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Abstract 
In an effort to reduce vehicle collisions with snowplows in poor weather con-
ditions, this paper details the development of a real time thermal image based 
machine learning approach to an early collision avoidance system for snow-
plows, which intends to detect and estimate the distance of trailing vehicles. 
Due to the operational conditions of snowplows, which include heavy-blowing 
snow, traditional optical sensors like LiDAR and visible spectrum cameras 
have reduced effectiveness in detecting objects in such environments. Thus, 
we propose using a thermal infrared camera as the primary sensor along with 
machine learning algorithms. First, we curate a large dataset of thermal im-
ages of vehicles in heavy snow conditions. Using the curated dataset, two 
machine-learning models based on the modified ResNet architectures were 
trained to detect and estimate the trailing vehicle distance using real-time 
thermal images. The trained detection network was capable of detecting 
trailing vehicles 99.0% of the time at 1500.0 ft distance from the snowplow. 
The trained trailing distance network was capable of estimating distance with 
an average estimation error of 10.70 ft. The inference performance of the 
trained models is discussed, along with the interpretation of the performance. 
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1. Introduction 

Snowplows operate in hazardous road conditions to remove or reduce snow ac-
cumulation on roads. Snow removal is typically managed by a state’s Depart-
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ment of Transportation (DOT) for heavily trafficked roads like interstates and 
highways in the US. Snow often falls while plows remove snow, reducing the vi-
sibility of the snowplow operators and consumer vehicles. Moreover, when the 
snowplow moves with its blade depressed into a volume of snow, it causes a 
flurry of displaced snow surrounding the plow, known as the snow plume, fur-
ther reducing the snowplow operator’s visibility and the visibility of both ap-
proaching and following vehicles. These conditions result in collisions with 
snowplows, and recently, in a single day, multiple collisions [1] experienced by 
snowplows were reported. Zockie et al. [2] analyzed crash reports from 2012 to 
2017 in Michigan UD-10 and determined that 1354 crashes involved snowplows. 
Research conducted at Virginia Tech [3] showed that 22.8% of crashes involving 
snowplows were due to inattention/misjudgment by other drivers. Haq et al. [4] 
analyzed the snowplow-related injury severity along mountainous roadways in 
Wyoming and determined a significant number of crashes occur due to the slow 
speeds of snowplows. These accidents are often caused by vehicles approaching 
the snowplow from the rear due to poor visibility of the snowplow and the ina-
bility to stop in time. Furthermore, vehicles attempting to pass a snowplow cause 
head-on collisions with vehicles traveling in the opposite direction, leading to a 
cascading accident involving the snowplow. These accidents involving snow-
plows have multiple consequences, such as human physical impairments, death, 
and economic costs. Typically, the time and cost to repair a snowplow involved 
in a rear collision is two to three months and $100,000. Furthermore, DOTs have 
limited snowplows, so losing a snowplow due to a collision impedes snow re-
moval on interstates and highways, resulting in perpetuating poor road condi-
tions and, subsequently, more accidents. Thus, a collision avoidance system ca-
pable of alerting snowplow operators to approaching vehicles from the rear will 
allow the snowplow operators to alert (using warning lights and horns) the 
trailing vehicles about the presence of a snowplow ahead, raise the blade to re-
duce the intensity of the snow plume, and/or move on to the shoulder of the 
road to avoid possible collisions. 

However, heavy snowfall and blowing snow impede detecting objects with 
visual sensors like visible spectrum (RGB) cameras and LiDAR. An image taken 
from an RGB camera in heavy snowfall and blowing snow conditions will have a 
reduced perception of the details of the image. Falling and blowing snow first 
occludes the view of an image sensor due to the reflectivity of snow in the visible 
spectrum; subsequently, the increasing density of falling snow creates opaque-
ness in the visible wavelengths [5] for the image sensor. Similarly, LiDAR has 
reduced range and efficacy in snow conditions due to light reflection at the wa-
velengths typical for LiDAR sensors (~905 nm) [6]. While the reflection of light 
due to snow particles will result in false vehicle detection, the opaqueness will 
prevent vehicle detection. These issues with visible cameras and LiDAR in snowy 
conditions make them unsuitable for detecting vehicles trailing a snowplow. In 
this paper, we implement a real-time collision avoidance system for a snowplow 
consisting of two machine learning models trained to detect trailing vehicles and 
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their distances from the snowplow using thermal images obtained from the 8 - 
14 μm spectral band thermal infrared camera. We use a thermal camera as the 
sensor instead of a visible spectrum camera and LiDAR, since a thermal camera 
capturing heat differentials in its pixel intensities should be able to capture the 
heat differential between a vehicle and the environment. 

This paper is organized as follows: Section 2 provides a brief summary of the 
related work. In Section 3, thermal image data collection and preprocessing is 
presented. Section 4 discusses architecture choices for the ML models. In Section 
5, the results of the models’ training are presented. Section 6 presents the per-
formance of the trained models, particularly on samples which were predicted 
poorly. Finally, section 7 discusses the conclusion of this research, as well as fu-
ture research directions. 

2. Related Work 

Continuous improvements in autonomous vehicle research have resulted in sev-
eral obstacle detection and avoidance approaches and have demonstrated re-
markable success in practical implementation, as reviewed by Siddiqui et al. [7]. 
These approaches typically utilize sensors such as visible spectrum cameras, Li-
DAR, and radar sensors to collect variations of visual data of the vehicle’s sur-
roundings and subject the data to algorithms that parse the data into informa-
tion of the relative location of detected obstacles. As the capability of edge com-
puting devices improves and available training data continuously increases, 
these algorithms are trending toward deep learning models. 

Much research has been done on vehicle detection in the context of auto-
nomous driving. However, relevant research using thermal cameras for obstacle 
detection is more sparse. Bhadoriya et al. [8], in their research, have collected 
thermal images manually in adverse weather conditions to train a YOLO-based 
vehicle detection model. They have demonstrated the efficiency of using thermal 
images with the YOLO model in a simulator. They have used radar to measure 
the distance of other vehicles from the autonomous vehicle. Measuring the ve-
hicle distances using the radar is appropriate since they have not considered 
snow as one of the adverse weather condition scenarios. Furthermore, consider-
ing only objects in the direction along a fixed line of the autonomous vehicle 
makes distance measurements using the radar accurate. 

Alhamaddi et al. [9] have trained a transfer learning-based vehicle detection 
model using thermal image data in adverse conditions. The thermal images of 
vehicles were collected only in heavy fog formation and the dataset consisted of 
only 70 gray scale images. This research demonstrated that transfer learning 
with a large pre-trained architecture could be used to reduce computational 
costs and the burden of architectural searches. 

Lu et al. [10] have improved the yolov3-tiny model and applied it to thermal 
vehicle image data for object detection. They have used the FLIR ADAS Dataset 
which contains thermal images of fifteen different vehicle types in adverse 
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weather conditions such as total darkness, fog, smoke, rain, and glare. This re-
search focuses on modifying the yolov3-tiny model by adding a detection layer 
to detect multiple small objects closer to each other. However, this work did not 
address detecting objects in snowy conditions and detecting the distance. 

