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Abstract 
In this paper, we calculate some structure functions of an idealized stellar 
model, which can be solved by the total mass and radius of a star. These func-
tions have enlightening and pedagogical significance. We find that the equa-
tion of state of matter is decisive to the fate of a star. Only if the equation of 
state includes the driving effect of gravity on particles, then it satisfies some 
increasing and causal conditions and is compatible with Einstein’s field equa-
tion. In this case, we always have singularity-free balanced star, no matter 
how heavy the star is. Usually, we believe that the main factor determining 
the stellar structure is the pressure equilibrium of the thermonuclear reaction 
against gravity. But this opinion is inadequate. The calculation of this paper 
shows that, the pressure generated by the driving effect of gravity on particles 
is dominant. 
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1. Introduction 

The spherical symmetric metric for a static star is described by Schwarzschild 
metric [1] [2]  

( ) ( )( )2 2 2diag , , , sin .g b r a r r rµν θ= − − −             (1.1) 

For the energy momentum tensor of perfect fluid  

( ) ( )2 2 2diag , , , sin ,T P U U Pg b aP r P r Pµν µ ν µνρ ρ θ= + − =       (1.2) 

where ( ) ( ),r P rρ  are proper mass energy density and pressure,  

( ),0,0,0U bµ = , we have the independent equations as follow  

( )2
00 001 8 ,    8 ,r G r G GT

a
ρ

′  = − =π π− 
 

             (1.3) 
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( )11 11
1 8 ,   8 ,b a GPar G GT

b r
π π

′ −
= + = −              (1.4) 

( ) ( )1
 ;,   0 .

2
bP P T
b

ν
νρ

′
′ = − + =                 (1.5) 

To determine the stellar structure of an irrotational star, we solve these equa-
tions. However (1.3) - (1.5) is not a closed system, the solution depends on the 
equation of state (EOS) ( )P P ρ= . For polytropes, we take 0P P γρ=  [1] [2]. 
For the compact stars, there are a lot of EOS derived from particle models 
[3]-[8], which provide the structural information and parameters such as the 
maximum mass for neutron stars. For realistic stellar models, some simulating 
calculations can be found in [9]. 

However, in the equations of state in all the above literatures, the driving ef-
fect of gravity on the particles is ignored. Originally, if a set of ideal gas con-
strained by its own gravity is taken as a system, the particles move along the 
geodesic. Under given initial velocity distribution, the evolution of the system is 
fully determined. But, after the system is simplified to a perfect fluid model, the 
dynamical equation of the system becomes incomplete and an equation of state 
should be introduced additionally [10]. The energy-momentum conservation 
law of the fluid, namely the static equilibrium Equation (1.5), is insufficient to 
describe the dynamical effect of gravity on fluid particles. This implies that some 
information of system is lost during the simplification process. Only the equa-
tion of state including the driving effect of gravity is compatible with relativity. 
In the paper, we derive the valid equations of stellar structure. The calculations 
show that the driving effect of gravity plays a dominant role in the stellar struc-
ture. 

2. Phenomenological Analysis for the Behavior of a Star 

At first, we make a few simple calculations and examine the behavior of the me-
tric and particles inside a star to get some intuition. The first phenomenon is 
that, the temporal singularity and spatial singularity occur at different time and 
place if the space-time becomes singular, and the temporal one occurs firstly. 

Denoting the mass distribution by  

( ) ( )2
0

4 d , 2 .
r

M r G r r M rρ= =π ∫                 (2.1) 

Then by (1.3) we have solution  

( ) 1

1

1 ,  if ,

1 ,  if ,s

r
r R

r
a

R
r R

r

−

−

 
 − < 
 = 
 − ≥ 
 



                (2.2) 

where R is the radius of the star, and the Schwarzschild radius becomes  

( ) ( ) 2
0

2 8 d .
R

sR M R R G r rρπ= = = ∫               (2.3) 

https://doi.org/10.4236/jhepgc.2022.81008


Y. Q. Gu 
 

 

DOI: 10.4236/jhepgc.2022.81008 102 Journal of High Energy Physics, Gravitation and Cosmology 
 

For any normal star with sR R> . From the above solution we learn ( )a r  is 
a continuous function and  

( ) ( ) ( )max1,   0 lim 1,   ,  0 .m mr
a a a a a r r R

→∞
≥ = = = < ≤          (2.4) 

So the spatial singularity a →∞  does not appear at the center of the star 
when the singularity begins to form. 

