves the evaluation parameters by about 2% com-
pared with the ordinary cross-entropy loss function model. Experiments prove
that the weighted cross-entropy loss function can enhance the model’s ability
to discriminate samples.

Keywords
Cross-Entropy Loss Function, Visualization Analysis, Intrusion Detection,
KDD Data Set, Accuracy

1. Introduction

Intrusion detection system can be regarded as a kind of active defense of com-
puter network, and it was created to ensure the security of information commu-
nication. At the moment, affected by the 2020 epidemic, most people’s live and

How to cite this paper: Zhou, Z.Y., Huang,
H. and Fang, B.H. (2021) Application of
Weighted Cross-Entropy Loss Function in
Intrusion Detection. Journal of Computer
and Communications, 9, 1-21.
https://doi.org/10.4236/jcc.2021.911001

Received: September 29, 2021
Accepted: November 5, 2021
Published: November 8, 2021

Copyright © 2021 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2021.911001
https://www.scirp.org/
https://doi.org/10.4236/jcc.2021.911001
http://creativecommons.org/licenses/by/4.0/

Z. Y. Zhou et al.

DOI: 10.4236/jcc.2021.911001 2 Journal of Computer and Communications

work are almost closely related to the Internet, and the amount of data has also
increased dramatically, and at the same time, we are facing data abuse, data se-
curity issues such as attacks and theft have also surged. These security issues make
us face many challenges; this also makes us pay more attention to intrusion de-
tection systems.

First, machine learning was first applied to intrusion detection because it is a
fairly intelligent technology that automatically obtains knowledge from massive
datasets [1] [2] [3]. With machine learning IDS, IDS can be better detected if
enough training data is available for learning. ML is largely independent of know-
ledge in related fields, which makes it easier to build models.

Nowadays, machine learning methods have been widely used in various types
of network intrusion detection, and there are many analysis methods based on
machine learning, such as KNN, SVM, decision tree, Bayesian algorithm and
so on. With the rapid development of network equipment and related tech-
nologies, massive amounts of network data have been generated. Traditional
machine learning algorithms have become increasingly difficult to solve the
classification problem of massive intrusion data in actual networks. Deep learn-
ing is a new research direction in the field of machine learning [4]. Its network
model contains multiple hidden layers of multi-layer perception institutions.
By combining the underlying features to form a more abstract high-level re-
presentation attribute category or feature, it can discover the distributed cha-
racteristics of the data.

2. Related Works

At present, applying deep learning technology to the design of intrusion detec-
tion systems can effectively improve the accuracy and efficiency of intrusion de-
tection. Andresini et al. [5] proposed a novel deep learning method that uses a
convolutional neural network (CNN) to equip a computer network with an ef-
fective means to analyze the traffic on the network to find signs of malicious ac-
tivity. The basic idea is to represent the network stream as a 2D image and use
the image representation of this stream to train the 2D CNN architecture. But
the training effect is not stable. Michał et al. [6] compared a wide range of ANN
settings, conducted experiments on two benchmark data sets and improved the
accuracy of multi-classification. However, if the training parameters are not se-
lected properly, the F1-Score will be low. Mighan et al. [7] used Apache Spark as
a big data processing tool to process a large amount of network traffic data. In
addition, they proposed a hybrid scheme that combines the advantages of deep
network and machine learning methods to improve the accuracy of detection.
But the disadvantage is that the network structure is simple and the accuracy is
low. The tree-CNN-based classifier algorithm proposed by Mendonça et al. [8],
Improving the efficiency of detection. Andresini et al. [9] proposed a new intru-
sion detection method, this method analyzes the flow-based characteristics of
network traffic data and it learns the intrusion detection model by using the

https://doi.org/10.4236/jcc.2021.911001

Z. Y. Zhou et al.

DOI: 10.4236/jcc.2021.911001 3 Journal of Computer and Communications

deep metric learning method that originally combined the autoencoder and the
triplet network. Khan et al. [10] used Convolutional Recurrent Neural Network
(CRNN) to create a DL-based hybrid ID framework that can predict and classify
malicious network attacks in the network. In HCRNNIDS, Convolutional Neural
Network (CNN) performs convolution to capture local features, and Recurrent
Neural Network (RNN) captures temporal features to improve the performance
and prediction of the ID system. Sajith et al. [11] used computational intelligence
algorithms such as genetic algorithm (GA), genetic programming (GP) and swarm
intelligence algorithm to determine the optimization of interesting rules from
dense databases.

Among these examples of integrating deep learning into intrusion detection
systems, in fact, there are many examples that often lead to different conver-
gence speeds due to different selection of loss functions, which affects the model
training over-fitting and reduces the training accuracy instead. The DNN + Gelu
algorithm uses Relu and Gelu activation functions in each layer of its neural
network to work together to extract different data features to improve the gene-
ralization ability and accuracy of the algorithm. The weighted Cross-Entropy
loss function is used to solve the problem that the accuracy of the deep learning
model overfitting on the test set due to the imbalance of the convergence speed
of the loss function decreases.