Kang et al. [11] collected nighttime thermal data in urban and suburban traf-
fic scenarios and compared the efficacy of several lightweight CNN models for 
classifying four different vehicle types: cars, buses, trucks, and vans. This work 
demonstrates the efficiency of small CNNs using thermal image data for a sim-
ple classification task. In this work, the authors have demonstrated that network 
efficiency is a critical component of real-time vehicle detection; models must 
have sufficiently low inference time and memory usage on resource-constrained 
edge devices to maintain high inference throughput and ensure that the most 
recent predictions are always available. Despite the important insights in using 
thermal data for vehicle classifications, thermal data was not collected in snow 
conditions and was limited to a distance of 50 m. Additionally, no distance esti-
mation techniques are addressed. 

Research specifically concerning thermal image vehicle detection in heavy 
snow conditions is scarce. Han and Hu [12] explored vehicle detection with 
thermal and visible spectrum imaging in the context of traffic surveillance cam-
eras. They used RGB images augmented with thermal grayscale images in a dual 
input faster RCNN network and trained with rain and snow condition data. 
However, the fixed nature of traffic monitoring cameras makes vehicles always 
appear against the same background at a small range of distances and do not re-
flect the high variance environments seen by cameras attached to moving ve-
hicles. As with most other research in this area, the estimation of vehicle dis-
tance was not examined. 

In all of the above research, none of the thermal data used are in snow condi-
tions. In all this research, object detection concerns an autonomous vehicle in a 
fixed line of sight and small distances. To measure the distance of the detected 
object from an autonomous vehicle, either a radar or LiDAR is used. Our re-
search addresses object detection at large distances over 1000 ft, varying lines of 
sight, and in heavy snowfall conditions. Since radars and LiDAR do not function 
accurately in snowy conditions to detect distances, we propose creating a custom 
dataset of thermal images labeled with the distance and training two deep learning 
models; one for detecting the objects and the other for estimating the distance. 

3. Thermal Data 

Curation As with any machine learning application, a sufficiently large, varied, 
and high-quality dataset is key to ensuring the deployment performance of a 
trained model. 

3.1. Data Collection 

We have used the FLIR ADK thermal infrared camera to collect thermal images 
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of vehicles during snow events, such as in Figure 1. 
Thermal images and corresponding distance labels are collected ad hoc during 

heavy snow events with different vehicle makes and models. We collect the 
thermal image data and distance using two vehicles, identified as the leader and 
follower, traveling on interstates, highways, and other roads maintained by the 
Wyoming Department of Transportation. In addition to the leader vehicle 
equipped with the thermal camera, both have GPS and LoRa transmitters and re-
ceivers. Constant communication of the GPS coordinates of the leader and follow-
er vehicles between them is maintained using the LoRa transmitter/receivers to 
ensure a desired separation distance. The leader vehicle simulates a snowplow, 
while the follower vehicle simulates trailing consumer vehicles. During the data 
collection process, we collect thermal images using different makes and models 
of the follower vehicles to capture the variety of real traffic driving characteris-
tics accurately. 

During training data collection, the follower vehicle drives behind the leader 
and varies its distance from the leader vehicle by 100 ft to over 1000 ft. Thermal 
images of the follower vehicle are captured continuously from the rear of the 
leader vehicle, and each collected image is annotated with the distance separat-
ing them determined using the GPS information of both vehicles. The thermal 
images with other vehicles between the leader and follower vehicles are dis-
carded from the distance estimation data set. Figure 2 illustrates this process. 

A thermal image contains pixel intensities that correlate to the heat emitted 
from areas in the image scene. In snowy conditions, due to occlusions from 
snowflakes, a vehicle will not be discernible in the image from an RGB camera,  

 

 
Figure 1. Vehicle thermal image at 100 ft distance from thermal camera. 
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Figure 2. Data collection procedure diagram. 

 
particularly a vehicle at a significant distance from the RGB camera. However, in 
snowy conditions, the heat signature of a vehicle can be detected as it is pro-
nounced significantly due to the ambient temperature typically being below 
freezing (32 F). We propose to collect the heat signature data using a thermal 
image, where the pixel intensity in the thermal image correlates to the heat 
emitted in the image scene. Due to the inherent issues with infrared thermogra-
phy listed below, thermal images are generally noisier and of worse quality than 
RGB images. 

• The intensity of infrared radiation emitted by objects is weaker than visible 
light due to the lower frequency of the infrared band, resulting in a lower in-
tensity differential between pixel regions of objects of different temperatures. 
Lower cost commercial thermal cameras lack the costly high-sensitivity sen-
sors to capture the weak signal differential, reducing the capacity of these 
images to express temperature gradients at a low resolution. 

• The diffraction limited resolution 1fθ −∝  is proportional to the wavelength 
of detected light [13]. Since infrared light has a longer wavelength than visi-
ble spectrum light, larger pixel sites are required on the sensor array, de-
creasing image resolution. 

• To reduce the accumulation of snow on the lens of a thermal camera, the 
thermal camera is equipped with a heating element. The resulting Johnson 
(temperature) noise, and to a lesser extent the noise caused by other camera 
electronics (1/f noise, fixed pattern noise, etc.) cause images obtained from 
thermal cameras to exhibit characteristic noise patterns [14]. 

To ameliorate this noise and increase the visibility of areas of interest in ther-
mal images, we preprocess the thermal images before they are used as input to 
the perception models. 

3.2. Thermal Image Preprocessing 
3.2.1. Normalization 
First, we quantize each pixel in the thermal image to integers in the range [0, 
255] through the normalization process to maximize the contrast between fea-
tures in the image. The normalization process involves re-scaling the raw data 
from the thermal image to the maximum dynamic range [0, 255] as given by the 
Equation (1). 
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 ( )min
max min

Î I I
I I
β α β−

= − +
−

 (1) 

where minI  is the smallest pixel intensity value in the image, maxI  is the larg-
est, 0α = , and 255β = . 

3.2.2. Denoising 
As mentioned above, thermal cameras are inherently noisy. A denoising algo-
rithm is deployed on the normalized image to reduce this effect. Denoising typi-
cally involves the application of a Gaussian or median blur filter to replace a pix-
el value with an average of the pixel values around it. However, this technique 
will cause the unwanted smoothing of any image area with a periodic or repeat-
ing structure. The spatial coherency issue degrades the visual quality of any re-
peated patterns in an image denoised by blurring methods and can be remedied 
using the Non-Local Means (NLM) Denoising [15] algorithm. The NLM de-
noising with a patch-wise implementation uses a research window of a large 
neighborhood of pixels or patches in the vicinity of the patch under investiga-
tion and, within this research window, searches for patches that resemble the 
target patch. The patches in the research window are weighted to reflect their 
resemblance to the target patch, and a weighted sum of the patches is computed 
to replace the target patch. 

