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Abstract 
In this paper, by taking into account the rating in a new concept of economic 
space, we propose a model of the dynamics of an economic particle, a model 
of price process, an extension of risk measures, and a new approach of option 
pricing with associated hedging portfolio. 
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1. Introduction 

Risk is inherent to all human activities. In all times, the matter is how to avoid it 
or how to reduce its impact. In Finance, risk can be classified in two groups: 
quantifiable risks and unquantifiable risks. Main quantifiable risks are market 
risk and credit risk. For unquantifiable risks, we can mention, among others, 
operational risk and legal risk. In this paper, we focus on quantifiable risks. For 
these risks, many approaches of modeling exist in literature. For these risks, 
many approaches of modeling exist in literature. Market risks models can be 
classified in two main groups: dispersion risk measures and capital requirement 
risk measures. For the first group, main contributors are Markowitz in 1952 [1], 
Sharpe in 1963 [2], Konno and Yamazaki in 1991 [3] and Hamza and Janssen in 
1995 [4]. Capital requirement risk measures have been studied amongst others 
by Artzner et al. in 1999 [5], Föllmer and Shied in 2002 [6], Rockafellar et al. in 
2002 [7] and Detlefsen and Scandalo in 2006 [8]. In the field of credit risk mod-
els, there are two main approaches. Structural models in which the default is an 
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endogenous process linked to the value of firm have been studied amongst oth-
ers by Merton in 1974 [9], Black and Cox in 1976 [10], Longstaff and Schwartz 
(1995) [11] and Hsu et al. (2004) [12]. Reduced form models where the default 
can occur at any moment as it is defined as the first jump of some stochastic 
process have been studied amongst others by Jarrow et al. (1992) [13], Jarrow et 
al. (1995) [14] and Duffie et al. in 1999 [15]. After the step of modeling, the 
problem is to control or to mitigate the impact of risk using appropriate finan-
cial instruments. The interested reader can consult [16] to have more informa-
tion on these instruments. In this paper, we focus on market risk mitigation. 
Let’s mention that portfolio selection problem constitutes an important aspect of 
market risk mitigation and is intensively studied. Recent developments in this 
field have been made by Bo et al. (2015) [17] and Lin et al. (2017) [18]. To the 
best of our knowledge, there is up to now no work on market risk models and 
option pricing problem which takes explicitly into account the rating of the un-
derlying’s issuer. For instance, if the same asset is issued by two economic agents 
with different ratings, it is not fair to consider that these assets must have the 
same behavior, because the way each economic agent manages its firm should 
have significant impact on the evolution of its asset price’s process. The rating of 
an economic agent acts as a measure of its health. It expresses the future capacity 
to respect its engagements. It was firstly used in 1860 by Henry Varnum Poor in 
USA to measure the quality of debts issued by railways companies. First agencies 
of rating appear in 1909 for Moody’s and 1910 for Standard Statistics and Poor’s. 
In 1941, Standard Statistic merges with Poor’s to form Standard and Poor’s. For 
more information about rating, we refer to the paper of Lawrence [19]. Ratings 
are available for banks, states, municipalities, corporations, investment funds, 
pension funds and insurance companies. These ratings act as decision aid for 
investors who have excess funds needed by these entities. A rating is a string of 
letters, for example those given by Standard and Poor’s have the forms AAA, 
AA, A and BBB for investment grades; BB, B and CCC which are speculative 
grades for entities with low capacity of development in the future; CC and C 
which are ratings for entities near to default and D for entities in default. The 
question is how to incorporate the rating explicitly in the price’s process? This 
notion is not new in literature. For instance, in the model of credit risk (Credit-
Metrics) built by Bhatia et al. (1997) [20] for the bank J.P Morgan, the authors 
took into account the rating of the issuer of bonds in the valuation of its forward 
price. Hackbarth et al. (2004) [21] proposed a model of credit risk where the de-
fault threshold is rating dependent. However, in these approaches, the matrix of 
transition giving the probability of moving from one rating to another is cali-
brated most often for one year. This means that the possibility of instantaneous 
change of rating is excluded. Another drawback is that they are used only for 
debts instruments. Shapiro (2015) [22] and Grzegorz (2016) [23] used the notion 
of risk profile and the quality of credit, but not in the direction of rating ap-
proach. Victor Olkhov (2016) [24] [25] proposed a model of asset price’s process 
incorporating effectively the issuer’s rating. He supposed that rating methodolo-
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gies can be extended in order to take values in  . He also supposed that if an 
economic participant is subject to n risks, its rating should be an n -dimensional 
vector. He so defined the notion of economic agent and economic space with 
dimension the number of main risks present in the market. In his paper, he as-
sumed that the evolution of an economic agent or economic particle in econom-
ic space is modeled by a Brownian motion. In this paper, we also assume as Vic-
tor Olkhov that the rating methodologies can be extended in such a way that 
they take their value in  . Once this is done, we suppose that 
• Each financial variable issued by an economic agent possesses a rating which 