3. Deep Neural Network Model

Deep Neural Network (DNN) can be understood as a neural network with many
hidden layers, also known as Deep Feed Forward Network (DFN), Multi-Layer
Perceptron (MLP), First divide the DNN according to the position of different
layers, the internal neural network of DNN can be divided into three layers, in-
put layer, hidden layer and output layer. In general, the first layer is the input
layer, the last layer is the output layer, and the middle part is the hidden layer.
[12] Then the DNN deep neural network is not only layered but also divided in-
to transmission directions, which are forward and backward respectively, the
forward tim9e data passes through n hidden layers from the input layer after
preprocessing, and passes it to the output layer after calculation, and then com-
pares the output result after the output layer is activated with the expected result.
After comparison, the error is found, and then the error is passed from the out-
put layer through the hidden layer back to the input layer in a gradient descent
manner, which completes a round of neural network training [13]. The structure
diagram of the deep neural network is shown in Figure 1.

3.1. Fully Connected Layer

The fully connected layer uses the form of a cooperative activation function, and
divides the output of each layer into two parts on average, and uses the Relu ac-
tivation function and the Gelu activation function to perform non-linear classi-
fication respectively.

https://doi.org/10.4236/jcc.2021.911001

Z. Y. Zhou et al.

DOI: 10.4236/jcc.2021.911001 4 Journal of Computer and Communications

Figure 1. Deep neural network structure diagram.

In the neuron, after the input layer is weighted and summed, a function is also
applied. This function is the activation function. The activation function is a
very important part of the neural network. It can perform a nonlinear transfor-
mation on the information received by the neuron and output the transformed
information to the next layer of neurons. If the activation function is not used,
then the output of each layer is the linear function of the previous layer, no mat-
ter how many layers there are in the neural network, the output is the linear
combination of the previous layer [14]. After using the activation function, we
can introduce non-linear factors to the neuron. At this time, the neural network
can approximate any non-linear function arbitrarily, so that the neural network
can be applied to most non-linear models.

However, it is also very important when we choose the activation function,
because different activation functions have different effects on the convergence
speed of the model and the training time. There are many activation functions,
such as ELU (Exponential Linear Units) and ReLU (Rectified Linear Units), The
ReLU function is a piecewise linear function that turns all negative values into 0,
while the positive values remain unchanged. This method is called unilateral in-
hibition. With this unilateral inhibition, the nerves in the neural network can be
Meta has sparse activation. But it also has its shortcomings. As the training dee-
pens, neurons may die and the weights cannot be updated. Because the ReLU
function can only output 0 and positive numbers, if a negative number is input,
it will not be activated at all. The ReLU function is not a 0-centered function. If
this happens, the gradient flowing through the neuron will always be 0 from this
point on. The ELU function incorporates some properties of the ReLU function.
The left side of the function has soft saturation, and the right side has no satura-
tion. The average value of ELU output is basically close to 0, which makes it faster
to converge. It reduces the gap between the normal gradient and the unit natural
gradient, thereby speeding up the learning speed, and it can also be under nega-
tive constraints more robust [15]. But what we use here is the GELU activation
function, which is what we often call the Gaussian error linear unit. The GELU
activation function adds the idea of random regularization to the activation,

https://doi.org/10.4236/jcc.2021.911001

Z. Y. Zhou et al.

DOI: 10.4236/jcc.2021.911001 5 Journal of Computer and Communications

which is equivalent to a probabilistic description of the neuron input. The non-
linear change of the GLUE activation function is a random regular transforma-
tion method that meets expectations. Therefore, GlUE also has a high-perfor-
mance activation function. The output images of the three activation functions
are shown in Figure 2.

The GELU function we use here as the activation function of the output layer;
the mathematical formula is as Formula (1):

() () ()GELU x xP xX x x= ≤ = Φ (1)

where ()xΦ refers to the cumulative distribution of the Gaussian normal dis-
tribution of x, as in Formula (2):

() ()

()2
22e d

2

X

x
x P X x X

µ

σ

σ

−
−

−∞
Φ

π
= ≤ = ∫ (2)

The reason for choosing the GELU activation function formula is that ac-
cording to the central limit theorem, the overall distribution of many indepen-
dent random variables approximately obeys the normal distribution. Therefore,
there are many situations in reality that can be modeled by an approximate
normal distribution method, so it is more reasonable to use the normal distribu-
tion function as the activation function. Furthermore, among all possible distri-
butions with the same variance, the normal distribution has the largest uncer-
tainty, that is, the largest entropy.

In the fully connected layer, in addition to the activation function behind each
layer, a Dropout layer is also added to randomly crop a certain proportion of
neurons to prevent overfitting.