Consider a normalized thermal image u. The denoising of this image is given 
by the Equation (2), 

 
( ) ( ) ( ) ( ) ( )1ˆ , , , ,

Q R Q R
B u q w B Q C p w B Q

C p ∈ ∈

= =∑ ∑  (2) 

where ( ),B B p f=  indicates the target patch under consideration, centered at 
p with side length 2 1f + , ( ),R R p r=  indicates the rectangular research 
window, centered at p with a side length of 2 1r + , and ( ) ( ), ,Q Q q f R p r= ∈  
indicates each patch within the research window of the same size as the target 
patch, each patch centered at q. The weights ( ),w B Q  are calculated using an 
exponential kernel given by the Equation (3), 

 ( )
2

2, exp ,dw B Q
h

 
= − 

 
 (3) 

where d is the Euclidian distance between the target patch B and test patch Q, 
and h is a tunable filter strength parameter. This weight value is set to 1 (i.e., d2 
is set to 0) if the patches are sufficiently close, a threshold set per implementa-
tion based on the variance of the image noise. 

The research window size r, patch size f, and filter strength h must be chosen 
at design time. Increasing the research window size allows access to a larger 
neighborhood of potential patches for more global denoising but increases 
computation time. Increasing the patch size is desirable when the image noise 
has a large variance; however, this requires a larger research window to find 
more similar patches successfully. High filter strength h results in the weights 
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concentrating on very similar patches, which removes noise better but is more 
likely to degrade image details. Without a noise model, optimal parameter values 
cannot be chosen mathematically and thus were tuned by observing the denois-
ing performance on the thermal image dataset. The denoising tuned parameters 
for the normalized input thermal images were determined as 10r = , 3f = , 
and 10h = . 

3.2.3. Dilation 
Since trailing vehicles can be at a long distance from the thermal camera, objects 
of interest may be represented only by a few pixels, resulting in the desired im-
age features being low resolution and difficult to detect. Image dilation is a 
morphological operation that changes shapes’ boundaries by applying a struc-
turing element to an input image. The image dilation adds higher intensities to 
boundary pixels of shapes in the input image. In essence, this operation causes 
bright regions in the image to grow, accentuating the low-resolution features 
represented by high pixel intensities. We propose dilation as a technique to em-
phasize vehicles in thermal images. 

Dilation involves convolving the input image I with a structuring element or 
kernel C, which was chosen as a 5 × 5 circular kernel. A circular kernel was cho-
sen to avoid introducing sharp corner artifacts in the output image that can 
happen with a rectangular kernel. The kernel size was selected as a middle 
ground between insufficient feature accentuation (as with a 3 × 3 kernel) and too 
much degradation of the vehicle structure at closer distances (with 7 × 7 and 
larger kernels), chosen by experimentation and visual analysis. As C is convolved 
over the image I, the maximum pixel value that overlaps with the kernel is 
found, and the value of the pixel that anchors the kernel is replaced with this 
maximum value. This has the effect of making regions of high pixel intensity 
appear larger in the output image. Sample thermal images and their corres-
ponding preprocessed images are shown in Figure 3. 

In Figure 3, the increase in contrast between dark regions like the sky and 
lighter regions like the road and vehicle features due to normalizing can be ob-
served. The effects of denoising can also be seen where regions of similar inten-
sity are more uniform in the output image. Finally, key features of the trailing 
vehicle, indicated by the brightest pixel intensities in the image corresponding to 
the windshield, headlights, and tires, appear larger and more distinct after dila-
tion. Furthermore, at distances of 500 ft and 1000 ft, it can be observed that pre-
processing significantly increases the contrast between the vehicle and the back-
ground. 

4. Deep Learning Detection and Trailing Distance Models 

The snowplow operator requires two vital pieces of information, the awareness 
of a vehicle trailing the snowplow and the distance between the snowplow and 
the trailing vehicle, to operate the snowplow safely and avoid rear-end collisions. 
Using these two vital pieces of information in real-time, a snowplow operator  
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Figure 3. Comparison of thermal images at varying distances before and after prepro-
cessing. 

 
can turn on warning lights/horns to warn the trailing vehicle driver of the pres-
ence of a snowplow. We propose to detect the presence of a trailing vehicle and 
the trailing distance using two deep-learning models in cascade, as shown in 
Figure 4. Since an energy-constrained edge device such as NVIDIA Jetson is 
used to perform real-time inference to predict the distance between the trailing 
vehicle and the snowplow, it is necessary to minimize the computations for in-
ference. Every image from the thermal camera at the frame rate of 30 sam-
ples/second may not have a vehicle, and therefore, predicting the trailing dis-
tance using each thermal image frame would result in unnecessary computa-
tions, increasing energy consumption and potentially reducing throughput. In 
Figure 4, it can be observed that the Detection Model (DM) is first used to  
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Figure 4. Diagram of inference execution for detection and trailing distance models. 

 
detect the presence or absence of a trailing vehicle in the preprocessed thermal 
image data. If the detection model detects the presence of a trailing vehicle with 
a high confidence level, then the Trailing Distance Model (TDM) predicts the 
trailing distance using the same preprocessed thermal image data. Using this 
cascade approach, we reduce the computational burden and, in turn, the energy 
consumption of an edge AI device hosting the two models mounted in the 
snowplow. 

4.1. Detection 

The Detection Model is envisioned to perform binary classification (presence or 
absence of the trailing vehicle) of the preprocessed thermal image and output the 
probability (confidence level) of the thermal image containing a trailing vehicle. 
We developed the first detection model consisting of an eighteen-layer deep 
conventional convolution neural network (CNN) and evaluated its performance. 
The architectural details, training and validation loss/accuracy plots, and the 
confusion matrix of the model are presented in the appendix. The model was 
trained for 100 epochs and achieved a training and validation accuracy of 70.0% 
and 70.8%, respectively. However, the trained inference performance was poor, 
as the test accuracy was only 71.0%. The factors contributing to the model’s low 
inference performance are discussed below: 

• The network, having eighteen convolution layers and a fully connected layer, 
exhibited overfitting as the dataset consists of only 16,081 training data. The 
overfitting can be observed in Figure A1 and Figure A2 (see Appendix 
A1depicting the training and validation loss/accuracy plots. 

• The model exhibited memorization of images with vehicles, which can be 
seen in the confusion matrix of the test dataset in Figure A3. In the confu-
sion matrix, it can be seen that the trained model has classified 594 test im-
ages with no vehicles as images with vehicles. 

• Due to max-pooling layers, the input image was downsized to 2 × 2 size after 
flowing through the eighteen convolution layers. As discussed in the section 
0.0.3, trailing vehicles can be far from the thermal camera, and objects of in-
terest may be represented only by a few pixels. The downsizing due to using 
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max-pooling layers will result in the loss of object information. 
• The loss during the training remains constant after 40 epochs shown in Fig-

ure A1 indicating a vanishing gradient problem, hindering the network from 
learning. 

