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Abstract 
This article addresses where ruts are likely to occur during in-field forest op-
erations. This was done by inspecting high-resolution surface images across 
New Brunswick (NB) and elsewhere to mark where ruts have (1) and have not 
(0) occurred in harvested cutblocks. This marking revealed 1) where off-road 
operations were likely done on moist to wet and unfrozen soils; and 2) whether 
the ruts so incurred were water-logged at the time of imaging. Through geo-
spatial processing of the NB-wide digital elevation model (DEM, available at 
1 m resolution), the following attributes were added to each of the marked rut 
and no-rut locations: 1) the cartographic depth-to-water (DTW) as referenced 
to the nearest flow channels with >1 and >4 ha upslope flow accumulation 
areas (FA); 2) the topographic position index (TPI) in reference to the mean 
annulus elevation 50 m away from each DEM cell; 3) mean slope and curva-
tures within each cell-surrounding 10-m circle; 4) the terrain wetness index 
(TWI); 5) soil association type according to the NB forest soil map, adjusted 
for NB’s most recent hydrographic network delineations for waterbodies and 
wetlands. Subjecting these data to logistic regression analysis revealed that im-
age-located off-road rutting occurred at about 90% probability in water-accu-
mulating zones where TPI is <0 m and DTW is <1 m. Using slope, curvature, 
TWI, and soil type as additional rut occurrence predictors did not affect this 
zonation significantly. 
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1. Introduction 

Soil rutting due to off-road forest harvest and post-harvest operations is a wide-
spread problem [1]-[5]. Rutting would primarily occur when operating on wet 
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and non-frozen soil conditions, as these would exist temporarily to permanently 
on drainage-challenged soils, i.e., in depressed areas, on flat to slightly sloping 
land, and adjacent to temporary to permanent stream channels, wetlands, water 
bodies, and shores [6]-[9]. In general, soils are limited in resisting soil compaction 
as soil moisture approaches the plastic limit and decreases further towards water 
saturation ([10]-[13]. Where rutting cannot be avoided, soil compaction and dis-
placement: 
• reduce soil and flow-channel stabilities and increase soil erosion along slopes 

[14]-[18]; 
• lower water infiltration and air exchange which reduces root development and 

expected crop yields [19]; 
• increase in-field operation costs by slowing operations due to recovering rut-

stalled machines, adding to machine maintenance costs, and requiring rut re-
pair. 

Since off-road soil trafficability can now be related to per-tire machine loads, 
tire/track footprints, number of machine passes along the same track, and soil type 
[20]-[22], it is now possible to determine when and where machines likely induce 
soil rutting, and how deep these ruts will be. Specifically, this can be done through 
[6] [23]:  
• Forest hydrology modelling using daily weather records to simulate soil mois-

ture conditions as these vary year-round.  
• Topographic terrain modelling to address ridge-to-valley variations in vegeta-

tion and soil type. This modelling involves using and evaluating the following 
DEM-generated data layers at 1 m resolution for 1) the Terrain Wetness Index 
(TWI [24] [25]); 2) the Topographic Position Index (TPI [26]), and 3) the car-
tographic Depth-To-Water Index (DTW [27]). The derivation of these indices 
has been facilitated through the increasing availability of LiDAR-derived digi-
tal elevation models (DEMs) at, e.g., 1 m resolution.  

Briefly, TWI, which indexes the D8-derived upslope flow accumulation for each 
DEM cell [28] in relation to the slope of that cell, increases towards flat and low-
lying areas with increasing upslope watershed areas. TPI relates the elevation of 
any cell within the DEM raster to the mean elevation of its surrounding annulus 
at a specified radius [29]. The resulting numbers are, respectively, positive, zero, 
or negative where the cells lie above, at, or below their mean annulus elevations. 
The cartographic depth-to-water index (DTW) is determined by assessing the 
minimum (“least-cost”) rise of the land away from weather-dependent open-wa-
ter areas including temporal to permanent flow channels for which DTW is set to 
0. This being so, soils along permanent open waters are considered to be: 
• very poorly drained when DTW < 10 cm,  
• poorly drained when 10 ≤ DTW < 25 cm,  
• imperfectly drained when 25 ≤ DTW < 50 cm,  
• moderately well drained when 50 ≤ DTW < 100 cm,  
• well drained when 1 ≤ DTW < 20 m, and  
• excessively well drained when DTW ≥ 20 m. 
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This article reports on developing practical and easy-to-use techniques that led 
to 1) marking where off-road traffic rutting has (1) or has not (0) occurred within 
forested cutblocks, and 2) to use this information to project where else such rut-
ting is likely to occur in wet and unfrozen soils. This was done in three stages 
involving three areas of interest (Figure 1) dealing with an initial methodology 
exploration (AOE). This was followed by checking (AOM) and verifying (AOV) 
the approach. The process of doing so was facilitated using: 
• ArcMap and ArcGIS Pro mapping software availability. 
• High-resolution surface images (Google Earth, ESRI, and GeoNB surface im-

ageries), spanning the course of 14 years (i.e., 2010-2024), as available. 
• Province-wide forest soil association map  

(http://www.snb.ca/geonb1/e/dc/catalogue-E.asp); see also [30]). 
• Province-wide shapefiles of provincial boundary, water bodies, and wetlands 

(http://www.snb.ca/geonb1/e/dc/catalogue-E.asp); 
• Province-wide LiDAR-generated 1-m resolution digital elevation model (DEM) 

(http://www.snb.ca/geonb1/e/dc/catalogue-E.asp) to derive the surface rasters 
for depression fill (FI), slope (SL), upslope flow accumulation (FA), DTW 
along ephemeral and/or permanent flow channels associated with FA > 1 
and >4 ha, respectively, TPI, and TWI. 