On the other hand, by (1.4) and 0P ≥ , we find ( )b r′  is a continuous func-
tion satisfying  

( ) ( ) ( ) ( )0 0, 0, 0 , 1 ,  .sR
b b r r b r R

r
′ ′= > ∀ > = − ≥         (2.5) 

(1.9) shows ( )b r  is a monotonically increasing function of r with smooth-
ness at least [ )( )1 0,C ∞ . Consequently, the temporal singularity 0b →  should 
take place at the center. 

The trends of ( ) ( ),a r b r  are shown in Figure 1, where we take the Schwarz-
schild radius 1sR =  as length unit. From Figure 1, we find ( )1 0b →  and  
( )1a →∞  occur simultaneously. Noting ( )b r  is a monotonically increasing 

function of r, so ( )0 0b →  certainly occurs before ( )1a →∞ . 
The second phenomenon is that, the particles near the center of a star are un-

balanced, and violent explosion takes place inside the star before the temporal 
singularity occurs. When ( )0 0b → , by (2.5) we have  

( )0 ,  1 , if .b b r r Rα α→ >                  (2.6) 

Substituting it into (1.5), we find  

( ) ( ), 0 .
2

P P r
r
αρ′− → + → +∞ →               (2.7) 

According to fluid mechanics, r P−∂  corresponds to the radial boosting force, 
so (2.7) means violent explosion. 
 

 

Figure 1. The trends of ( ),a b  as sR R→ , which show the spatial singularity does not 

occur at the center, and the temporal singularity occurs at the center before a →∞ . 
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More clearly, we examine the motion of a particle inside the star. Solving the 
geodesic in the orthogonal subspace ( ), ,t r θ , we get the first integrals [10] 

2
22 2

2 2 2
1 1

1 1 1,  ,  0,  1 ,
C Ct r

C b rr C b r
θ ϕ

 
= = = = − − 

 




           (2.8) 

where 1 2,C C  are constants, 
d
d

tt
s

= . The normal velocity of the particle is giv-

en by  
2 2 22 2 2

2 2 2 22 1 2
12 2 2 2

d d1 1 ,  ,  0.
d dr

C C C ba r rv C b v v
b t r b t rθ ϕ

θ 
= = − + = = = 

 
     (2.9) 

The sum of the speeds provides the mechanical energy conservation law of a 
particle,  

( )2 2 2 2 2 2
11 , with .rv C b r v v v vθ ϕ= − ≡ + +             (2.10) 

(2.10) holds for all particles with 0vϕ ≠  due to the symmetry of the space-time. 
From (2.10) we learn 1v →  as 0b → , this means all particles escape at 

light velocity when the temporal singularity occurs. So instead of a final collapse, 
the fate of a star with heavy mass should be explosion and disintegration. The 
gravity of a star drives the inside particles to move rapidly and leads to high 
temperature. The driving force in a star is tremendous and cannot be overlooked. 
By simple calculation we find that, even at 20 km below the earth surface, the 
pressure can destroy steel. How the particles to react to the collapse of a star 
should be strictly researched with dynamics [11]. 

There are also different opinions upon the gravitational collapse and effect. A 
heuristic computation for axisymmetrical collapse is presented in [12], which 
reveals that the fate of a collapsing star sensitively depends on the parameters in 
the EOS. In a full quantum treatment, [13] shows that the traditional classical 
singularity in the core of the Schwarzschild black hole is replaced. The two-particle 
system seems to be non-singular from the quantum point of view. In [14], the 
authors investigate the theoretical implications of the constraint that the gravi-
ton is massless to an Einstein-Gauss-Bonnet theory with linear coupling of the 
scalar field to the 4-d Gauss-Bonnet invariant. It is shown that the constraint of 
having gravitational wave speed of the primordial gravitational waves equal to 
the light velocity, severely restricts the dynamics of the scalar field, imposing a 
direct constant-roll evolution on it. The spectral index of the primordial scalar 
perturbations for the GW170817-compatible Einstein-Gauss-Bonnet theory with 
linear coupling is different in comparison to the same theory with non-linear 
coupling. 