To improve the performance of the first prototype detection model, we ap-
plied several regularization techniques such as batch normalization, L2 regulari-
zation, and data augmentation without modifying the network architecture and 
training for 100 epochs. The performance of the first prototype detection model 
with regularization improved significantly, as achieved training and validation 
accuracy of 99.6% and 99.4%, respectively. The model inference performance 
with the test data also increased to 94%. Even though the loss for both training 
and validation are decreasing, as shown in Figure A4, the decrease of the loss 
after 60 epochs is small, and the validation loss is noisy and diverging from the 
training loss. This loss behavior of the model can still be due to the vanishing 
gradient problem. Furthermore, the inference performance is not at the expected 
level shown in the confusion matrix of the test dataset in Figure A6. In the con-
fusion matrix, it can be observed that even with regularization techniques, a sig-
nificant number of non-vehicle thermal images are classified as thermal images 
with vehicles. Therefore, the model architecture of the first prototype detection 
model has a low generalization capability. 

To improve the generalization capability and address the overfitting and va-
nishing gradient issues, we propose using Residual Networks (ResNets), a deep 
learning architecture which is a reformulated Convolutional Neural Network 
(CNN). ResNets are a reformulation of the classical CNN networks, where, in 
addition to feeding the output feature map of one convolution layer as input of 
the next layer, the layers also contain shortcut connections, adding its input fea-
ture map to the output of the same layer. The shortcut connections to a layer sub-
ject the layer to its own convolution operation, which serves to match the dimen-
sionality input feature map to the output map to which it is added. The shortcut 
connections are conceptualized as a residual block, as shown in Figure 5. 

Residual networks have several advantages over the classical CNN networks 
[16]: 

• The skip connections, allowing gradients to flow to previous layers during 
backpropagation without being attenuated, addresses the vanishing gradient 
problem. 

• ResNets reduce network degradation for deeper networks by reformulating 
the desired mapping ( )H x  to a residual mapping ( ) ( )F x H x x= −  and 
recasting the original mapping to ( )F x x+ . While theoretically, a series of 
non-linear layers should be able to approximate either mapping, ResNets are 
empirically shown to improve optimization. 

• By providing multiple paths for data to flow through the network, ResNets 
implement an inherent form of regularization. Similar to Dropout [17], skip 
connections provide redundancy in propagating important features through 
the network. 
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Figure 5. Residual convolution block. 

 

 
Figure 6. ResNet based detection model architecture. 
 

The Resnet-based detection network architecture is shown in Figure 6. The 
network consists of Conv2D, Batch Normalization, and fully connected layers. 
In Figure 6, the yellow-colored blocks represent the Conv2D layers, the batch 
normalization layers are represented by blue-colored blocks, followed by the 
ReLU activation blocks in red-color. After the residual blocks, the network has a 
fully connected layer represented by the green-colored block, followed by a 
softmax layer with two outputs. 

The original residual network [16] proposed by Kaiming et. al., do not im-
plement pooling layers in the residual blocks, but do use pooling layers at the 
beginning and end of the network to downsize the feature maps to the desired 
dimension for the following layers. In our proposed ResNet, the max and aver-
age pooling operations are eliminated completely to avoid losing individual pixel 
information. The discarding of individual pixel information is inherent due to 

https://doi.org/10.4236/jilsa.2024.162008


F. Wadsworth et al. 
 

 

DOI: 10.4236/jilsa.2024.162008 119 Journal of Intelligent Learning Systems and Applications 
 

pooling layers and is undesirable, due to a trailing vehicle being represented by a 
few pixels at large distances. Due to the vehicle constituent pixel area being 
small, the use of pooling layers will eventually result in the vehicle segment being 
represented by a single pixel in an input feature map. Convolution layers are 
trainable and thus can learn operations that can propagate more information 
than pooling [18]. Thus, convolution layers with a stride greater than one are 
used to reduce the spatial dimensions (height and width) of the feature maps. 

Additionally, the original ResNet [16] contained two types of residual blocks, 
characterized by whether they are bottleneck blocks or not. Bottleneck blocks are 
residual blocks in which the first convolution layer has a stride greater than 1, 
and thus, the feature maps’ spatial dimensions are reduced from input to output. 
Bottleneck blocks also increase the number of feature maps by increasing the 
number of kernels in the second convolution layer to accompany the reduced 
spatial dimension. In order for the input to be the same shape as the feature map 
to which it is added via its skip connection, a convolution layer with 1 × 1 ker-
nels is used to increase the feature map depth appropriately. 

In Figure 6, it can be seen that the architecture has only five residual layers, all 
of which are bottleneck layers according to [16]. This makes the detection model 
based on the ResNet architecture a rather shallow network by the modern deep 
convolutional network standards. Therefore, the network architecture can be 
qualified more specifically as a wide ResNet, which has exhibited superior gene-
ralization than deeper ResNets [19]. 

4.2. Trailing Distance Model 

The Trailing Distance Model output is a prediction of the distance between the 
snowplow and a following vehicle. Therefore, the model has to be designed as a 
univariate regression problem. We propose another ResNet network with an ar-
chitecture similar to the detection network, having an image as input and pro-
ducing a non-negative real number output, which is an estimate of the nearest 
trailing vehicle distance from the thermal camera mounted at the rear of the 
snowplow. 

There are existing robust approaches of regression using CNN networks to es-
timate multiple vehicles’ distances with no geometric calibrations or condition-
ing. These robust approaches require large datasets for training. In this work, 
creating a large thermal image dataset with distance as labels is difficult. Col-
lecting a large volume of thermal image data in heavy blowing snow conditions 
with corresponding distance labels is hindered due to various insurmountable 
constraints, such as inaccurate measurements by LiDAR in heavy snow, due to 
high reflectivity and attenuation of light pulses [6], and a radar lacking the abili-
ty to distinguish between a vehicle and a background or foreground object due 
to resolution. Using our GPS/LoRa system to collect distances along with image 
data, we are limited to a single-follower vehicle in a frame having a distance 
measurement. Therefore, our current training dataset has images with the fol-
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lower vehicle in front of all other vehicles on the road, such that distance labels 
correspond to the geometry of the image scenes. 

The primary image feature in this regression application is the number of pix-
els that represent the trailing vehicle. Thus, each reduction in the dimension of 
the feature maps destroys the pixel area information, reducing the resolution, 
which can be catastrophic to the network’s ability to predict distance accurately. 
Choosing a network with less number of residual blocks results in larger feature 
maps as input to the output layer, avoiding the destruction of the pixel area in-
formation. The number of residual blocks in the ResNet architecture for the 
TDM network is decreased by one, and this reduction was noticed to reduce the 
variance of target prediction error, resulting in a shallower network compared to 
the Detection network as shown in Figure 7. Furthermore, due to the limited 
data set, avoiding overfitting is essential to reduce the variance of prediction er-
ror, especially as vehicles become more similar in appearance at large distances. 
Thus, we choose global average pooling (GAP) to transform the larger feature 
maps into a vector for the fully connected layers without any trainable parame-
ters. In Figure 7, the purple-colored block represents the GAP. 