3.2. Adam Adaptive Moment Estimation Optimization

For the Adam algorithm, we must first understand the adaptive gradient algo-
rithm (AdaGrad) and the root mean square propagation algorithm (RMSProp),

Figure 2. Three activation functions.

https://doi.org/10.4236/jcc.2021.911001

Z. Y. Zhou et al.

DOI: 10.4236/jcc.2021.911001 6 Journal of Computer and Communications

The basic idea of AdaGrad is to adaptively adjust its learning rate for each para-
meter. The adaptive method is to multiply each parameter by a different coeffi-
cient and this coefficient is determined by the sum of squares of the gradient size
accumulated before. In other words, for those that have been updated a lot be-
fore, it can be relatively slow, and for those that have not been updated much, a
larger learning rate can be given. The RMSProp is actually an improvement of
AdaGrad, that is, it turns AdaGrad’s sum of historical gradients into an average
of historical gradients. Of course, this is not the mean in the strict sense. Then
using this mean to replace the accumulated gradient of AdaGrad and weight the
current gradient, and use it to update.

Assuming the loss function is as Formula (3):
2 24Loss x y= + (3)

That is, our goal is to learn the values of x and y to make the Loss as small as
possible. The drawing result of the loss function is shown in Figure 3.

Note that this is not a U-shaped slot. It has a minimum point. The x and y
values corresponding to this point are the learning goals. Obviously when

0x = , 0y = , Loss achieves the minimum value. But here we use neural net-
work back propagation to find the derivation, and optimize the parameters step
by step to make the Loss smaller. Through this process, the function of RMSProp
algorithm can be seen.

Adam’s adaptive moment estimation algorithm has done gradient moving av-
erage and deviation correction based on RMSProp. In RMSProp, the square of
the gradient is smoothed by a smoothing constant, but the gradient itself is not
smoothed. In Adam, the gradient is smoothed, and the square gradient is also
smoothed. The smoothed sliding averages are denoted by tm

���
 and tv

��
 respec-

tively, and there are two β in Adam. Assuming that at time t, the first deriva-
tive of the objective function with respect to the parameters is tg , then the spe-
cific formula for calculating the gradient is as shown in Formula (4):

Figure 3. Loss function image.

https://doi.org/10.4236/jcc.2021.911001

Z. Y. Zhou et al.

DOI: 10.4236/jcc.2021.911001 7 Journal of Computer and Communications

()
()()

1 1 1

2
2 1 2

1

1
t t t

t t t

m m g

v v g

β β

β β

−

−

= + −

= + −
 (4)

Next, calculate their respective sliding averages, the specific formula is as For-
mula (5):

1

2

1

1

t
t t

t
t t

m
m

v
v

β

β

=
−

=
−

���

�� (5)

The final gradient update method is as Formula (6):

1
t

t t

t

m

v
θ θ η

ε
+ = − ⋅

+

���

�� (6)

Among them, η is the learning rate, 1β is the exponential decay rate esti-
mated for the first time, and 2β is the exponential decay rate estimated for the
second time, 810ε −= , The ε in the denominator is to prevent Ho from being
divided by 0 in implementation. In fact, for the learning rate, it is generally
recommended to choose 0.001η = , tθ is the last gradient, 1tθ + is the updated
gradient. Note that t in 1

tβ and 2
tβ participates in exponential calculations. In

fact, the current gradient update uses the exponential decay mean tv
��

 of the
square gradient tv at the previous moment and the exponential decay mean

tm
���

 of the gradient tm at the previous moment.

3.3. Weighted Cross-Entropy Loss Functıon Evaluation Algorithm

First of all, Cross-Entropy is an important concept in information theory, main-
ly used to measure the difference between two probability distributions. For the
understanding of Cross-Entropy, we must firstly know what the amount of in-
formation is. For example, “there is sea in the sea”, the amount of information in
this sentence is 0, why? Because this is a nonsense, there must be sea water in the
sea. Here is another one, such as “The new crown pneumonia epidemic will be
completely over next year”, Intuitively, this sentence has a lot of information,
because the new crown pneumonia epidemic will end next year, there are great
uncertainties, and this sentence eliminates the uncertainty of the new crown
pneumonia epidemic ending next year. Therefore, by definition, this sentence is
very informative. Of course, I’m just making an analogy. In summary, the prob-
ability of information occurrence is inversely proportional to the amount of in-
formation. The greater the probability, the smaller the amount of information.
The smaller the probability, the greater the amount of information.

Suppose the probability of a certain event occurrence is ()P x , and its infor-
mation content is expressed as shown in Formula (7):

() ()()elogI x P x= − (7)

Among them, ()I x represents the amount of information, and log represents

https://doi.org/10.4236/jcc.2021.911001

Z. Y. Zhou et al.

DOI: 10.4236/jcc.2021.911001 8 Journal of Computer and Communications

the natural logarithm with e as the base.
The information entropy is also called entropy if you expect the amount of

information. Expectation is the probability of possible outcomes in each experi-
ment multiplied by the total number of outcomes. Therefore, the expression of
information entropy is shown in Formula (8):

() () ()()e
1

log
n

i i
i

H X P x P x
=

= −∑ (8)