 

 

Figure 1. Overview of cutblock rut versus no-rut dot placements across three study areas in New 
Brunswick: AOE: exploration area (red); AOM: model-guided dot placements (yellow); AOV: 
model verification area (white); overlain on NB’s hillshaded DEM at 1 m resolution. Also shown: 
extent of LiDAR DEM coverage by year. 
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The analytical processing involved logistically analyzing the binary rut and no-
rut marks as the to-be-predicted variable, and the associated soil- and location-
indexed Slope, Curvature, DTW, TPI, and TWI numbers as independent rut-pre-
dictor variables. 

2. Methodology 
2.1. Study Areas 

The areas selected for image-based rut versus no-rut dot placements per cutblock 
are shown in Figure 1. Here, the AOE and AOV areas refer to image-recognized 
dot placements whereas the AOM area refers to model-adjusted dot placements. 
As is the case for most of New Brunswick, these areas are mostly covered by glacial 
deposits in the form of ablation and basal tills permeated by streams, wetlands, 
lakes, and floodplain sediments. The soils, as per the New Brunswick Forest Soil 
map, vary by 1) texture (from sandy to silty and clayey), 2) rooting depth (<15 
to >100 cm), and organic matter and coarse fragment type and contents. The to-
pography varies from flat to rolling and hummocky. Soil moisture conditions vary 
by slope position, season, weather, soil texture, organic matter content, and drain-
age. Annually, these areas receive about 1100 mm of precipitation. Mean daily 
temperatures range from −10˚C in January to 19˚C in July. Elevations across the 
areas vary from 0 - 820 m above sea level. 

2.2. Rut versus No-Rut Dot Placements 

Harvest blocks within each of the AOE, AOV, and AOM areas were used for rut 
versus no-rut marking using high-resolution GeoNB, ESRI, Bing, and 2000-2020 
Historical Google Earth imageries. To maximize visual detection, only images 
with sharp post-harvest appearances were selected. The marking then focussed on 
dark and presumably water-filled rut lines along single-pass harvest trails, as vis-
ible at 1:500 to 1:2000 image resolution. The within-cutblock rut locations were 
marked as per Table 1, and this was done in conjunction with selecting and veri-
fying an equal number of no-rut locations nearby (Figure 2). For this process, 
only cutblocks with sharp post-harvest rut appearances were selected, and loca-
tions with remaining ambiguity (e.g., tree shadows, dark slash piles) were dis-
carded (Figure 3). Also discarded were ruts along multi-pass tracks, done to locate 
single-pass ruts where soils would be 1) least resistant to rut-induced soil compac-
tion and soil displacement, and 2) appeared to be water-filled and therefore black 
at imaging time. Inspecting the same cutblock across successive Google Earth im-
ages revealed that rut presence faded and disappeared over time as ruts dried out 
and/or became overgrown.  

Figure 4 affirms that off-road water-filled ruts were easily image-located shortly 
after harvesting but were not fully LiDAR-DEM resolved 3 years thereafter. In 
contrast, roads, trails, and multi-pass tracks would continue to be image- and 
DEM-traceable for longer periods of time. To further ensure rut and no-rut mark-
ing precision, each point was reinspected such that 1) rut locations were moved 
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to their nearest rut-patch centers, and 2) no-rut locations were moved at least 30 
m away from these patches, as needed. Each rut and no-rut location was subse-
quently marked 1 and 0, respectively, and the associated x and y coordinates were 
point-shapefile registered. The number of rutting and non-rutting points per har-
vest block varied from 2 to 14, mostly depending on harvest block size and the 
number of isolated rut patches within. Altogether, doing so generated a total of 
4800 post-harvest rut and no-rut locations across the AOE, AOV, and AOM study 
areas. 

 

 

Figure 2. Cutblock rut (red) and no-rut (green) marking examples based on earliest post-harvest Google 
Earth imagery appearances by month and year, and the year of LiDAR DEM coverage as well. Also shown: 
harvest roads and white lines representing the DEM-derived flow channels with >1 ha (thin) and >4 ha 
(thick) upslope flow accumulation areas. 

 
Table 1. Image-recognized in-block features that allow discerning ruts from non-rut features. 

Feature  
Qualities 

In-Block Features 

Ruts Tree shadows 
Non-rutted  

harvest trails 
Naturally 

formed puddles 
Slash piles 

Color Dark Dark Light Dark Dark and light 

Orientation Any direction, but along harvest trails Unidirectional 
Any  

direction 
Any  

direction 
Any direction, or piled 

across harvest trails 
Length/Width Short to long, featuring tire footprints Short/thin to wide Long Short/Wide Short/short 

https://doi.org/10.4236/jgis.2024.166023


D. Snow et al. 
 

 

DOI: 10.4236/jgis.2024.166023 402 Journal of Geographic Information System 
 

 

Figure 3. Discerning single-pass ruts from tree shadows and multi-pass ruts. 
 