5. Network Training 

As discussed previously, in section 3.1, a data set of thermal images of trailing 
vehicles was created during several heavy snow events on two-lane highways and 
interstate roads. During the dataset creation drives, using the LoRa/GPA device, 
the trailing distance was collected for each image frame. Later, the images in the 
dataset were manually labeled, identifying the presence or absence of the trailing 
vehicle. 

Given a training set of input-output pairs { },i ix y  and a neural network 
which maps inputs to predicted outputs as ( )ˆ ;i if=y x w  with parameters w . 
We seek to design the network parameters w  to map the predicted outputs ˆ iy  
close to the ground truth iy  for each input ix . However, due to the large 
number of parameters, even in small neural networks, it is not possible to ma-
nually design the network parameters to fit a particular dataset. To address this, 
a task-dependent loss function ( ); ,i iL f  x w y  shown in Equation (4) is de-
fined to quantify the mismatch between predictions and labels (the ground 
truth) for each sample. Thus, the problem of network fitting is framed as an  

 

 
Figure 7. ResNet based trailing distance model architecture. 
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optimization problem, with an optimization algorithm seeking to minimize the 
loss by updating the network parameters iteratively and finding an optimal pa-
rameter set. 

 ( )ˆ arg min ; , .w i iL f =  w x w y  (4) 

The fundamental optimization technique for training neural networks is the 
Stochastic Gradient Descent (SGD) algorithm. In SGD, the network parameters 
are initialized with small random values and then updated repeatedly by pre-
senting mini-batches of input-label pairs to the network. These mini-batches of 
data are randomly sampled from the training set, allowing the optimization to 
take small sub-optimal steps, i.e., travel downhill on the loss function surface to-
wards a minimum, which may be local or global. In each iteration, the mini-batch 
of inputs is passed through the network, obtaining predictions ( )ˆ ;i if=y x w . 
Then, the loss is calculated per sample using each sample’s corresponding label 

iy . To perform gradient descent, the derivatives of the loss with respect to the 
network parameters, known as the gradient of error, are calculated as shown in 
Equation (5) using a small learning rate α , which is one of the hyperparame-
ters. 

 
T
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, , , .
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L L LL
w w w

 ∂ ∂ ∂
∇ =  ∂ ∂ ∂ 

w  (5) 

After computing the gradient of error, the parameters are adjusted to reduce 
the loss value as shown in Equation (6): 

 Lα← − ∇ww w  (6) 

Since the training process is done by presenting mini-batches of samples at 
each iteration, the parameter update must account for the loss for each sample, 
which is done by simply accumulating the partial derivatives of the loss as given 
by the Equation (7). 
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∈
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where tB  is the set comprising the mini-batch of input-label pairs and iL  is 
the loss value for the ith pair. In the case of a neural network that is more than 
one layer deep, the partial derivatives of the loss w.r.t. the parameters are more 
complicated, as the network parameters are distributed throughout the loss 
function. The network parameters are updated layer by layer using the backpro-
pagation algorithm. The networks used in this research were implemented and 
trained using PyTorch, a deep-learning library for the Python programming 
language. 

5.1. Detection Network Training 

The data set we cultivated is comprised of 20,107 thermal images, of which ap-
proximately 67% contain vehicles. This data set is split into training, validation, 
and test subsets with ratios of 0.8, 0.1, and 0.1, respectively. 
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A list of the hyperparameters used for training the ResNet-based detection 
network is shown in Table 1. 

The loss function used with the detection network is the Binary Cross Entropy 
(BCE) loss shown in Equation (8), which measures the dissimilarity between the 
predicted class for each sample and the corresponding class label. 

 ( ) ( ) ( ) ( )
1

1ˆ ˆ ˆ, log 1 log 1
N

BCE i i i i
i

L y y y y
N =

= − ⋅ + − ⋅ −∑y y  (8) 

where iy  is the true label of the sample i (e.g. frame contains a vehicle), 
( )ˆi iy f x=  is the prediction of the network, i.e., the probability of belonging to 

the positive class. This loss function simultaneously measures the difference be-
tween the predicted probabilities to actual class belonging, 0 or 1, of each sam-
ple. In minimizing this loss function, predictions that are far from their corres-
ponding label are penalized by accumulating a higher loss value. Since 

( )ˆi iy f x=  is differentiable with respect to the network parameters, the BCE 
loss can be optimized to align the network predictions with the ground truth 
across the training set. Adaptive Momentum (Adam) is a stochastic optimization 
algorithm that improves the fundamental SGD algorithm [20]. The SGD algo-
rithm with a fixed step size has undesirable optimization properties, such as 
large adjustments to parameters corresponding to large gradients that can cause 
the weight update to overshoot and small adjustments to parameters corres-
ponding to small gradients that can cause slow progress towards nearby minima. 
These characteristics of SGD make it difficult to reach the minima of the loss 
surface at a sufficient rate while remaining stable. Adam addresses these con-
cerns first by normalizing the gradients, which makes the weight updates move a 
distance fixed by the learning rate in all directions. However, a fixed step size 
would not allow the optimizer to converge, instead oscillating around minima, 
as well as not allowing the optimizer to take larger or smaller steps when neces-
sary. To address this, Adam adds momentum to the estimate [20]. 

The step decay learning rate schedule was chosen to attenuate large oscilla-
tions in loss during the later phases of training. During the initial phases of 
training, the parameters are initialized with random values, resulting in a large  

 
Table 1. Detection network training and optimization details. 

Hyperparameters Details 

Loss Function Binary Cross Entropy Loss 

Optimizer Adam 

Initial Learning Rate 1e−3 

Learning Rate Scheduler Geometric Decay, step size = 10, multiplier = 0.85 

Minibatch Size 128 

Epochs 100 

Parameter Regularization L2 Weight Decay, 0.002λ =  
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loss, i.e., the initial loss is far from any local or global minimum. Thus, it is val-
uable to introduce a mechanism that encourages large steps at the beginning of 
training to explore the loss surface sufficiently and which reduces the optimiza-
tion step size in later training steps to promote convergence rather than oscilla-
tion around a minimum. There are several approaches to learning rate schedul-
ing, but theoretical guarantees of their relative efficacy cannot be made due to 
the high dimensionality of the loss surface with a deep neural network architec-
ture. Thus, we selected the Geometric learning rate decay, otherwise known as a 
step decay schedule a learning rate schedule that reduces training over time and 
is simple and intuitive to tune. Furthermore, the Geometric learning rate decay 
reduces the learning rate by a multiplicative factor in each epoch, as given by 
Equation (9). 