Here X is a discrete random variable, and n represents all n possibilities.
For the same random variable X, if there are two separate probability distribu-

tions, ()P x and ()Q x , the difference between the two probability distribu-
tions can be measured by KL divergence. Such as Formula (9):

() () ()
()e

1
log

n
i

KL i
i i

p x
D p q p x

q x=

 
=   

 
∑� (9)

We further derive the KL divergence and simplify it as Formula (10):

() () ()
()

() ()() () ()()

()() () ()()

e
1

e e
1 1

e
1

log

log log

log

n
i

KL i
i i

n n

i i i i
i i

n

i i
i

p x
D p q p x

q x

p x p x p x q x

H p x p x q x

=

= =

=

 
=   

 

= −

= − −

∑

∑ ∑

∑

�

 (10)

The former ()()H p x represents information entropy, and the latter is cross
entropy as in Formula (11):

() () ()()e
1

, log
n

i i
i

H p q p x q x
=

= −∑ (11)

We use ()ip x to represent the true distribution of the sample, and ()iq x
to represent the distribution predicted by the model.

In order to solve the problem of class imbalance in the data set, we attribute it
to the imbalance in learning difficulty, which leads to different convergence
speeds, so we thought of weighting in the loss function to balance the imbalance
of samples in this way. So the Formula (12) is obtained:

() () ()()e
1

log , log
n

i i i
i

H p q p x q xω
=

= −∑ (12)

where iω represents the weight of the loss function when the actual label of the
current data is.

3.4. Network Structure

Input the processed data into the deep neural network, use the fully connected
neural network to extract the features of the data, and then use the Relu activa-
tion function and Gelu activation function to nonlinearize the output of the
current layer in the same layer. Its structure is shown in the following Table 1.

https://doi.org/10.4236/jcc.2021.911001

Z. Y. Zhou et al.

DOI: 10.4236/jcc.2021.911001 9 Journal of Computer and Communications

Table 1. Network structure.

Layer Output shape Activation Connected to

Input1 (None, 41) None

Dense1 (None, 128) Relu Input1

Dense2 (None, 128) Gelu Input1

Concatenate1 (None, 256) None
Dense1
Dense2

Dropout1 (None, 256) None Concatenate1

Dense3 (None, 768) Relu Dropout1

Dense4 (None, 768) Gelu Dropout1

Concatenate2 (None, 1536) None
Dense3
Dense4

Dropout2 (None, 1536) None Concatenate2

Dense5 (None, 150) Relu Dropout2

Dense6 (None, 150) Gelu Dropout2

Concatenate3 (None, 300) None
Dense5
Dense6

… … … …

Concatenate7 (None, 256) None
Dense11
Dense12

Dense13 (None, 1) Sigmoid Concatenate7

4. Intrusion Detection System Design

First of all, our detection model has a data acquisition and processing module,
an intrusion detection module, a detection classification module, and a visual
analysis module.

Data collection and processing: Obtaining the network data set, performing
preprocessing operations such as feature extraction, numerical conversion, and
data normalization on the network data set, then checking the numerical data
distribution and dividing it into a test set and a training set, which are used for
model testing and training respectively.

Intrusion detection module: determining the input and output nodes of the
deep neural network according to the dimensions of the preprocessed data, then
determining the entire network structure and training parameters according to
the hidden layer and other parameters, using the training set to train the model,
and saving the model for testing after completing the training.

Detection and classification module: testing the test set and classifying the test
results.

Visual analysis module: Visually display the distribution of numerical data
and the classification results, and then make an analysis. The model structure
diagram is shown in Figure 4.

https://doi.org/10.4236/jcc.2021.911001

Z. Y. Zhou et al.

DOI: 10.4236/jcc.2021.911001 10 Journal of Computer and Communications

Figure 4. Intrusion detection system diagram.

4.1. Data Set Selection

Here we have selected the KDDCup99 data set, which is more common in intru-
sion detection, for the convenience of comparison experiments. The data set has
42 dimensions, of which 41 dimensions are attributed features, and 1 dimension
is flag feature. The release of the KDD Cup99 data set is very useful for many
IDS evaluations, and it is also a widely used data set. The data set is composed of
5 million network connection records containing 41 characteristics. The simu-
lated attacks can be divided into 4 categories:

Denial of service attack (DOS): The intruder exhausts the resources of the
attacked object by attacking the defects realized by the network protocol or di-
rectly using brute force. The purpose is to make the target computer or network
unable to provide normal service or resource access, so that the target system
service system stops responding or even crashes, thereby causing service inter-
ruption.

Port monitoring or scanning attack (Probe): The network intruder collects
information about the types of computers on the network, and then gains root
access through the firewall of the target host.

Remote to Local Attack (R2L): The network intruder sends data packets to
the target, but does not have a user account on the host itself, trying to use the
vulnerability to gain local access, pretending to be an existing user of the target
host.

User to Root Attack (U2R): A commonly used method of network intrusion,
the intruder tries to take advantage of the user’s pre-existing access rights and
exploits loopholes to gain root control.