 

Figure 4. Example of single-pass rut marking within the context of water-filled rut con-
ditions: 1) shortly after cutblock harvesting (top), 2) 9 years thereafter (bottom), and 3) 
in comparison with the hill-shaded LiDAR-derived full-feature elevations 3 years after 
harvesting (middle) with only the multi-pass trails and access roads remaining fully 
DEM apparent. Single-pass trails are not fully DEM resolved at 1 m resolution, and 
are—in places—overgrown by vegetation at imaging time. Overall vegetation recovery 
is slow but is more pronounced in the lower-lying areas. The underlying “Holmesville” 
soil represents a glacially compacted medium textured soil with shallow rooting depth 
and low coarse fragment content. Location: 47.222˚N, 67.301˚W.  
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2.3. Attribute Specifications for the Selected Rut and No-Rut  
Locations 

The rut and no-rut location data within the AOE, AOV, and AOM study areas 
were subsequently supplemented with their DEM-generated depression, slope, 
flow direction, flow accumulation, flow channel, DTW, and TPI attributes, all 
generated via ArcGIS-based DEM processing, as follows:  
• Depression depth (Sink depth, in m) = DEM − filled DEM using ArcMap’s Fill 

and Raster Calculator functions. 
• Flow direction (FD), based on D8 Flow Direction processing [28]. 
• Flow accumulation (FA, in ha), using the D8 Flow Accumulation function.  
• Flow channels, determined by re-classifying cells with FA ≤ 4 ha and/or ≤1 ha 

as no data, and FA > 4 ha and >1 ha as 1, followed by using the Raster to Pol-
yline function. 

• Slope (in %), using the Slope function. 
• TWI = log FA/tan (Slope) [24]. 
• TPI = DEM – mean focal 49 - 50 m annulus elevation around each DEM cell, 

in m [26]. 
• DTW, using the Cost distance function with Slope as cost raster and the >1 ha 

(“ephemeral”) and >4 ha (“permanent”) flow channels as DTW = 0 reference 
cells, in m [27]. 

 

 

Figure 5. Workflow used to generate the attribute shapefiles for the 
selected rut-and no-rut locations for each of the three study areas in 
Figure 1. 

 
These layers were used to determine Sink Depth, Slope, TWI, TPI, DTW, and 

Soil type for each rut and no-rut location. The results so obtained were then added 
to the rut and no-rut point shapefile using the Extract Multipoint tool. The Forest 
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Soil Map for New Brunswick had its 48 soil association mapping units identified 
at each rut/no-rut mapping point by 1 where present and 0 where not present. 
This was done after adjusting the areal extent of these units to correspond to 
GeoNB’s current waterbody and wetland delineations. Figure 5 summarizes the 
workflow used to determine the required rut and no-rut attributes for each loca-
tion.  

2.4. Rut versus No-Rut Probability Assessment 

Logistic regression analysis was used to determine the extent to which the topo-
graphic and soil-based attributes determine rut occurrence probabilities within 
the marked cutblocks. This probability, symbolized by Prut(y), is estimated by set-
ting:  

Prut(y) = 1/[1 + exp(−y)] 

where y represents the dependent binary number for each rut (1) and no-rut (0) 
location, and this number likely varies by the location-specific attributed as fol-
lows:  

y = a + b TPI + c DTWFA>4ha + d DTWFA>1ha + e Slope + f TWI + g Sink +  
f (Soil Associations) 

where a, b, c, d, e, f, g are the logistic regression coefficients, TPI, DTW, TWI, 
Sink, and f (Soil Associations) are the location-specific rut and non-rut attributes. 
In detail,  

f (Soil Association) = SCaCa + SCrCr +SReRe + SSiSe + …,  

in which SCa, SCr… refer to the soil-specific regression coefficients, and Ca, Cr, … 
refer to which soil association is present (1) or not (0) at each specific rut or non-
rut location, and Ca, Cr, Re, and Se refer, e.g., to the Caribou, Carleton, Reece, 
and Siegas soil associations. To proceed, the resulting AOI, AOM, and AOV point 
shapefiles were converted into text files, and these were subsequently subjected to 
logistic regression analysis in Statview (https://speciation.net/Database/Compo-
nents/SAS-Institute-Inc/StatView-;i1897).  

3. Results and Discussion 

The best-fitted logistic regression analysis results for the individual and combined 
study areas are summarized in Table 2A. As shown, the AOE and AOV results so 
obtained are nearly identical individually and combined, with TPI and DTWFA>4ha 
as the only significant rut occurrence predictor variables. In this, the similarity of 
the AOV to AOE results indicates that the AOE-generated rut occurrence predic-
tions are, in principle, equally applicable to the much wider AOV area, and are 
therefore likely applicable across New Brunswick. The AOM results, however, dif-
fer from the AOE and AOV results by way of the AOM-enhanced and mostly TPI-
based rut occurrence results. This suggests that using the AOM-derived model is 
based on guiding the image-based rut marking process deeper into the low-lying 
TPI locations. To that effect, a considerable number of ruts occurred within the 
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DTW< 1 m zonations along and next to the DEM-derived flow channels with >4 
and >1 ha upslope flow accumulations.  

Using TPI (Table 2B) as the only rut occurrence predictor variable slightly in-
creased the number of false positives and negatives while lowering the overall cor-
rectness classification by 1.2%. In contrast, using only the DTWFA>4ha raster dras-
tically reduced the correctness classification to 63.4% (Table 2C), therefore impli-
cating TPI as the most significant rut occurrence predictor variable. In compari-
son, the Sink depth, Slope, TWI, and soil type data for the rut and no-rut locations 
were all found to be insignificant when used in combination with TPI and 
DTWFA>4ha as rut probability predictor variables. 

Based on the Table 2A entries, the resulting rut occurrence probability function 
takes on the following form  

Prut(y) = 1/{1 + exp[−(−0.022 − 6.14 TPI − 1.08 log10(DTW))]} 

with TPI and DTW = DTWFA>4ha or DTWFA>1ha all in m. This equation was subse-
quently applied across New Brunswick based on the provincial DEM-generated 
DTWFA>4ha and TPI data layers. The result of so doing is illustrated in Figure 6 by 
way of the traffic-light Prut(y) overlay on the six images in Figure 2 underneath 
the marked rut (red) and no-rut (green) locations.  
 