 0
t s

tλ λ γ   = ×  (9) 

where λ  is the learning rate at epoch t, 0λ  is the initial learning rate, s is the 
step size, and .    indicates the floor operation. Figure 8 depicts the geometric 
learning decay using the multiplicative factor and step size parameters in Table 1. 

In addition to the use of batch normalization and skip connections, L2 weight 
 

 
Figure 8. Geometric decay learning rate scheduler. 
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decay is also applied to encourage smoother change in weights and thus achieve 
a better conditioned objective surface. Additionally, L2 regularization is used to 
combat the overfitting problem due to the limited thermal image dataset. Since 
the thermal images can be collected only during severe weather events, the 
number of thermal images and the variety of the images with respect to the se-
verity of snow, types of consumer vehicles, and distance between the snowplow 
and consumer vehicles is limited. 

The network was trained for 100 epochs, and the training and validation loss 
and accuracy shown in Figure 9 and Figure 10 were collected. The regulariza-
tion techniques used with the first prototype network, the L2 weight decay, batch 
normalization, and heavy data augmentation, were used in training the Res-
Net-based Detection network. In Figure 9, it can be observed that the validation 
loss is less than the training loss, which is due to the use of regularization only 
on the training dataset. Since regularization techniques are not applied during 
inference with the validation dataset, the network can perform better on the va-
lidation dataset. Furthermore, regularization trades the model’s fit to the train-
ing data for better generalization of unseen data (validation dataset). 

Comparing the accuracy plot of ResNet-based Detection network in Figure 10 
 

 
Figure 9. Training and validation loss of ResNet based detection network. 
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Figure 10. Training and validation accuracy of detection network. 
 

with the accuracy plots of the first prototype network with and without regula-
rization in Figure A2 & Figure A5, it can be observed, a better performance by 
the ResNet-based Detection network. The ResNet-based Detection network has 
training and validation accuracy close to 99.99% with less variance. The first 
prototype network without regularization only had an accuracy of 70.0%, and 
with regularization, an accuracy of 99.99% with a large variance. Similar perfor-
mance improvement in the training and validation loss of the ResNet-based De-
tection network in comparison to the first prototype network can be observed in 
Figure 9, Figure A1 & Figure A4. 

5.2. Trailing Distance Network (TDN) 

Ideally, each image frame should have only the test trailing vehicle, without oth-
er vehicles between the camera on the vehicle simulating a snowplow and trail-
ing vehicle, and with a valid distance label. However, this is not always true, par-
ticularly at larger distances, since other consumer vehicles on the road often pass 
the test trailing vehicle, occluding it from the camera and rendering the Lo-
Ra/GPS-based computed distance label invalid. As a result of these label uncer-
tainties, many images used to train the Detection network cannot be used to 
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train the TDN. Therefore, the dataset used for the training of the TDN is a sub-
set of the collected dataset. The dataset subset is created by selecting images that 
have only the test trailing vehicle (the positive class of the full dataset), and no 
other consumer vehicles between the camera and the test trailing vehicle. The 
TDN dataset consists of 10,460 thermal images, split into 80% training data and 
10% validation and test data. Each image in the dataset has a corresponding dis-
tance label measured in feet. Figure 11 shows the distribution of distance labels 
in the training dataset, with very similar distributions for the validation and test 
set distance labels. 

In Figure 11, it can be seen that we have few images at distances greater than 
1000 ft. due to other consumer vehicles interfering during the data collection ac-
tivity. The TDN dataset is skewed towards shorter trailing distances. The hyper-
parameters used in training the TDN are presented in Table 2. 

In contrast to the Detection Network, the Trailing Distance Network must 
predict a single real value representing the predicted distance of the trailing ve-
hicle, and in training the network, this predicted value must be compared with 
the true distance label. Therefore, the Mean absolute error (MAE) given in 

 

 
Figure 11. Distribution of distance labels in training data set. 

 
Table 2. Trailing distance network training and optimization details. 

Hyperparam. or Reg. Technique Details 

Loss Function Mean Absolute Error (MAE) 

Optimizer Adam 

Initial Learning Rate 1e−3 

Learning Rate Scheduler Geometric Decay, step size = 10, multiplier = 0.825 

Minibatch Size 128 

Epochs 100 

Parameter Regularization L2 Weight Decay, 0.005λ =  
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Equation (10) is a loss function suitable for regression tasks. 

 ( )
1

1ˆ ˆ,
N

MAE i i
i

L y y
N =

= −∑y y  (10) 

In comparison with other regression loss functions, such as Mean Squared 
Error loss (MSE), MAE has the advantage of being interpretable in the units of 
the regression target value, which is distance in this application. Additionally, 
MAE is less sensitive to outliers than MSE, as MSE squares the difference be-
tween predicted value and label, and large differences are more heavily pena-
lized. Due to issues of data integrity and limited availability of large trailing ve-
hicle distances, which will be discussed later, our experimentation showed MAE 
to exhibit superior performance than MSE during this development phase of the 
TDN. The hyperparameters of the TDN are similar to that of the Detection net-
work with one difference, i.e., the TDN uses a larger L2 weight penalty to en-
courage a more regularized model. 

Figure 12 shows the MAE loss on training and validation sets per epoch. We  
 

 
Figure 12. Training and validation loss for trailing distance network during learning. 
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can see that there is a sharp decline and saturation of the training loss, indicating 
that the network architecture is unable to reduce the MAE further. The valida-
tion loss follows a similar trajectory, albeit with expected oscillations above and 
below the training loss inherent in mini-batch Stochastic Gradient Descent 
(SGD) based training. 

6. Results 

A detailed analysis of the trained detection and trailing distance network per-
formance with the test data, and possible reasons for the shortcomings of the 
models are presented in this section. 

6.1. Detection Network 

The confusion matrix of the detection network with the test dataset containing 
2071 thermal images is presented in Figure 13. The training dataset is imba-
lanced towards the positive class (presence of the trailing vehicle) since it con-
tains approximately 2/3 of images with the trailing vehicle. Therefore, the net-
work may have learned a bias toward predicting the presence of a vehicle during 
training. However, in the confusion matrix, it can be seen that the network has 
classified only 6 test images out of 600 total no trailing vehicle images as images  

 

 
Figure 13. Confusion matrix of trained detection network on test data set. 
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with trailing vehicle, demonstrating that the trained network is not biased to-
wards the positive class. The network has an overall test accuracy of 99.6%, hig-
hlighting that the network has clearly learned several salient features of vehicles 
in the images and generalization capability. The ResNet-based detection network 
has predicted only two images with trailing vehicles as images with no trailing 
vehicles. This is a significant performance improvement compared to the pre-
diction of forty-four images with trailing vehicles as images with no trailing ve-
hicles in the confusion matrix of the classical CNN network in Figure A6. It is 
important to have very low false negatives since missing the presence of a trail-
ing vehicle will prevent the snowplow operator from taking evasive actions, 
leading to catastrophic accidents. 