is the rating of the issuer in the corresponding market. An economic agent is 
an entity (individual, firm, local governments or state) which has something 
to exchange in the market. Financial variables are bonds, obligations, goods 
and services, loans, debts or even work. For example a firm producing two 
types of goods 1G  and 2G  and issuing an obligation B possesses three 
rating. For a given good, rating is related on the degree of fulfilment of stan-
dard required for the class of product this good belongs to. For debt instru-
ments, rating is related to the degree of creditworthiness of the issuer. 

• Rating assumes values in ( ) { }0,∞ ∞  with 0 as the best one, acknowledged 
in the present rating setting as AAA. 

• The axis ( )0,∞  is oriented in the sense of poorest quality of the rating. 
• If an economic agent is absent in a market of a specific financial variable, its 

rating for this variable is ∞ . 
Since the number of different financial variables in the market is infinite, the 

dimension of economic space is thus infinite and for a given economic agent, its 
coordinates possess just a finite number of rating different from ∞ . In the new 
setting adopted, our first contribution in this paper is the proposition of a new 
approach of economic particle in economic space combined with a process 
modeling its dynamics. Our second contribution is to propose a new model of 
price process taking into account the rating. In our third contribution, we pro-
pose new measures of risk which are extensions of capital requirement risk 
measures, deviation risk measures, quantile-based risk measures and utili-
ty-based-risk measures incorporating the rating. The fourth contribution is the 
derivation of a PDE associated to European call option pricing based on a single 
asset that incorporates the rating. Using the Feynman-Kac formula, we obtain a 
closed form solution and we also deduce the hedging portfolio. Our approach of 
option pricing differs from which proposed by Black and Scholes (1973) in their 
seminal work [26] by the fact that the payoff is not a function of the underlying’s 
price only, but also of the underlying’s rating. 

The remainder of the paper is organized as follows. In section 2, we present 
the notion of economic space and dynamics of economic particle. In Section 3, 
given an asset, we propose a model of price process that incorporates its rating. 
In Section 4, by taking into account the notion of rating, we propose extensions 
of capital requirement risk measures, deviation risk measures, quantile-based 
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risk measures and utility-based-risk measures. In Section 5, we propose a pricing 
formula of European call option incorporating the rating of the underlying as 
well as the hedging portfolio associated. In Section 6, we conclude the paper and 
give perspectives pertaining to this work. 

2. On Economic Space and Dynamics  
of Economic Agent 

2.1. On the Economic Space 

An economic agent is an entity (individual, firm, local government or state) 
which has something to exchange in the market (factors of production or goods 
and services). It is also the basic element of microeconomics studies. Market is 
understood here as a place (physical or virtual) where trade are made or where 
there is a confrontation between supply and demand. Up to 2016, the notion of 
space as defined in Physics was absent in Economy. Victor Olkhov, (2016) [24] 
after the assumption that rating methodologies can be extended in such a way 
that rating can assume values in  , defined for the first time an economic space 
whose dimension is the number of main risks assessed in the market. The author 
claimed that an economic agent also called economic particle moves in econom-
ic space by following a drifted Brownian motion. In this paper, we also assume 
as Victor Olkhov [24] that the rating methodologies can be extended in such a 
way that they take their values in  . Furthermore, we claim that each financial 
variable issued by an economic agent possesses a rating which is the rating of the 
issuer in the corresponding market. Financial variables are bonds, obligations, 
goods and services, loans, debts or even work. For example a firm producing two 
types of goods 1G  and 2G  and issuing an obligation B possesses three rating. 
For a given good, rating is related on the degree of fulfilment of standard re-
quired for the class of product this good belongs to. For debt instruments, rating 
is related to the degree of creditworthiness of the issuer. For contracts and de-
rivatives, the rating is that of the underlying’s issuer in the corresponding un-
derlying’s market. Thus the number of ratings (coordinates) for an economic 
particle depends on the number of financial variables issued. Since the number 
of different financial variables existing in the market is infinite, the dimension of 
economic space is infinite. Thus every economic particle moves just in the sub-
space of the entire economic space. The dimension of this subspace is equal to 
the number of financial variables issued. We will set the number 0 as the best 
rating, acknowledged in the present rating setting as AAA. That is in our setting 
the range of rating is ( ) { }0,∞ ∞  and the axis is oriented in the sense of poor-
est quality of the given financial variable. If it is debt instrument, great ratings 
mean bad quality of issuer’s creditworthiness. But if it is a good or a service, 
great rating traduce the weakness of the degree of fulfilment to standard re-
quired for the class of products to which belongs this good or service. If an eco-
nomic agent does’nt issue a given financial variable, then its rating for this fi-
nancial variable is ∞ . Otherwise, it is a positive real number. 
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2.2. The Dynamics of Economic Particle in the Economic Space 