Table 2. Best-fitted logistic regression results and related classification correctness that topographically relate the AOE-, AOV- and 
AOM-marked rut and no-rut occurrences to the TPI and DTW indices (A), to TPI alone (B), and to DTWFA>4ha alone (C), with 
DTWFA>4ha set equal to zero along stream channels with >4 ha upslope flow accumulation areas.  

A 

Study area 

Regression Analysis Logistic Classification: n and % 
Overall  

Correct-ness  n R2 
Regression Coefficients Observed 0 Observed 1 

Constant TPI log10 (DTW) 
Predicted 

0 
Predicted 

1 
Predicted 

0 
Predicted 

1 

AOE 

Estimate 

2930 0.476 

−0.18 −5.26 −1.19 
1602 120 204 1004 

89.5 
Std. Error ±0.06 ±0.022 0.11 

Chi-Square 10.6 652.1 112.2 
54.7% 4.1% 7.0% 34.3% 

P-Value 0.0011 <0.0001 <0.0001 

AOV 

Estimate 

980 0.690 

0.43 −5.89 −1.29 
471 19 28 462 

94.3 
Std. Error 0.14 0.41 0.25 

Chi-Square 9.72 204.0 25.9 
48.1% 1.9% 2.9% 47.1% 

P-Value 0.69 <0.0001 <0.0001 

AOM 

Estimate 

855 0.915 

0.96 −13.9 −1.14 
414 4 2 435 

99.2 
Std. Error 0.28 1.5 0.67 

Chi-Square 11.6 85.2 2.9 
48.4% 0.5% 0.2% 50.9% 

P-Value 0.0007 <0.0001 0.088 

Combined 

Estimate 

4765 0.580 

0.022 −6.14 −1.08 
2456 174 214 1921 

92.0 
Std. Error 0.05 0.19 0.10 

Chi-Square 0.189 1040.6 118.7 
51.5% 3.7% 4.5% 40.3% 

P-Value 0.684 <0.0001 <0.0001 
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Continued 

B 

Study area 

Regression Analysis Logistic Classification: n and % 

Overall  
Correct-ness  n R2 

Regression Coefficients Observed 0 Observed 1 

Constant TPI 
Predicted 

0 
Predicted 

1 
Predicted 

0 
Predicted 

1 

AOE 

Estimate 

2930 0.441 

−0.24 −5.69 
1590 132 212 996 

88.3 
Std. Error ±0.05 ±0.22 

Chi-Square 20.5 682.9 
54.3% 4.5% 7.2% 34.0% 

P-Value <0.0001 <0.0001 

AOV 

Estimate 

980 0.667 

0.26 −6.4 
463 27 30 460 

94.2 
Std. Error 0.12 0.42 

Chi-Square 4.49 229.3 
47.2% 2.8% 3.1% 46.9% 

P-Value 0.034 <0.0001 

AOM 

Estimate 

855 0.912 

1.01 −14.12 
413 5 3 434 

99.1 
Std. Error 0.28 1.48 

Chi-Square 13.3 91.5 
48.3% 0.6% 0.4% 50.8% 

P-Value 0.0003 <0.0001 

Combined 

Estimate 

4765 0.558 

−0.07 −6.50 
2447 183 219 1916 

91.2 
Std. Error 0.05 0.19 

Chi-Square 2.47 1153.3 
51.4% 3.8% 4.6% 40.2% 

P-Value 0.116 <0.0001 

C 

Study area 

Regression Analysis Logistic Classification: n and % 

Overall  
Correct-ness  n R2 

Regression Coefficients Observed 0 Observed 1 

Constant log10 (DTW) 
Predicted 

0 
Predicted  

1 
Predicted  

0 
Predicted 

1 

AOE 

Estimate 

2930 0.129 

−0.209 −1.62 
1509 213 670 538 

69.9 
Std. Error 0.042 0.09 

Chi-Square 24.5 348.6 
51.5% 7.3% 22.9% 18.4% 

P-Value <0.0001 <0.0001 

AOV 

Estimate 

980 0.153 

0.314 −1.65 
354 136 181 309 

67.7 
Std. Error 0.079 0.14 

Chi-Square 15.8 133.9 
36.1% 13.9% 18.5% 31.5% 

P-Value <0.0001 <0.0001 

AOM 

Estimate 

855 0.11 

0.72 −2.01 
289 129 184 253 

63.4 
Std. Error 0.11 0.21 

Chi-Square 42.5 87.8 
33.8% 15.1% 21.5% 29.6% 

P-Value <0.0001 <0.0001 

Combined 

Estimate 

4765 0.119 

0.029 −1.56 
2172 458 1090 1045 

67.5 
Std. Error 0.034 0.06 

Chi-Square 0.737 539.9 
45.6% 9.6% 22.9% 21.9% 

P-Value 0.391 <0.0001 
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Figure 6. Overlay of the 0 (green) to 1 (red) rut occurrence probability pattern underneath the marked rut (red) and no-rut (green) 
locations on the image panels in Figure 2, with yellow-colored Prut(y) ≈ 0.5 transition zones. 
 

The following can be observed from Figure 6: 
• The Prut(y)-projected red-to-green projections generally portray, respectively, 

the uphill recharge and the downhill discharge zones.  
• The DEM-derived flow channels with FA > 1 ha generally occur within the red 

zones. 
• Image-discernable ruts mainly occur within the red zones, and more so in the 

deeper lying area, where soil-saturating water would prevail for longer periods 
of time.  