Due to the huge amount of data and the limitation of memory allocation, we
use 10% of the actual amount of data here. Then here we use Numpy in python
to perform statistical data to get the following data set data distribution table as
shown in Table 2.

The KDD data set has a total of 41 attribute features and 1 logo feature. The
specific information is shown in Table 3.

https://doi.org/10.4236/jcc.2021.911001

Z. Y. Zhou et al.

DOI: 10.4236/jcc.2021.911001 11 Journal of Computer and Communications

Table 2. Data distribution.

Normal DOS Probe R2L U2R Total

97,278 391,458 4107 1126 52 494,021

Table 3. Attribute information of KDD Dataset.

Column label number Attribute characteristics

1 - 9 Basic characteristics of network connection

10 - 22 Content characteristics of network connections

23 - 31 Time-based flow characteristics

32 - 41 Host-based traffic characteristics

42 Logo feature

4.2. Data Preprocessing

1) Numerical Processing
For symbolic features, we use one-hot code, which is, there are as many bits as

there are states, and only one bit is 1, and the others are all 0. For example, the
Normal code is 10,000. For character data, it is converted to numeric data. When
transforming data, the method of function mapping is adopted, and each type of
character form corresponds to a uniquely determined binary code, which is, in
the formula: is the original character string in the network stream data feature, is
the data in binary encoding format; is the mapping relationship.

2) Standardization
First of all, ordinary standardization is to calculate the average value kx and

the average absolute error kS of each attribute. The calculation formula is as
Formula (13):

()
1

2

1

1

1

n

k ik
i

n

k ik k
i

x x
n

S x x
n

=

=

=

= −

∑

∑
 (13)

where ikx represents the k-th attribute of the i-th record, kS represents the av-
erage absolute error of the k-th attribute, kx represents the mean value of the
k-th attribute. Then standardize the measurement for each data record, such as
Formula (14):

ik k
ik

k

x x
Z

S
−

= (14)

Among them, ikZ represents the k-th attribute value of the i-th record after
standardization. However, adding Z-Score here is equivalent to doing another
calculation after normal standardization, which is actually a process of dividing
the difference between the score and the average by the standard deviation. Con-
verting the raw scores in the normally distributed data to Z-Scores, we can know

https://doi.org/10.4236/jcc.2021.911001

Z. Y. Zhou et al.

DOI: 10.4236/jcc.2021.911001 12 Journal of Computer and Communications

the area between the average and the Z-score by consulting the table of the area
under the normal curve of the Z-score, and then know the percentage rank of
the original score in the data set. Z-Score is a way to see the relative position of a
certain score in the distribution. The specific formula is as Formula (15):

xz µ
σ
−

= (15)

Among them, µ is the mean value of all data, σ is the standard deviation,
x is the original data, and the z value represents the distance between the original
score and the population average, and is calculated in the unit of standard devia-
tion.

3) Normalization
In fact, each value after standardization is normalized to the interval [0, 1]. Its

formula is as Formula (16):

min

max min

x xx
x x

⊗ −
=

−
 (16)

where minx and maxx are the minimum and maximum values of each data
item, x is the value of the original data, and x⊗ is the normalized data.

4) Divide the Data Set
After the data is preprocessed, 20% is randomly selected as the test set, and the

remaining 80% is used as the training set. The data after the split is shown in
Table 4.

5. Experiment and Analysis
5.1. Lab Environment

In order to build the model and train the parameters smoothly and effectively in
the intrusion detection algorithm experiment, we use the Keras deep learning
framework of TensorFlow. The specific hardware environment and software en-
vironment of the experiment are shown in Table 5.

5.2. Data Analysis

1) Attack Type Exploration
Firstly, we will subdivide the statistics of the 4 commonly used attack types in

the data set. As shown in Table 6.
Then we add these attack types and “Normal” types to the dictionary to match

the predicted attack column “target”. Map the class name according to the

Table 4. Data set division.

Data set Total amount of data Independent feature type Dependent feature type

KDDCup99 494,021 122 5

Training set 395,216 122 5

Test set 98,805 122 5

https://doi.org/10.4236/jcc.2021.911001

Z. Y. Zhou et al.

DOI: 10.4236/jcc.2021.911001 13 Journal of Computer and Communications

Table 5. Lab Environment.

Name Configuration

CPU AMD Ryzen 5 3600 6-Core

GPU NVIDIA GeForce RTX 2060

RAM 16GB

Operating System Windows10 Professional

Programming language Python3.9

Visual analysis tools Matplotlib

Table 6. Attack breakdown statistics.

Attack type DOS Probe R2L U2R

1 back ipsweep ftp_write buffer_overflow

2 land portsweep guess_passwd loadmodule

3 neptune satan imap perl

4 pod multihop rootkit

5 smurf phf

6 teardrop spy

7 warezclient

column where the predicted attack is located, use the value counts() function to
check the unique value in the target column and visually display the number of
repetitions of each tag in the predicted attack. As shown in Figure 5.