3. Equations of State of Ideal Gas 

If all other interactions among particles are ignored, then the star consists of 
ideal gas. We consider the structure of such star of ideal gases. Next we derive 
EOS of ideal gas in gravity and show its asymptotic properties [10]. The gas sa-
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tisfies the following assumptions: 
(A1) All particles are classical ones only driven by the gravity, namely, they 

are characterized by 4-vector momentum kpµ  and move along geodesic. 
(A2) The collisions among particles are elastic, so the process is adiabatic. 
In microscopic view, the energy momentum tensor of ideal gas can be ex-

pressed by [1]  

( )3 21 ,n n n n n
n

T m u u x X vµν µ νδ= − −∑




                (3.1) 

where nm  is the proper mass of the n-th particle, nuµ  4-vector velocity, nv  
the usual 3-d speed, ( )nX t



 the central coordinate. The macroscopic ener-
gy-momentum tensor is given by (1.2). The functions of state in (3.1) including 
relativistic factor 21 nv− , whose statistical expectation cannot be calculated di-
rectly. To research the thermodynamic properties of gas, we use piston and cy-
linder to drive gas. In astrophysics, we have more ideal piston and cylinder that 
is the space-time with Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, 
which is absolutely adiabatic and reversible. The FLRW metric drives the gases 
homogeneously expanding and contracting as the scale factor a varies, and the 
results have general meanings according to the principle of equivalence. 

In the microscopic view, for particles and photons, they are only driven by 
average gravity and move along geodesics, and the collisions between particles 
can be treated as instantaneous behavior. So all thermodynamic functions can be 
rigorously solved according to dynamics and statistics. Assuming that N par-
ticles occupy volume V, which is equivalent to the Einstein’s lift. However, this 
lift is not rigid, as a thermodynamic function of state, the volume V varies under 
the compression and drive of gravity on the particles. Since the thermodynamic 
equations, such as equation of state and energy conservation laws, are locally va-
lid statistical laws, which have little to do with the macroscopic shape of pis-
ton-cylinder system. Therefore, we can derive the equations of state in a symme-
trical FLRW space-time, so that the treatment is relatively simple and clear. It 
can be proven that the results hold generally in comoving coordinate system. 
According to equivalence principles, these results should also hold generally. 

For FLRW space-time, we have the line element in conformal coordinate sys-
tem  

( ) ( ) ( )( )22 2 2 2 2 2 2 2d d d d sin d ,s a t t r r rθ θ ϕ= − − −       (3.2) 

where  

sin if 1,
if 0,

sinh if 1.

r
r

r

κ
κ
κ

=
= =
 = −

                   (3.3) 

The energy conservation law   ;T µν
ν  in this case is given by  

( )3 2d 3 d .a Pa aρ = −                    (3.4) 

https://doi.org/10.4236/jhepgc.2022.81008


Y. Q. Gu 
 

 

DOI: 10.4236/jhepgc.2022.81008 105 Journal of High Energy Physics, Gravitation and Cosmology 
 

For a given equation ( )aρ ρ= , we can solve for the pressure ( )P P a=  
from (3.4). 

In the FLRW space-time (3.2), for a particle moving along r, we have the first 
integral of geodesic equation  

2 2
2 2

d d 1, ,
d d

Cr t a C
s sa a

= = +               (3.5) 

where C is a constant only depends on the initial data. By (3.5) we get the drift-
ing speed of a particle in usual sense  

2

2 2 2 2

d ,   1 .
d

n
n n

n n

ba r av v
a t a b a b

≡ = − =
+ +

         (3.6) 

So the momentum of a particle 
21

nm v
p

v
=

−
 satisfies  

( ) ( ) ( ) ( )0 0 ,p t a t p t a t=                   (3.7) 

where nm  is the proper mass of the particle. For the massless photons, we can 

check that the wavelength ( )tλ  satisfies ( )
( )

0

0

t
a t a
λ λ

≡ , so their momentum p  

also satisfy (3.7). Although (3.7) is derived in subspace-time ( ),t r , but it is 
suitable for all particles due to the symmetry of the FLRW metric. 