• Single-pass ruts may also occur outside the reddish zones, including flat areas 
where TPI and Prut(y) trend towards to or remain at ≈0 and ≈0.5, respectively.  

• In contrast to single-pass ruts, multi-pass ruts can often be traced across the 
red-to-yellow-to-green zonations. Typically, these ruts are more pronounced 
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in the red zone while fading towards the yellow and green zones due to DTW-
expected changes in moisture-affecting soil compaction. 

Figure 7 illustrates how the Prut(y) projected red-to-yellow and green zones 
(Panels E, F) relate to 1) Google Earth images for August 2021 and May 2023 for 
a select location (Panels A and B), 2) the corresponding change in elevation (Panel 
C), and 3) the resulting DTWA>4ha pattern (Panel D). Note that the area at the and 
of the logging road in Panel A transits from dark to yellow and green in June 2021, 
but not so in May 2023. These changes reflect the re-foliation extent in June, and 
the lack thereof in May. The dark area is due to the presence of water-filled ruts 
due to the road-blocked west-to-east flow pattern.  

 

 

Figure 7. An example of post-harvest August 2021 and May 2023 Google Earth cutblock images (A, B), the corresponding LiDAR-
derived DEM and DTWFA>1ha < 1 m patterns (C, D), and the Prut(y)-generated rut probability projection when overlaid on the hill-
shaded DEM (E) and the LiDAR-generated hillshaded pre-harvest canopy height pattern (F). Also shown: DEM-derived flow chan-
nels (white) with >4 ha (thick lines) and >1 ha (thin lines) upslope flow-accumulation areas. Location: 65.896W, 46.896N. 

 
The overlay of the Prut(y) projection on the hillshaded canopy height Panel F 

may provide insights in terms of (e.g.): 
• improving pre-harvest access road and wood landing placements, with further 

intent to minimize inadvertent trail-induced flow blockages and rutting; 
• developing harvest trail layouts and deciding on operations timing, to optimize 
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on- and off-road trafficability when the ground within cutblocks is moist to 
wet and unfrozen; 

• optimizing the timing and zoning of post-harvest operations. 
Figure 8 presents another example of the Prut(y)-generated red to green zona-

tion with the DEM-derived FA > 1 ha flow channels and associated DTWFA>1ha < 
1 m overlaid. Also included are the DEM and DEM-DTWFA>1ha profile lines which 
connect 10 individually dug soil pits. The observed soil drainage conditions, 
judged by depth of mottle appearances, varied from poor at Location 8, to imper-
fect at Locations 6, 9, and 10, moderate at Locations 1 and 2, and well at Locations 
3, 4, 5 and 7.  

 

 

Figure 8. Hillshaded DEM (top left) and corresponding Prut(y) projection regarding potential rut (red) and no-rut (green) occur-
rences (top right), overlaid by the DEM-derived FA > 1 ha flow channels, and the associated blue-shaded DTWFA>1ha < 1 m layer. 
Also shown: 1) red dots numbered 1 to 10 referring to individually dug soil pits, done to assess the depths of mottle appearances as 
location-specific soil drainage indicators; 2) the corresponding point-to-point DEM and DEM-DTW elevation profiles (bottom). 
Location: 66.753W, 45.983N. 
 

Figure 9 confirms that ruts—where they occur—are generally found within the 
lower-lying stream-supporting parts of the Prut(y)-projected high rut-occurrence 
zones. In addition, these zones connect smoothly across the land from one stream 
to the next. The two examples in Figure 9 show that this remains so as the terrain 
changes from gently sloping (left side) to being highly irregular (right side) while 
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the elevational variations for these examples remain within 20 m across their areal 
extent.  

 

 

Figure 9. Prut(y) projected rut occurrence zones (top) across a gently sloped (left) and a highly irregular (right) terrain in comparison 
with the corresponding Google Earth images (bottom). Example on the left: 46.195N, 65.780W; Google Earth Image June 2019. 
Example on the right: 47.322N, 67.755W; Google Earth Image June 2010. White lines: DEM-delineated stream channels with >1 ha 
FA (thin) and >4 ha FA (thick). Stippled lines: one-on-one correspondence guides.  

 
Figure 10 provides an example where the Prut(y) projection fails to project ac-

tual rut occurrences. This is seen to occur along an up to 5-m incised train track 
along its adjacent flat terrain. This caused the derivation of the TPI index to re-
main positive across this terrain therefore rendering the Prut(y) projections to be 
near 0%, and therefore no-rut predictive up to about 30 m on either side of the 
track. Similar situations would occur along other deeply incised landscape-affect-
ing features such as flat terrains incised by highways, steep shores, and/or river 
channels.  

Elsewhere on nearly flat ground such as table tops and wetlands, TPI projec-
tions vary around zero by definition, thereby rendering the resulting Prut(y) pro-
jections transitional and to be rut and no-rut predictive at 50% - 50%. Where this 
occurs, overlaying the DEM-derived 10-m smoothed slope layer on ortho images 
reveals that image-recognized ruts become increasingly more visible as the slopes 
decrease from 6% to 0% (Figure 11). 
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Figure 10. Top: Example of a false Prut(y) no-rut projection situation as found on a flat terrain within 30 m due to the impact of 
the 5-m incised train track on the TPI calculations. In contrast, also note the general low to absent influence of the slightly elevated 
road running parallel south of the train track. Location: 46.180, −65.764; Google Earth Image: June 2019; Bottom: LiDAR-DEM 
2015. 