In this paper, we assume that economic particles move randomly in the eco-
nomic space. That is, for a given economic particle, its ratings change randomly. 

If an economic particle is present in n ( n∈ ) different markets, its rating at 
time t is a vector 

( ) ( )1 2, , , , , , ,n
t t tX t X X X= ∞ ∞ 

 

where for each i ( 1, ,i n=  ), 

( )1, ,i i iq
t t tX X X=   

with { }\ 0q∈  the number of financial variables issued in a specific market. 
For example, a given firm can issue more than one type of debt instruments. 
From now on, we write ( ) ( )1 2, , , n

t t tX t X X X=  . These ratings are influenced 
by quantitative and qualitative elements. Quantitative elements are related to fi-
nancial characteristics of the issuer and qualitative ones are related to the stan-
dard in vigor in the market of a specific financial variable. Regulations and stan-
dards are dynamic. In the sector of bank industry, there is Basel Committee on 
Banking Supervision. For certain goods, there are norms (ISO9001 for example). 
We assume that these regulations and standards can be extended to all financial 
variables. The set of regulations or standards required at time t for a given finan-
cial variable is ( )eR t . These regulations and standards are exogenous to eco-
nomic agents, that is regulators do not have something to exchange in the mar-
ket and do not intervene directly in market processes. For a given financial vari-
able we suppose that amongst the objectives of its issuer (economic particle), 
there is the improvement of its rating in the corresponding market. 

We make the following assumptions about the variation t t t tX X X+∆∆ = −  of 
rating between t and t t+ ∆  

1) There is a depreciation of the rating due, amongst others, to the evolution 
of regulations and standards and to the degradation of production’s factors. 
Since regulations and standards are exogenous, this depreciation is measured by 
the quantity ( )t tα ∆ , with ( )tα  a real valued integrable function assuming 
positive values. 

2) The internal effort to ameliorate the rating is proportional to the current 
one. It is measured by the term ( ) tt X tλ− ∆ , with ( )tλ  a real valued integra-
ble function assuming positive values. 

3) The movement of the issuer in economic space is subject to randomness 
measured by the term ( )( ), t t t tf t X B B+∆ −  where ( ) 0t t

B
≥

 is the standard 
Brownian motion and f is a function on 2

+ . 
Considering the above assumptions, we have 

( ) ( )( ) ( )( ), .t t t t t tX t t X t f t X B Bα λ +∆∆ = − ∆ + −            (1) 

Letting 0t∆ → , we get 

( ) ( )( ) ( )d d , d .t t t tX t t X t f t X Bα λ= − +               (2) 
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Remark 2.1. 1) For each financial variable existing in the market, its aggre-
gated value ( )F t  in the entire economy at time t is 

( ) ( )
0

, d ,F t F t x x
∞

= ∫  
where ( ),F t x  is the total value issued by economic particles with rating x at 
time t. 

2) In the case of portfolio P containing n ( { }\ 0n∈ ) financial variables 

1, , nA A  with issuers’ ratings 1, , nX X  respectively, the rating PX  is the 
n-dimensional vector ( )1, , nX X . 

3) For financial instruments such as forwards, futures and options, the rating 
is that of the underlying issuer. 

3. A Model of Price Process Taking into  
Account the Rating of the Issuer 

3.1. Motivations 

In the pioneer work of Louis Bachelier in 1900 [27], he proposed to model 
price process of a given asset as a Brownian motion, but his model has a 
drawback because price can assume negative values. Samuelson [28] proposed 
a model where the logarithm of price is a Brownian motion and by this way 
price can only assume positive values, which is more realistic. It has been 
shown by Mandelbrot in 1966 [29] that the hypothesis of log-normality of 
price does not fit with experimental data. Other classes of model have been 
proposed like the Constant Elasticity of Variance Model and models incorpo-
rating jumps [30]. Due to the tractability, in the majority of problems in 
finance, the log-normal approach is used as a first approximation of price 
process dynamics. The common feature of all these models is that the rating of 
the asset’s issuer is not taking into account. This is not too realistic because for 
a given financial variable, the specific risk of its issuer is not taken into account 
in the price’s process. This omission can create important damage in the fu-
ture. An investor who enters in a contract with one of the issuers can suffer a 
lost due to its rating deterioration. Victor Olkhov [24] proposed a model of 
asset’s price process that incorporates the rating of the issuer. In this paper, we 
propose a model in which the negative impact of bad (high) rating on the asset 
price is taken into account. 