The relation between momentum p and the kinetic energy K is given by  

( )2 2 .p K K m= +                       (3.8) 

By (3.7) we have 2
2
n

n
C

p
a

= , where nC  are constants only depending on the  

initial data at 0t t= . Then on the one hand, for all particles we have the average 
square momentum directly  

2 0
2 ,

C
p

a
=                         (3.9) 

where 0C  is a constant only determined by initial data at 0t . One may argue 
that (3.9) is probably broken by the collision of the particles. The following 
Lemma shows that (3.9) holds in statistical sense. 

Lemma The average square momentum of the ideal gas is independent of the 
elastic collision of the particles. 

Proof. For any elastic collision, we have momentum conservation law  

1 2 1 2p p P P+ = +
 

  , and then  

( )2 2 2 2
1 2 1 2 1 2 1 22 .p p P P P P p p+ = + + ⋅ − ⋅

 

 

           (3.10) 

Taking average for (3.10), we have  
2 2 .p P= + ∆                      (3.11) 

Since the elastic collision is a reversible process, in statistical sense, we have 
the exactly equal numbers of reversible process, so we also have  

2 2 .P p= + ∆                      (3.12) 
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Comparing (3.11) with (3.12), we have 0∆ =  and 2 2p P= . Since collision 
is finished instantaneously, (3.9) holds for all time t. 

On the other hand, 2p  can be calculated according to statistical principle. 
Assuming the distribution of kinetic energy K of the particles is given by 

( )d d ,K K=                        (3.13) 

then we have moment function,  

( )2
0 0

2

0

3 3d 1,   d ,   d ,
2 2

K kT K kT
σ

∞ ∞ ∞
= = =∫ ∫ ∫           (3.14) 

where the second formula can be regarded as definition of temperature, σ  is a 
constant reflecting the concrete distribution function of particles. In statistical 
mechanics, we usually use the distribution functions of momentum, which is 
inconvenient for calculation in the case of relativistic gases. The following dis-
cussions have nothing to do with explicit function ( )K , and at most uses the 
second order moment. In the case of Maxwell distribution, we have  

4 d 2d exp , .
5

K K K
kT kT kT

σ = − =  π 
              (3.15) 

By the moments (3.14) we have  

( )

( ) ( )

2 2
0

0

1 d

1 2 d

1 3 3 ,
2

n n n
n

n n n n n
n

n
n

p p K K
N

K K m K K
N

kT kT m
N σ

∞

∞

=

= +

 = + 
 

∑

∑

∫

∫

∑



             (3.16) 

where N is a given number of particles, which occupy volume 3V a= Ω . Ob-
viously, V is unnecessary to be the whole universe, so the derivation is indepen-
dent of curvature κ . For a given number N of particles, the angular volume Ω  
is a constant. The scale factor a acts as a piston, which varies and drives the par-
ticles. Comparing (3.16) with (3.9), we get the relation between T and a as fol-
lows,  

( ) ( )

2

2 2
, ,

2
mb mbkT a

kT kT ma a a b

σ σ
σ

= =
++ +

         (3.17) 

where 
1

nnm m
N

= ∑  is the average mass of all particles, and b is a constant on-

ly depending on initial data. 
By (1.2) we have 0

0Tρ = . On the other hand, in average sense, by (3.1) we 
have [10]  

( ) ( )0 0 0 2 3 3
0 00 2

1 .
1

n
n n n n n n

n n n

m
T m g u u v x X x X

v
δ δ= − − = −

−
∑ ∑

 

     (3.18) 

We take a as the independent variable in the statistical calculation. By (3.14) 
and (3.17), we have 
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( )

( )

32

2 2
3 3

1 1d d
1

1 3 31 ,
2 2

n n

n

n
n n

X V Xn

X

m
m K

V av

m kT a b a
aa a

ρ

σ

∈ ∈Ω

∈Ω

= = +
Ω−

   = + = + + −   Ω    

∑ ∑∫ ∫

∑

 