 
Note that the Prut(y) projections do not only apply to the rut versus no-rut mark-

ing extent as portrayed in Figure 1, but also apply to locating rut-prone cutblock 
operations across New Brunswick and elsewhere. This is demonstrated in Figure 
12, showing two Google-Earth located cutblock examples in Nova Scotia, with 
corresponding Prut(y) rut probability projections, but with the TPI and DTWFA>1ha 
combination as the y-predictor variables. The reason for selecting DTWFA>1ha in-
stead of DTWFA>4ha relates to the fact that mean annual precipitation levels gener-
ally increase from 1000 mm/ha across New Brunswick to 1500 mm/ha across 
southwestern Nova Scotia, thereby enhancing the intensity of operation-induced 
soil rutting along ephemeral flow channels.  
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Figure 11. An example where the diminishing slope of the DEM-derived 10-m slope layer (bottom) can be used to center on 
image-discernable rut occurrences (middle) where Prut(y) also projects probable rut and no-rut occurrences at 50% (top) due 
to nearly flat ground conditions. Stippled lines: one-on-one location correspondence guides. Location: 45.907N, 65. 641W; 
Google Earth Image: July 2023.  
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Figure 12. Google Earth images (June 2019, Panels A, C) for two cutblock locations in southwestern Nova Scotia (44.271N, 64.865W, 
top; 44.078N, 64.689W, bottom), also with the corresponding Prut(y) generated rut-zonation projections overlayed on the image 
(Panel B) on the hillshaded DEM (Panels D). White lines: flow channels with FA > 1 (thin) and >4 ha (thick). Cutblock outlines: 
yellow).  

 
In addition to rut occurrences in cutblocks, Prut(y) projections reveal where 

roads, trails, powerlines, and pipelines also incur rutting. This is demonstrated 
in Figure 13, showing corridor-centered rut occurrences within the Prut(y)-pro-
jected rutting zones. As can be verified, the same pattern recurs when and where 
the corridor-locating images are bare, wet, and unfrozen. This being so, the 
above methodology can be used to map and address matters pertaining to, e.g., 
corridor access and related on- and off-road trafficability and maintenance re-
quirements.  
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Figure 13. Google Earth image (April 2024; top) featuring an intersection of a highway, a pipeline, a powerline and trails overlayed 
with the corresponding Prut(y) green-yellow-red rut-zonation projections (bottom). Location: 46.184N, 64.607W, in southeastern 
New Brunswick. 

4. Concluding Remarks 

It appears that the Prut(y) projections, apart from delineating single-pass rut versus 
no-rut occurrence zones, can also be interpreted as a DEM-generated way to de-
lineate discharge versus recharge zonation. As such, the Prut(y)-projected rut-oc-
currence zones represent downslope water-accumulating areas where machine-
incurred ruts become prevalent while operating on wet and unfrozen soils. 

The above rut-marking approach provides no information on the depth of the 
ruts. Rut depths would generally be shallowest in upslope positions and deepest 
in downhill water-saturated areas. As reported elsewhere (e.g., [5] [6] [31]-[34]), 
rut depths depend on machine load, number of passes, tire or track footprint pres-
sure, the timing of the operations, and the resistance of the soil to compaction as 
affected by upslope to downslope changes in soil density, texture, presence of 
coarse fragments, and soil moisture content. Additional rut deepening would be 
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incurred along uphill tracks due to increased tire traction [35]. Further research 
is required to determine which soil types prove to be more conducive to rutting 
specifically. Doing so would require marking and evaluating rut and no-rut loca-
tions when incurred across varying soil types during same or similar weather and 
machine-operating conditions.  

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this paper. 

References 
[1] Naghdi, R., Bagheri, I., Lotfalian, M. and Setodeh, B. (2009) Rutting and Soil Dis-

placement Caused by 450C Timber Jack Wheeled Skidder (Asalem Forest Northern 
Iran). Journal of Forest Science, 55, 177-183. https://doi.org/10.17221/102/2008-jfs 

[2] Cambi, M., Certini, G., Neri, F. and Marchi, E. (2015) The Impact of Heavy Traffic 
on Forest Soils: A Review. Forest Ecology and Management, 338, 124-138.  
https://doi.org/10.1016/j.foreco.2014.11.022 

[3] Solgi, A., Naghdi, R. and Nikooy, M. (2016) Effects of Skidderon Soil Compaction, 
Forest Floor Removal and Rut Formation. Madera y Bosques, 21, 147-155.  
https://doi.org/10.21829/myb.2015.212451 

[4] Uusitalo, J., Ala-Ilomäki, J., Lindeman, H., Toivio, J. and Siren, M. (2020) Predicting 
Rut Depth Induced by an 8-Wheeled Forwarder in Fine-Grained Boreal Forest Soils. 
Annals of Forest Science, 77, Article No. 42.  
https://doi.org/10.1007/s13595-020-00948-y 

[5] Labelle, E.R., Hansson, L., Högbom, L., Jourgholami, M. and Laschi, A. (2022) Strat-
egies to Mitigate the Effects of Soil Physical Disturbances Caused by Forest Machin-
ery: A Comprehensive Review. Current Forestry Reports, 8, 20-37.  
https://doi.org/10.1007/s40725-021-00155-6 

[6] Jones, M. and Arp, P. (2019) Soil Trafficability Forecasting. Open Journal of Forestry, 
9, 296-322. https://doi.org/10.4236/ojf.2019.94017 

[7] Marra, E., Cambi, M., Fernandez-Lacruz, R., Giannetti, F., Marchi, E. and Nordfjell, 
T. (2018) Photogrammetric Estimation of Wheel Rut Dimensions and Soil Compac-
tion after Increasing Numbers of Forwarder Passes. Scandinavian Journal of Forest 
Research, 33, 613-620. https://doi.org/10.1080/02827581.2018.1427789 