Here we find that there is an extra “.” at the end of each attack name. There-
fore, here we use this format to match the actual attack type. Map the actual at-
tack type to another column named “target_type”, and visually display the actual
attack type statistics as shown in Figure 6.

2) Classification Feature Exploration
Here we use the info() function in python to check whether there are missing

values in each column of the data set. We found no data loss. Then we get the
names of all numeric columns as “target_type”, “service”, “flag”, “target”, “proto-
col_type”, noting that the “target” column here is our prediction, “Target_type” is
packet data. Then we are determining whether there is any other binary data. We
found that there is also “land”, “logged_in”, “root_shell”, “num_outbound_cmds”,
“is_host_login”, “is_guest_login”, The meanings they represent are as follows.

3) Digital Feature Exploration
Identify the remaining digital features by subtracting the classification col-

umn.
Here we use the standard deviation to measure their degree of deviation.

Standard deviation is a measure of the degree of dispersion of data distribution,

https://doi.org/10.4236/jcc.2021.911001

Z. Y. Zhou et al.

DOI: 10.4236/jcc.2021.911001 14 Journal of Computer and Communications

Figure 5. Repetition degree of each label in predicted attack.

Figure 6. Statistics of actual attack types.

being used to measure the degree of deviation of the data value from the arith-
metic mean. The smaller the standard deviation, the less these values deviate
from the average, and vice versa. The size of the standard deviation can be
measured by the magnification relationship between the standard deviation and
the average value. Then we visualize their standard deviations as shown in Fig-
ure 7.

Because there are different normal distributions in the figure, we are applying
Z-Score to further standardize the digital features, after further standardization,
as shown in Figure 8.

https://doi.org/10.4236/jcc.2021.911001

Z. Y. Zhou et al.

DOI: 10.4236/jcc.2021.911001 15 Journal of Computer and Communications

Figure 7. Standard deviation of number features.

Figure 8. Standard deviation on nuemeric features after applying z-score.

5.3. Experimental Data Comparison

This article uses Accuracy, Precision, Recall, F1-Score to evaluate the model. The
formula of the four parameters is as the Formulas (17) - (20):

TP TNAccuracy
TP TN FP FN

+
=

+ + +
 (17)

TPPrecision
TP FP

=
+

 (18)

TPRecall
TP FN

=
+

 (19)

2 Precision RecallF1
Precision Recall
× ×

=
+

 (20)

Among them, (True Positive) represents the number of samples that represent
the attack as an attack type, (True Negative) represents the number of samples
that judge the attack type as a normal type, (False Positive) represents the num-
ber of samples that judge a normal sample as an attack type, (False Negative)
represents the number of samples that define the attack as a normal type.

https://doi.org/10.4236/jcc.2021.911001

Z. Y. Zhou et al.

DOI: 10.4236/jcc.2021.911001 16 Journal of Computer and Communications

The following table shows all the parameter settings of the loss function algo-
rithm experiment after the Epoch of the experiment is determined, as shown in
Table 7.

Below we compare and analyze the experimental data between the ordinary
cross-entropy loss function model and the weighted cross-entropy loss function
model. The data is shown in Table 8 and Figure 9.

From the above data comparison table and comparison chart analysis, the wei-
ghted cross entropy loss function is significantly better than the ordinary cross en-
tropy loss function in terms of accuracy and various numerical values.

Let’s look at the weighted Cross-Entropy loss function training data experi-
ment. The experimental parameters are given above. Let us directly look at the
experimental data table, as shown in Table 9.

Here due to the use of the Early stopping method, when we train deep learn-
ing neural networks, we usually hope to get the best generalization performance,

Figure 9. Comparison of experimental data of two models.

Table 7. Model experiment parameter setting.

Parameter Name Parameter

Activation function Relu, Gelu

Gradient descent optimizer Adam

Initial learning rate 0.001

Batch size 200

Epoch 50

Table 8. Comparison of experimental data of two models.

Model Accuracy Precision Recall F1Score

Cross entropy 0.9786 0.9806 0.9809 0.9804

Weighted Cross entropy 0.9991 0.9995 0.9998 0.9996

https://doi.org/10.4236/jcc.2021.911001

Z. Y. Zhou et al.

DOI: 10.4236/jcc.2021.911001 17 Journal of Computer and Communications

Table 9. Weighted cross-entropy loss function algorithm experimental data table.