       (3.19) 

where 
1

n nX m
∈Ω

=
Ω∑  is the angular density of proper mass, which is a con-

stant. Substituting (3.19) into energy conservation law (3.4) we obtain  

( ) ( )
2 2

3

2 4 2 2

1 1 .
3 21 2

n n
n

n n

m v b NkT kTP x X
V m kTv a a b

σδ
σ

 
≡ − = = −  +− +  
∑



 
 (3.20) 

In the above derivation, the FLRW metric (3.2) is only used as a pis-
ton-cylinder system to drive the ideal gas, so the results are actually valid in gen-
eral cases. Using (3.17), we have relation  

( ) ( )2 2
2, ,

2
b kTa J a b a

amcJ J
σ σ

σ
= ≡ = + −

+
          (3.21) 

where J is the dimensionless temperature. The above results conclude the fol-
lowing theorem. 

Theorem For relativistic ideal gases, we have the equation of state as 

( )
3
2

0 22 , ,kTJ J J
mc

σ= + ≡                 (3.22) 

( )
3

2 22
3 32 1 ,
2 2

mc kT J J J cρ σ   = + = + +        
          (3.23) 

( ) ( ) ( )
2 25

2
2

2 2 ,
22

mc kT cP kT J J
Jmc kT

σ σ
σσ

+
= = +   ++
         (3.24) 

where J is dimensionless temperature, which act as independent variable and 
parameter,   is the number density of particles, ( )0 0 ,m σ=   is related 
to property of the particles but independent of J, 82.99 10 m sc = ×  the light 
velocity, σ  a factor reflecting the energy distribution function, for Maxwell  

distribution 2
5

σ = . 1

1 N
nnm m

N =
= ∑  is the average static mass of all particles,  

( ), Pρ  are usual energy density and pressure,   a mass density defined by 

0m≡  . 
In the above derivation, the equations of motion of particles are geodesics, 

hence the above conclusions are compatible with relativity and includes the 
driving effect of gravity. Together with (1.3) - (1.5), we get a closed and consistent 
dynamics for stellar interior structure. By (3.23) and (3.24), we get the polytropic  

index γ  is not a constant for large range of T satisfying 
51
3

γ< < . We have 

5
3

γ →  as ( )0T → , which is caused by inertia of particles and leads to finite 

radius of a star. The velocity of sound 
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( )( )
( ) ( )

1
2 2 2 2

2 2

2 5 8 4d 3 3 .
d 3 32 2 5 4

s

c J J J JPC c c
J J J

σ σ σ

ρ σ σ σ

 + + +
 ≡ = <
  + + + +  

    (3.25) 

By (3.22) - (3.25), we have asymptotic properties of EOS for the particles  

( )
5
3

0

1

11 5 2 ,  if 0,
2

1 21 ,  if .
3 3

P J T
P

J T

ρ σ
σ

ρ σ −

  − + →  
 = 

   + − →∞     


           (3.26) 

The above characteristics (3.25) and (3.26) of EOS are the conditions for a 
singularity-free star. More clearly, if the EOS of the material of a star satisfies  

( ) ( )0
1 10 , , if  1, 0 ,  ,  if  ,

33sC P P Pγρ γ ρ ρ ρ< ≤ → > → → →∞   (3.27) 

then we have a singularity-free solution for a static star, no matter how heavy the 
star is. The EOS (3.22) - (3.24) is derived from the coupling system of particles 
and space-time, so it is compatible with Einstein’s field equation. The singular 
solutions are usually caused by incompatible EOS. An EOS ignoring the driving 
effect of gravity is invalid in general relativity. 

For the realistic particles with other interactions, the reasonable EOS should 
have asymptotic properties of the following model equation  

2 1
0

0
1, 0 , 0, 0 .
3

n

n

C
P C k n

k
ρ
ρ

+  
= < ≤ > > +  

            (3.28) 

The star becomes larger as 0k →  or 0n →  or 0 1C → . This conclusion 
can be checked as follows. The realistic static asymptotically flat space-time with 
spherical symmetry can be generally solved by the following procedure. The dy-
namics (1.3) - (2.1) can be reduced to the following initial problem of an ordi-
nary differential equation system [1] [10],  

( ) ( )24 , 0 0,M r G r Mρ′ =π=                  (3.29) 