[8] Marra, E., Laschi, A., Fabiano, F., Foderi, C., Neri, F., Mastrolonardo, G., et al. (2021) 
Impacts of Wood Extraction on Soil: Assessing Rutting and Soil Compaction Caused 
by Skidding and Forwarding by Means of Traditional and Innovative Methods. Eu-
ropean Journal of Forest Research, 141, 71-86.  
https://doi.org/10.1007/s10342-021-01420-w 

[9] Mohieddinne, H., Brasseur, B., Gallet‐Moron, E., Lenoir, J., Spicher, F., Kobaissi, A., 
et al. (2022) Assessment of Soil Compaction and Rutting in Managed Forests through 
an Airborne LiDAR Technique. Land Degradation & Development, 34, 1558-1569.  
https://doi.org/10.1002/ldr.4553 

[10] Pirnazarov, A., Wijekoon, M., Sellgren, U., Löfgren, B. and Andersson, K. (2012) 
Modeling of the Bearing Capacity of Nordic Forest Soil. Proceedings of the 12th Eu-
ropean Regional Conference of the International Society for Terrain-Vehicle Sys-
tems, Pretoria, 24-27 September 2012, 1-12. 

[11] Ampoorter, E., Van Nevel, L., De Vos, B., Hermy, M. and Verheyen, K. (2010) As-

https://doi.org/10.4236/jgis.2024.166023
https://doi.org/10.17221/102/2008-jfs
https://doi.org/10.1016/j.foreco.2014.11.022
https://doi.org/10.21829/myb.2015.212451
https://doi.org/10.1007/s13595-020-00948-y
https://doi.org/10.1007/s40725-021-00155-6
https://doi.org/10.4236/ojf.2019.94017
https://doi.org/10.1080/02827581.2018.1427789
https://doi.org/10.1007/s10342-021-01420-w
https://doi.org/10.1002/ldr.4553


D. Snow et al. 
 

 

DOI: 10.4236/jgis.2024.166023 416 Journal of Geographic Information System 
 

sessing the Effects of Initial Soil Characteristics, Machine Mass and Traffic Intensity 
on Forest Soil Compaction. Forest Ecology and Management, 260, 1664-1676.  
https://doi.org/10.1016/j.foreco.2010.08.002 

[12] Nugent, C., Kanali, C., Owende, P.M.O., Nieuwenhuis, M. and Ward, S. (2003) Char-
acteristic Site Disturbance Due to Harvesting and Extraction Machinery Traffic on 
Sensitive Forest Sites with Peat Soils. Forest Ecology and Management, 180, 85-98.  
https://doi.org/10.1016/s0378-1127(02)00628-x 

[13] Sirén, M., Salmivaara, A., Ala-Ilomäki, J., Launiainen, S., Lindeman, H., Uusitalo, J., 
et al. (2019) Predicting Forwarder Rut Formation on Fine-Grained Mineral Soils. 
Scandinavian Journal of Forest Research, 34, 145-154.  
https://doi.org/10.1080/02827581.2018.1562567 

[14] Sutherland, B.J. (2003) Preventing Soil Compaction and Rutting in the Boreal Forest 
of Western Canada: A Practical Guide to Operating Timber-Harvesting Equipment. 
Forest Engineering Research Institute of Canada (FERIC).  

[15] Horn, R., Vossbrink, J. and Becker, S. (2004) Modern Forestry Vehicles and Their 
Impacts on Soil Physical Properties. Soil and Tillage Research, 79, 207-219.  
https://doi.org/10.1016/j.still.2004.07.009 

[16] Horn, R., Vossbrink, J., Peth, S. and Becker, S. (2007) Impact of Modern Forest Ve-
hicles on Soil Physical Properties. Forest Ecology and Management, 248, 56-63.  
https://doi.org/10.1016/j.foreco.2007.02.037 

[17] Zemke, J. (2016) Runoff and Soil Erosion Assessment on Forest Roads Using a Small 
Scale Rainfall Simulator. Hydrology, 3, Article 25.  
https://doi.org/10.3390/hydrology3030025 

[18] Allman, M., Jankovský, M., Messingerová, V., Allmanová, Z. and Ferenčík, M. (2015) 
Soil Compaction of Various Central European Forest Soils Caused by Traffic of For-
estry Machines with Various Chassis. Forest Systems, 24, e038.  
https://doi.org/10.5424/fs/2015243-07541 

[19] Grigal, D.F. (2000) Effects of Extensive Forest Management on Soil Productivity. For-
est Ecology and Management, 138, 167-185.  
https://doi.org/10.1016/s0378-1127(00)00395-9 

[20] Meek, P. (1996) Effects of Skidder Traffic on Two Types of Forest Soils. Technical 
Report No. TR-117, Forest Engineering Research Institute of Canada, Pointe-Claire.  

[21] Saarilahti, M. and Anttila, T. (1999) Rut Depth Model for Timber Transport on Mo-
raine Soils. Proceedings of the 9th International Conference of International Society 
for Ter-rain Vehicle Systems, Munich, 14-17 September 1999, 29-37. 