Epoch
Time
cost

Loss
of train

Accuracy
of train

Loss
of test

Accuracy
of test

1/50 9s 0.1344 0.9906 0.0197 0.9963

2/50 8s 0.0157 0.9967 0.0144 0.9970

3/50 8s 0.0120 0.9970 0.0140 0.9969

4/50 8s 0.0105 0.9974 0.0119 0.9970

5/50 8s 0.0096 0.9978 0.0110 0.9983

6/50 8s 0.0091 0.9983 0.0112 0.9972

7/50 8s 0.0087 0.9986 0.0122 0.9983

8/50 8s 0.0083 0.9987 0.0129 0.9982

9/50 8s 0.0084 0.9989 0.0115 0.9989

10/50 8s 0.0084 0.9988 0.0113 0.9986

11/50 8s 0.0078 0.9989 0.0127 0.9981

12/50 8s 0.0077 0.9990 0.0123 0.9989

13/50 8s 0.0079 0.9990 0.0123 0.9989

14/50 8s 0.0079 0.9991 0.0111 0.9990

15/50 8s 0.0078 0.9990 0.0111 0.9988

16/50 8s 0.0074 0.9990 0.0110 0.9989

17/50 8s 0.0076 0.9990 0.0100 0.9989

18/50 8s 0.0073 0.9990 0.0108 0.9989

19/50 8s 0.0073 0.9990 0.0110 0.9990

20/50 8s 0.0071 0.9991 0.0105 0.9991

21/50 8s 0.0071 0.9991 0.0101 0.9990

22/50 8s 0.0072 0.9991 0.0097 0.9991

that is, we can fit the data well. But all standard deep learning neural network
structures such as fully connected multilayer perceptrons are easy to overfit. That
is, when the network performs better and better on the training set, and the er-
ror rate is getting lower and lower. In fact, at a certain moment, its performance
on the test set has begun to deteriorate. In order to prevent overfitting, we use
this method.

The results of the visual analysis are shown in Figure 10 and Figure 11.
It can be seen from the above that after the model is trained, the accuracy curve

is in a relatively balanced state, which shows that the fluctuation range of the
model is not large and relatively stable during the training process.

Then we experimentally compare the data of this model with other models, as
shown in Table 10 and Figure 12.

https://doi.org/10.4236/jcc.2021.911001

Z. Y. Zhou et al.

DOI: 10.4236/jcc.2021.911001 18 Journal of Computer and Communications

Figure 10. The loss rate under the weighted cross-entropy loss function model.

Figure 11. The accuracy of the weighted cross-entropy loss function model.

From the above data, it can be seen that the model has a certain improvement

in data than other models, but this may be due to the overfitting phenomenon
caused by the excessively strong model training due to the problem of gradient
optimization, but from the comparison of this data, The accuracy rate has in-
deed improved.

https://doi.org/10.4236/jcc.2021.911001

Z. Y. Zhou et al.

DOI: 10.4236/jcc.2021.911001 19 Journal of Computer and Communications

Table 10. Comparison of experimental data of various models.

Model Accuracy Precision Recall F1Score

CNN 0.9904 0.9954 0.9909 0.9930

ANN 0.9786 0.9834 0.9839 0.9833

KNN 0.9826 0.9874 0.9879 0.9876

DNN 0.9834 0.9886 0.9887 0.9884

DNN + Gelu 0.9987 0.9991 0.9994 0.9992

Figure 12. Comparison of experimental data of various models.

6. Conclusion

Using the DNN + Gelu model architecture, the cross-entropy function is im-
proved to a weighted cross-entropy loss function, a new intrusion detection
system is constructed and applying a weighted loss function to improve the
accuracy of model. In order to prove the role of the weighted loss weight func-
tion, this paper compares and analyzes with other models based on a commonly
used intrusion detection data set KDDCup99, which will be more convincing.
After data analysis, it is proved that the weighted loss weighted function can
improve the accuracy of model recognition. However, the batch_size and epoch
trained here are relatively fixed. If you change the training accuracy of these
variables, it remains to be tested, and the choice of optimizer may also affect
the training accuracy of the model. These are the problems that this article will
solve later.

Fund

This work was Supported by Sichuan Science and Technology Program
(2020YFG0151), The Opening Project of Key Laboratory of Higher Education of
Sichuan Province for Enterprise Informationalization and Internet of Things
(2021WZY01) and Postgraduate Innovation Fund Project of Sichuan University
of Science and Engineering (y2021091).

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

CNN ANN KNN DNN DNN+Gelu

Accuracy Precision Recall F1-Score

https://doi.org/10.4236/jcc.2021.911001

Z. Y. Zhou et al.

DOI: 10.4236/jcc.2021.911001 20 Journal of Computer and Communications

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Eesa, A.S., Orman, Z. and Brifcani, A.M.A. (2015) A New Feature Selection Model

Based on ID3 and Bees Algorithm for Intrusion Detection System. Turkish Journal
of Electrical Engineering & Computer Sciences, 23, 615-622.
https://doi.org/10.3906/elk-1302-53

[2] Abdulqader, D.M., Abdulazeez, A.M. and Zeebaree, D.Q. (2020) Machine Learning
Supervised Algorithms of Gene Selection: A Review. Machine Learning, 62, 233-244.