( )
( )( )

( )
( )

3

02

4
, 0 ,

2s

P GPr M
r

C r M r

ρ
ρ ρ ρ

+ +
′ = − =

−

π
          (3.30) 

in which ( )P P ρ=  can be (3.28). The interior solution ends at 0sC →  or 
0ρ →  as r R→ , where R < ∞  is the radius of the star. For any given 0 0ρ >  

we get a unique singularity-free balanced solution. The interior metric compo-
nents are given by  

( )
( )

31 2 421 , exp d .
2

R

r

GPr MMa b r
r r r M

− π +   = − = −   −   
∫        (3.31) 

Noticing ( ) 1
2

M r =   has length dimension, Equations (3.29) and (3.30)  

have scale invariance, so the total mass is proportional to 0ρ  if other condi-
tions are the same. Outside the star, we have ( ) ( ) 0r P rρ = =  in the region 
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r R≥ . The total mass of the star (2.3) can reaches any large value for adequate 
parameters ( )0, ,k n C  and large enough 00 ρ< < ∞ . So the asymptotic proper-
ties of EOS is decisive for the fate of a star. 

4. The Equations for Stellar Structure 

Now we take the EOS (3.22) - (3.24) of ideal gas as example to show the concrete 
structure of a star. For this EOS, the structural functions of a star have simple 
form and can be completely solved. Equation (1.5) can be rewritten as  

d 2 d .
d d

b b P
J P Jρ
= −

+
                       (4.1) 

Substituting (3.23) and (3.24) into (4.1), we get  

( )( )
( )

2

22

4
,

2 2 5 4
sR R J

b
R J J

σ

σ σ

− +
=

 + + + 

                 (4.2) 

where tot2sR M=  the Schwarzschild radius. Substituting (2.2) and (3.23) - (4.2) 
into (1.3) and (1.4), we get the following dimensionless equations for stellar 
structure,  

( ) ( ) ( )
2 3

22 3 2 ,rr J J J σ
χ

 ′ = + +    
 

              (4.3) 

( ) ( )
( ) ( ) ( )

2 5
22 ,

2
J rJ r J J J

r r
ξ

σ σ
χ

 −  ′  = + + +     −   




       (4.4) 

where χ  is a constant with length dimension which acts as length scale, 

( ) ( )
11
22 04 4 ,c G c G mχ −−= π=π                   (4.5) 

( ) ( )
2

2 2

2 2 5 4
,  1 .

5 8 4
J J

J J
σ σ

ξ ξ
σ σ
+ + +

≡ ≈
+ +

               (4.6) 

The rigorous solution to (4.3) and (4.4) is absent. However, they are dimen-
sionless equations convenient for numeric simulation. If we take 1χ =  as the 
unit of length, the solution can be uniquely determined by the following boun-
dary conditions  

( ) ( ) ( ) ( )00 0,   0 0,   0,  .J J J r r R= = > = ∀ ≥           (4.7) 

By adjusting 0J , we get different solution. The solutions are displayed in 
Figure 2 and Figure 3. The total mass of the star is proportional to any given 
parameter χ , so it can be arbitrarily large. 

In practical observation, the radius R and the total mass or equivalent 
Schwarzschild radius sR  of a star can be easily measured. Then the other 
structural parameters can be determined by this radii pair ( ),sR R . In what fol-
lows, we show the procedure how to use Figure 2 and Figure 3 solve practical 
problems. 

Taking the sun as example, we have the radii pair as  
3 82.96 10  m, 6.96 10  m.sR R= × = ×



              (4.8) 
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Figure 2. Relation between mass and central temperature similar to H-R diagram, where 
the curves are concentrated by the scale χ  and dimensional temperature J. 
 

 

Figure 3. Relation between mass and radius. All structural information of a star are de-
termined by a given radii pair ( ),sR R . 

 
By 64.25 10sR R −= ×



, according to the relation shown in Figure 3, we can 
solve the intersection A and get the dimensionless radii pair  

( ) ( )0 0log 2.320,   log 3.052.sX R Y Rχ χ= = = = −         (4.9) 

Consequently, we have  
2.32 610 3.335 10 m.Rχ −= = ×                  (4.10) 
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By 0Y  we get intersection B in Figure 2, and then get the central dimension-
less temperature 6

0 1.145 10J −= ×  for the sun. Taking it as initial value we can 
solve (4.3) and (4.4), and then get detailed structural information for the sun. 