Using the confusion matrix in Figure 13, several key metrics such as preci-
sion, recall, and F1-score were computed. The precision metric measures the 
proportion of positive predictions that are, in fact, positive samples, i.e., the 
model’s accuracy in identifying a vehicle given that the thermal frame contains a 
vehicle. The high precision value of 0.996 indicates that when the network de-
tects a vehicle, it is highly likely to be an actual vehicle, which minimizes false 
alarms. In contrast, the recall metric represents the proportion of true positive 
samples that the model correctly identifies. In this application, this indicates the 
model’s ability to detect vehicles when they are present in the thermal frame. A 
High recall metric value of 0.999 indicates that the model will be unlikely to miss 
vehicles when they are present, a crucial aspect of the performance of the model 
as the most severe outcome of false negatives is a rear-end collision, whereas the 
most severe outcome of false positives is unnecessary harm reduction actions by 
the operator. Additionally, the F1-score of 0.991 provides a balance between re-
call and precision. With the low number of misclassifications, false positives, or 
false negatives across the test set, all three of these metrics are exemplary, with a 
slight bias towards recall over precision, which is advantageous in this applica-
tion, as false negatives can result in rear-end collisions. 

We analyze the network with test samples that are classified incorrectly to in-
terpret and explain the network performance, addressing what the network has 
learned and/or has failed to learn. Figure 14 depicts two true positive test ther-
mal images, i.e., images that contain a vehicle, but the network predicts them not 
to contain a vehicle, i.e., false negatives. In both test images, the vehicles are lo-
cated at the edge of the frame, and only a part of the trailing vehicles are present 
in the image. The misclassification can be due to two reasons 

• The training dataset does not have a significant number of images, with only 
parts of trailing vehicles visible and labeled as positive. The majority of the 
images have the trailing vehicles fully represented, and located closer to the 
center of the image. Hence, the network was not trained to recognize images 
with parts of trailing vehicles located closer to the edge of an image. This is 
due to the data collection occurring mainly on straight roadways with a clear 
line of sight between the camera and trailing vehicles. 
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• As these kinds of images flow through the multiple convolution layers, the 
output feature maps of each layer could have only identified the edges of an 
image instead of the features of a partial vehicle. 

Figure 15 shows a cause of false positive predictions in low-resolution infra-
red imaging with interfering objects of intense heat signatures. Ideally, the ther-
mal camera is expected to capture the trailing vehicles as having the most in-
tense heat signatures in snowy road conditions. However, Figure 15 has an in-
dustrial gravel plant in the background, which is a significant heat source and 
exudes intense infrared radiation. The red arrow in Figure 15 points to a part of 
the trailing vehicle entering the frame. In our labeling procedure, we have la-
beled images with only slivers of trailing vehicles as the negative class to reduce 
the probability of the network learning random structures as vehicles. However, 
the proximity of the industrial site with intense infrared radiation signature at 
the location where thermal image data was collected has caused edge cases like 
this to exist in our training data and confused the network during training. 

Another false positive sample is shown in Figure 16. In this image, a vehicle 
can be seen clearly by the naked eye. However, it doesn’t contain the test trailing 
vehicle, as the vehicle is a van, is off the road, and is not traveling in the same  

 

 
Figure 14. Images misclassified as not containing a trailing vehicle. 

 

 
Figure 15. Image misclassified as containing a trailing vehicle. 
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direction. Our labeling criteria were to include only trailing vehicles in the positive 
class. Thus, even though the network successfully classified the presence of a ve-
hicle, this prediction did not align with the chosen label. This may be an instance 
of erroneous data labeling; our approach to labeling may need refinement. 

The other false positive sample of note is shown in Figure 17. Here, the trail-
ing vehicle was just over 1000 ft away from the thermal camera, and thus, the 
features of the trailing vehicle are small and difficult to learn and represent in 
the feature maps. As a result, this image was labeled incorrectly as not contain-
ing a trailing vehicle, and therefore, the prediction as a positive class is actually 
correct. This highlights an important issue with data labeling. Since vehicles at 
far distances are represented only by a few pixels, the low resolution, dilated ap-
pearance, and lack of distinguishing color information, such samples can be vi-
sually misinterpreted. Since this is a large bespoke data set that we collected and 
labeled manually, mistakes such as this are possible. 

 

 
Figure 16. Image incorrectly predicted as containing a trailing vehicle. 

 

 
Figure 17. Image incorrectly predicted as containing a trailing vehicle. 
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6.2. Trailing Distance Network 

After training, the test dataset consisting of 1046 thermal images labeled with the 
measured distances was presented to the network for inference. The network 
achieved an MAE of 10.70 ft. with a standard deviation of 14.01 ft. Since the la-
bel and prediction are both non-negative real numbers, the MAE represents the 
average distance in feet that the network prediction varies from the true dis-
tance. An MAE of 10.7 ft with a standard deviation of 14.01 ft can be categorized 
as a highly accurate prediction in the context of the snowplow application. Since 
a snowplow operator is expected to take evasive actions when the trailing vehicle 
is approximately at a distance of 500 ft., an MAE of 10.70 ft. is acceptable for the 
actual trailing distances ranging from 150 to 2300 ft., as shown in Figure 11. 

To analyze further, a violin plot of the distance estimation error of the test 
dataset is presented in Figure 18. In the violin plot, samples are grouped into 
100 ft bins according to their true distance labels. The distribution of the dis-
tance estimation error of each distance bin is illustrated via the thickness and 
distance of lines across the vertical axis. 

From Figure 18, it is clear that the mean prediction error increases as the 
trailing distance of the vehicle is large. Moreover, the deviation of the prediction 
error is also large at greater distances. There are three potential reasons for this 
behavior, all of which likely contribute to the positive correlation between ve-
hicle distance and prediction error magnitude: 

1) As the trailing vehicle distance from the camera is large, its constituent  
 

 
Figure 18. Violin plot of the distance estimation error. 
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pixel area is smaller. Additionally, at far distances, small differences in distance 
correspond to very subtle changes in the pixel area which constitutes the trailing 
vehicle. Since convolution layers degrade pixel information when downsizing 
their feature maps, these subtle distinctions are lost. 

2) As shown in Figure 11, the dataset is heavily skewed towards images at 
short trailing vehicle distances labels, i.e. the bulk of the training samples lie 
within 100 - 800 ft. As a result, the TDN was trained with a few images of the 
trailing vehicle at large distances and thereby has not learned the mapping of 
small pixel areas found at large distances. 

3) Despite our best efforts, the data collection process (see 3.1) is not imper-
vious to measurement error. As the distance between the lead and the trailing 
vehicle increases, especially during large snow events with high moisture and 
atmospheric snow volume, the LoRa communication protocol for exchanging 
GPS data has been observed to lose connection intermittently. Thus, as distance 
increases in adverse weather conditions, the accuracy of the distance labels de-
creases. 

6.3. Implementation 

There are two key issues concerning the practical implementation of the Detec-
tion and Trailing Distance Estimation models on a snowplow: whether the net-
work predictions can generalize to real-time thermal data and engineering the 
system to maintain data integrity. To assess the performance of the models with 
data collected outside of the training and test sets, a field test of the system was 
performed. 