[3] Xiong, J., Qin, R., He, M., Liu, J. and Tang, F. (2021) Application of Improved
Random Forest Algorithm in Android Malware Detection. Computer Engineering
and Applications, 57, 130-136. (in Chinese)

[4] LeCun, Y., Yoshua, B. and Geoffrey, H. (2015) Deep Learning. Nature, 521, 436-444.
https://doi.org/10.1038/nature14539

[5] Giuseppina, A., Appice, A. and Malerba, D. (2021) Nearest Cluster-Based Intrusion
Detection through Convolutional Neural Networks. Knowledge-Based Systems, 216,
Article ID: 106798. https://doi.org/10.1016/j.knosys.2021.106798

[6] Michał, C. and Pawlicki, M. (2021) Intrusion Detection Approach Based on Opti-
mised Artificial Neural Network. Neurocomputing, 452, 705-715.
https://doi.org/10.1016/j.neucom.2020.07.138

[7] Soosan Naderi, M. and Kahani, M. (2021) A Novel Scalable Intrusion Detection
System Based on Deep Learning. International Journal of Information Security, 20,
387-403. https://doi.org/10.1007/s10207-020-00508-5

[8] Mendonça, R.V., Teodoro, A.A.M., Rosa, R.L., Saadi, M., Carrillo Melgarejo, D.,
Nardelli, P.H.J., et al. (2021) Intrusion Detection System Based on Fast Hierarchical
Deep Convolutional Neural Network. IEEE Access, 9, 61024-61034.
https://doi.org/10.1109/ACCESS.2021.3074664

[9] Giuseppina, A., Appice, A. and Malerba, D. (2021) Autoencoder-Based Deep Metric
Learning for Network Intrusion Detection. Information Sciences, 569, 706-727.
https://doi.org/10.1016/j.ins.2021.05.016

[10] Khan, M.A. (2021) HCRNNIDS: Hybrid Convolutional Recurrent Neural Network-
Based Network Intrusion Detection System. Processes, 9, Article No. 834.
https://doi.org/10.3390/pr9050834

[11] Sajith, P.J. and Nagarajan, G. (2021) Optimized Intrusion Detection System Using
Computational Intelligent Algorithm. In: Mallick P.K., Bhoi A.K., Chae G.S. and Ka-
lita K., Eds., Advances in Electronics, Communication and Computing, Springer,
Singapore, 633-639. https://doi.org/10.1007/978-981-15-8752-8_64

[12] Srinidhi, C.L., Ozan, C. and Martel, A.L. (2021) Deep Neural Network Models for
Computational Histopathology: A Survey. Medical Image Analysis, 67, Article ID:
101813. https://doi.org/10.1016/j.media.2020.101813

[13] Tian, P., Chen, Z., Yu, W. and Liao, W. (2021) Towards Asynchronous Federated
Learning Based Threat Detection: A DC-Adam Approach. Computers & Security, 108,
Article ID: 102344. https://doi.org/10.1016/j.cose.2021.102344

[14] Bihonegn, T., Kaushik, S., Bansal, A., Vojtíšek, L. and Slovák, J. (2021) Geodesic Fi-
ber Tracking in White Matter Using Activation Function. Computer Methods and

https://doi.org/10.4236/jcc.2021.911001
https://doi.org/10.3906/elk-1302-53
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.knosys.2021.106798
https://doi.org/10.1016/j.neucom.2020.07.138
https://doi.org/10.1007/s10207-020-00508-5
https://doi.org/10.1109/ACCESS.2021.3074664
https://doi.org/10.1016/j.ins.2021.05.016
https://doi.org/10.3390/pr9050834
https://doi.org/10.1007/978-981-15-8752-8_64
https://doi.org/10.1016/j.media.2020.101813
https://doi.org/10.1016/j.cose.2021.102344

Z. Y. Zhou et al.

DOI: 10.4236/jcc.2021.911001 21 Journal of Computer and Communications

Programs in Biomedicine, 208, Article No. 106283.
https://doi.org/10.1016/j.cmpb.2021.106283

[15] Cococcioni, M., Rossi, F., Ruffaldi, E. and Saponara, S. (2020) A Novel Posit-Based
Fast Approximation of elu Activation Function for Deep Neural Networks. 2020
IEEE International Conference on Smart Computing (SMARTCOMP). Bologna,
14-17 September 2020, 244-246.
https://doi.org/10.1109/SMARTCOMP50058.2020.00053

https://doi.org/10.4236/jcc.2021.911001
https://doi.org/10.1016/j.cmpb.2021.106283
https://doi.org/10.1109/SMARTCOMP50058.2020.00053

	Application of Weighted Cross-Entropy Loss Function in Intrusion Detection
	Abstract
	Keywords
	1. Introduction
	2. Related Works
	3. Deep Neural Network Model
	3.1. Fully Connected Layer
	3.2. Adam Adaptive Moment Estimation Optimization
	3.3. Weighted Cross-Entropy Loss Functıon Evaluation Algorithm
	3.4. Network Structure

	4. Intrusion Detection System Design
	4.1. Data Set Selection
	4.2. Data Preprocessing

	5. Experiment and Analysis
	5.1. Lab Environment
	5.2. Data Analysis
	5.3. Experimental Data Comparison

	6. Conclusion
	Fund
	Conflicts of Interest
	References