By (4.5) and (4.10), we get  

( )
2

12 3
2 9.640 10 kg m .

4
c
Gχπ

= = ×                 (4.11) 

Then by (3.23) and (3.24) we solve the mass density and pressure at the center  

( ) ( ) ( )
3

3 32
0 0 0

30 2 1 8.45 10 kg m ,
2

J J Jρ σ   = + + = ×    
        (4.12) 

( ) ( ) ( ) ( )
5

1 2 82
0 0 0

10 2 8.70 10 MPa .
2

P J J J cσ σ − = + + = ×        (4.13) 

The temperature depends on the average mass m . By (3.22), we have  

( ) ( )2 2 7
0 0 1.247 10 K ,c p p pT mc J k n m c J k n= = = ×           (4.14) 

where 271.673 10 kgpm −= ×  is the static mass of proton, pn  is the equivalent 
proton number for the particles. 

If the ionization in the sun is about H N 2e+ + −+ + , then we have  

( )70% 1 30% 14 4 1.23,pn = × + × =                 (4.15) 

( )272.06 10 kg ,p pm n m −= = ×                   (4.16) 

( )7 71.247 10 1.53 10 K ,c pT n= × = ×                (4.17) 

( ) ( )2 2 39 3
0 4 4.68 10 m .c Gmχ −= = ×π              (4.18) 

In contrast with (4.12) and (4.13), we find the central density and pressure in 
the sun are about one order of magnitude less than the current data  

( ) ( )5 3 100 1.6 10 kg m , 0 2.5 10 MPa.Pρ = × = ×  

This difference should be caused by the dynamical effect of gravity. 
The compactest stars (with the maximum sR R ) correspond to the points 
,M N  in Figure 2 and Figure 3. The radii pair is : 1.59 : 5.77sR R =  and the 

central temperature 0 0.30J = . For a compact star with the solar mass M


, we 
get the length unit and radius as  

1.59 1.86 km,   5.77 10.7 km.sR Rχ χ= = = =         (4.19) 

Along the above procedure, we solve  

( ) 18 30 8.50 10 kg m ,ρ = ×                 (4.20) 

( ) 290 1.24 10 MPa,P = ×                  (4.21) 

( ) 120 3.27 10 K.pT n= ×                  (4.22) 

From Figure 4 we find that, the kinetic energy distribution function of the gas 
has only a small influence on the solution, and the stellar structure functions are 
not sensitive to the values of the parameter Σ. 
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These are typical data for a neutron star [1]-[8]. The metric functions ( ),a b  
and the mass, temperature distributions ( ), J  for this star are displayed in 
Figure 5. 
 

 

Figure 4. The influence of energy distribution on solutions. The results are not sensitive 
to σ .  
 

 

Figure 5. Structural functions for the compactest stars. The trends are typical for all stars. 

5. Discussion and Conclusion 

From the above calculation and analysis, we find the EOS of matter is decisive to 
the fate of a star. If EOS satisfies (3.27), then the EOS is compatible with Eins-
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tein’s filed equation, and we always have singularity-free balanced star, no mat-
ter how heavy the star is. In this case, the driving effect of the gravity is domi-
nated comparing with other interaction. Gravity is a conservative force, and the 
kinetic energy and the gravitational potential energy of particles inside inter-
convert into each other. The powerful gravity of a massive star leads to extreme 
high temperature inside the star. Instead of suddenly stopping at the center to 
wait for collapse into singularity, the falling particles will move quickly across 
the center and continue outward. From Figure 3 we find that, for the most 
compact stars, the ratio of the stellar radius and the Schwarzschild radius  

5.77 1.59 3.63sR R ≥ = . Therefore, the trapped surface inside the Schwarz-
schild horizon of singularity theorem is a concept of illusion, which cannot dy-
namically form. The collapse is a dynamical process which should be analyzed 
by detailed dynamics [11]. 
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