The field test was performed as follows: 
1) On a long flat road; the instruments were mounted facing rearward on a 

passenger vehicle (leader). 
2) At an initial distance of 1000 ft behind the leader, another passenger vehicle 

(follower) was stationary on the road in view of the thermal and RGB cameras. 
3) At 1000 ft, real-time inference was performed on collected thermal images 

containing the follower for both the trained DN and TDN. 
4) The follower approached the leader in increments of 100 ft, measured using 

a handheld laser range finder, and remained stationary at these distances for 
another cycle of collection and inference. 

5) Inferences were collected at 100 ft increments beginning at 1000 ft and 
ending at 100 ft. 

Sample images at 1000, 500, and 100 feet are shown in Figure 19 through 
Figure 21. 

With all field test images containing a vehicle, the Detection Network correct-
ly predicted the presence of a trailing vehicle in all tested thermal samples. In the 
laboratory setup, the detection network was tested with images not having ve-
hicles, and it accurately predicted the lack of a vehicle in images. Figure 22 de-
monstrates the error of the Trailing Distance Network predictions: 
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Figure 19. Thermal and corresponding RGB images of field test at 1000 ft. 

 

 
Figure 20. Thermal and corresponding RGB images of field test at 500 ft. 
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Figure 21. Thermal and corresponding RGb images of field test at 100 ft. 

 

 
Figure 22. Violin plot of distance estimation error with field test data. 
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Figure 22 shows similar results, which align with our analysis of the limita-
tions of monocular distance estimation using pixel area. At close range, the net-
work predictions have low mean error compared with ground truth distance 
measurements. However, as trailing vehicle distance increases, there is a subse-
quent increase in the distance estimation by the TDN, with both mean error and 
error deviation increasing. As mentioned previously, this is likely due to the 
smaller absolute vehicle pixel area at large distances, as well as the smaller diffe-
rential in pixel area between samples at different distances, which are both large 
in magnitude. 

The other practical obstacle in implementing the collision avoidance system in 
real-world settings is mounting the snowplow and maintaining its functionality 
on a snowplow. Due to the large volume of snow displaced by the snowplow 
blade, snowplows tend to accumulate snow build-up on the rear of the plow. 
Additionally, many plows release dirt, salt, or other materials as they operate to 
assist in melting ice on the roads. Thus, the system must have mechanisms in 
place to remove snow accumulation from the instruments and protect them 
from damage and wear from dirt and salt splash. 

7. Conclusions and Future Work 

In this paper, we have detailed the prototype development of an early-collision 
warning system for DOT snow plows. The main sensor of this prototype is an 
infrared camera, which we used to cultivate a data set of thermal images with 
corresponding vehicle distances. A custom thermal image preprocessing se-
quence was developed and envisioned to increase the saliency of key features in 
the thermal images. We first developed a deep classical convolutional neural 
network to perform vehicle detection and identified the issues of overfitting and 
vanishing gradient contributing to low performance. We designed detection and 
trailing distance networks based on the modified ResNet architecture. We dem-
onstrated that the residual connections improve the learning of salient features 
by allowing proper gradient flow during training. We then observed excellent 
test accuracy for the detection model, as well as the rationale for why certain 
samples were misclassified. Finally, we showed promising results for trailing 
distance estimation. Overall, low MAE on the test set indicates a good starting 
point for distance estimation. However, a large variance in distance estimation 
indicates a need for improvement of the trailing distance network. 

As with all practical applications of deep learning, the fundamental limiting 
factors in performance remain the size, quality, and variability of the data set. In 
this setting, the data set appears to be insufficient to train a distance estimation 
model to predict vehicle distance consistently over a large range. We propose 
that the TDN performance can be improved by one or more of the following 
approaches: 

• Large Thermal Image Dataset Creation 
Collecting more data using the same process as in section 0 during future 
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snow events will allow representation of new types of trailing vehicles, a larger 
variety of environmental features, and an improvement of the balance of the da-
ta set with respect to their distance labels. However, driving in heavy snow con-
ditions is costly and dangerous. 

• Augmentation of the Thermal Image Dataset with Synthetic Images 
Research is ongoing into supplementing our training data sets with syntheti-

cally generated data. Using state-of-the-art deep generative models, such as Sty-
leGAN and Latent Diffusion, the existing thermal image set can be used to train 
these models to generate synthetic thermal images which can be used to train 
both Detection and Trailing Distance networks. However, this does not address 
the data imbalance problem, as generative models will only sample from their 
training data distribution. 

• Exploration of Network Architectures for Distance Estimation of Small 
Objects 

Vehicle distance is intrinsically correlated with pixel area, and it is likely that 
continuously downsizing the feature maps due to successive convolution layers 
with stride is degrading information regarding pixel area in the CNN architec-
ture used for the TDN. It is conceivable that an architecture that reduces the 
feature maps in some other way can be leveraged to improve regression at large 
distances. While small object detection is an open research question, there are at 
least two possible directions that could be explored. 

- Wide Convolutional Architecture: 
A network with a large number of feature maps in the initial layer and a re-

duced number of sequential convolution layers, thus wide rather than deep, re-
duces the deleterious effect of subsequent downsizing operations on pixel area. 
However, wide and shallow networks are often not very expressive due to their 
lack of composition. 

- Object Detection: 
The second approach would be to use an object detection approach, which 

would localize vehicles and predict a bounding box around the pixels corres-
ponding to the trailing vehicle. The bounding box dimensions could ostensibly 
be used to assist in estimating the trailing distance. There are many disparate 
approaches to small object detection [21], although none stand out as a clearly 
superior proposition with a low-resolution thermal data set. This approach 
would also necessitate more detailed annotations to the training set. 
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Appendix. Architecture of Classical CNN Model 
A1. Eighteen Convolution Layers with 2D Convolution and ReLU Activation 

 Six max pooling layers at every third Convolution layer, with a stride of 2, downsizing the feature maps by half. 
 With the preprocessed thermal image size of 512 × 640 pixels as input to the first Convolution layer, results in a 

feature map of size (batch = 32, channels = 8, height = 2, width = 2) at the last convolution layer. 
 A fully connected layer with thirty-two inputs and two outputs. 
 A softmax layer with two inputs and two outputs. 

A2. Performance of Classical CNN Model without Regularization 

 
Figure A1. Training and validation loss of the classical CNN model without regularization. 

 

 
Figure A2.Training and validation accuracy of the classical CNN model without regularization. 
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Figure A3. Confusion matrix of the classical CNN Model without regularization. 

A3. Performance of Classical CNN Model with Regularization 

 
Figure A4. Training and validation loss of the classical CNN model with regularization. 
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Figure A5. Training and validation accuracy of the classical CNN model with regularization. 

 

 
Figure A6. Confusion matrix of the classical CNN model with regularization. 
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