[22] Vega-Nieva, D.J., Murphy, P.N.C., Castonguay, M., Ogilvie, J. and Arp, P.A. (2009) 
A Modular Terrain Model for Daily Variations in Machine-Specific Forest Soil Traf-
ficability. Canadian Journal of Soil Science, 89, 93-109.  
https://doi.org/10.4141/cjss06033 

[23] Houle, D., Duchesne, L., Ouimet, R., Paquin, R., Meng, F. and Arp, P.A. (2002) Eval-
uation of the FORHYM2 Model for Prediction of Hydrologic Fluxes and Soil Tem-
perature at the Lake Clair Watershed (Duchesnay, Quebec). Forest Ecology and Man-
agement, 159, 249-260. https://doi.org/10.1016/s0378-1127(01)00438-8 

[24] Sørensen, R., Zinko, U. and Seibert, J. (2006) On the Calculation of the Topographic 
Wetness Index: Evaluation of Different Methods Based on Field Observations. Hy-
drology and Earth System Sciences, 10, 101-112.  
https://doi.org/10.5194/hess-10-101-2006 

[25] Bretreger, D., Yeo, I. and Melchers, R. (2021) Terrain Wetness Indices Derived from 
Lidar to Inform Soil Moisture and Corrosion Potential for Underground Infrastruc-

https://doi.org/10.4236/jgis.2024.166023
https://doi.org/10.1016/j.foreco.2010.08.002
https://doi.org/10.1016/s0378-1127(02)00628-x
https://doi.org/10.1080/02827581.2018.1562567
https://doi.org/10.1016/j.still.2004.07.009
https://doi.org/10.1016/j.foreco.2007.02.037
https://doi.org/10.3390/hydrology3030025
https://doi.org/10.5424/fs/2015243-07541
https://doi.org/10.1016/s0378-1127(00)00395-9
https://doi.org/10.4141/cjss06033
https://doi.org/10.1016/s0378-1127(01)00438-8
https://doi.org/10.5194/hess-10-101-2006


D. Snow et al. 
 

 

DOI: 10.4236/jgis.2024.166023 417 Journal of Geographic Information System 
 

ture. Science of the Total Environment, 756, Article 144138.  
https://doi.org/10.1016/j.scitotenv.2020.144138 

[26] Weiss, A. (2001) Topographic Position and Landforms Analysis. Poster Presentation, 
ESRI User Conference, San Diego, 9-13 July 2001. 

[27] Murphy, P.N.C., Ogilvie, J., Meng, F., White, B., Bhatti, J.S. and Arp, P.A. (2011) 
Modelling and Mapping Topographic Variations in Forest Soils at High Resolution: 
A Case Study. Ecological Modelling, 222, 2314-2332.  
https://doi.org/10.1016/j.ecolmodel.2011.01.003 

[28] Tarboton, D.G. (1997) A New Method for the Determination of Flow Directions and 
Upslope Areas in Grid Digital Elevation Models. Water Resources Research, 33, 309-
319. https://doi.org/10.1029/96wr03137 

[29] De Reu, J., Bourgeois, J., Bats, M., Zwertvaegher, A., Gelorini, V., De Smedt, P., et al. 
(2013) Application of the Topographic Position Index to Heterogeneous Landscapes. 
Geomorphology, 186, 39-49. https://doi.org/10.1016/j.geomorph.2012.12.015 

[30] Colpitts, M.C., Fahmy, S.H., MacDougall, J.E., Ng, T.T.M., McInnis, B.G. and 
Zelazny, V.F. (1995) Forest Soils of New Brunswick. CLBRR Contribution No. 95-38. 

[31] Bygdén, G., Eliasson, L. and Wästerlund, I. (2003) Rut Depth, Soil Compaction and 
Rolling Resistance When Using Bogie Tracks. Journal of Terramechanics, 40, 179-
190. https://doi.org/10.1016/j.jterra.2003.12.001 

[32] Toivio, J., Helmisaari, H., Palviainen, M., Lindeman, H., Ala-Ilomäki, J., Sirén, M., et 
al. (2017) Impacts of Timber Forwarding on Physical Properties of Forest Soils in 
Southern Finland. Forest Ecology and Management, 405, 22-30.  
https://doi.org/10.1016/j.foreco.2017.09.022 

[33] Jones, M. and Arp, P.A. (2017) Relating Cone Penetration and Rutting Resistance to 
Variations in Forest Soil Properties and Daily Moisture Fluctuations. Open Journal 
of Soil Science, 7, 149-171. https://doi.org/10.4236/ojss.2017.77012 

[34] Poltorak, B.J., Labelle, E.R. and Jaeger, D. (2018) Soil Displacement during Ground-
Based Mechanized Forest Operations Using Mixed-Wood Brush Mats. Soil and Till-
age Research, 179, 96-104. https://doi.org/10.1016/j.still.2018.02.005 

[35] Jones, M., Castonguay, M., Jaeger, D. and Arp, P. (2018) Track-Monitoring and An-
alyzing Machine Clearances during Wood Forwarding. Open Journal of Forestry, 8, 
297-327. https://doi.org/10.4236/ojf.2018.83020 

 

https://doi.org/10.4236/jgis.2024.166023
https://doi.org/10.1016/j.scitotenv.2020.144138
https://doi.org/10.1016/j.ecolmodel.2011.01.003
https://doi.org/10.1029/96wr03137
https://doi.org/10.1016/j.geomorph.2012.12.015
https://doi.org/10.1016/j.jterra.2003.12.001
https://doi.org/10.1016/j.foreco.2017.09.022
https://doi.org/10.4236/ojss.2017.77012
https://doi.org/10.1016/j.still.2018.02.005
https://doi.org/10.4236/ojf.2018.83020

	Modelling and Mapping Likely Soil Rutting Occurrences across Forested Areas
	Abstract
	Keywords
	1. Introduction
	2. Methodology
	2.1. Study Areas
	2.2. Rut versus No-Rut Dot Placements
	2.3. Attribute Specifications for the Selected Rut and No-Rut Locations
	2.4. Rut versus No-Rut Probability Assessment

	3. Results and Discussion
	4. Concluding Remarks
	Conflicts of Interest
	References