3.2. The Model 

We are given a triplet [ ]( )0,, ,tt T∈Ω =     modeling the randomness in the 
market. Ω  is the set of all possible states of the market, T is a positive real 
number,   is a σ-algebra of subsets of Ω , ( ) [ ]0,t t T∈

  is a filtration and   is 
the historical probability. For a given financial variable, with price tS  at time t, 
Black and Scholes (1973) [26] assumed that tS  follows a log-normal process. If 
the market is driven by one source of randomness modeled by a standard Brow-
nian motion ( ) [ ]0,t t T

W
∈

, we have 
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21
2

0e
tt W

tS S
µ σ σ − + 
 =                        (3) 

when there is no dividend payment. Here µ , σ  and 0S  are positive real 
numbers and express respectively the instantaneous rate of return, the volatility 
and the price at time zero. This model of price doesn’t take into account the rat-
ing of its issuer. Choy et al. in 2006 [31] underline in their work the negative 
impact of bad rating on the price. We propose to improve the relation (3) in the 
following way 

21
2

0e
t tt W kX

tS S
µ σ σ − + − 
 =                      (4) 

where k is positive real number and tX  is the rating of the issuer. From rela-
tion (2), we have 

( ) ( )( ) ( )d d , dt t t tX t t X t f t X Bα λ= − +                (5) 

and if Brownian motions ( ) [ ]0,t t T
W

∈
 and ( ) [ ]0,t t T

B
∈

 are independent, relation 
(4) becomes 

( ) ( )( ) ( )

( )

2 21d , d
2

d , d .

t t t t

t t t t t

S S k t t X k f t X t

S W kf t X S B

µ α λ

σ

 = − − + 
 

+ −
          (6) 

3.3. Graphical Illustration 

In Figure 1, we illustrate the evolutions of rating and those of the same asset 
where one is adjusted to rating and the other is not. We can observe that the 
evolutions can be truly different. At every time t, the ratio of these prices is pro-
portional to e tkX . This emphasizes the fact that neglecting the rating in the 
process of price can create a disagreement. 

We have the following important lemma 
Lemma 3.1. For each finite positive real number T and a fixed t T< , the rating  

 

 

Figure 1. Prices evolution with ( ), t tf t X Xγ=  and corresponding rating evolution where for all t, ( ) 0.07tα = , ( ) 0.2tγ = , 

( ) 0.08tλ = , 0 100S = , 0.1σ = , 0.05µ = , 0 0x =  and 0.7k = . 
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tX  for a given issuer of a financial variable is known. Furthermore, we have the 
relation lim 0

t
tX

S
→∞

=  almost surely. 
To prove Lemma 3.1, we need the following Lemma known as reflection prin-

ciple of the Brownian motion. 
Lemma 3.2. Let ( ) [ ]0,t t T

W
∈

 be a standard Brownian motion and w a positive 
real number. Then 

sup .t t
t T

W w W w
≤

   ≥ = ≥   
 

 
Proof. Denote by wT  the first time for tW  to reach the level w. Then 

[ ] [ ] [ ]sup , , .t w w T w T
t T

W w T T T T W w T T W w
≤

 ≥ = ≤ = ≤ < + ≤ >  
   

 

From Markov and symmetric properties of Brownian motion, we deduce that 
the events { },w TT T W w≤ <  and { },w TT T W w≤ >  have the same probability. 
This implies that 

[ ]sup 2 , .t w T
t T

W w T T W w
≤

 ≥ = ≤ >  
 

 
From the inclusion of events { } { }T wW w T T> ⊂ ≤ , we deduce that 

[ ]sup 2 .t T t
t T

W w W w W w
≤

   ≥ = > = ≥   
                 

We now give the proof of Lemma 3.1. 
Proof. From relation (4) and Lemma 3.1, we have  

[ ]0, , 5 5tt T T W T∀ ∈ − ≤ ≤  almost surely and we can deduce the relation 

( ) ( )2 2
0 0

1 15 5
2 2

0 0e e
t tt k X X T t k X X T

tS S S
µ σ µ σ   − − − − − − − +   
   ≤ ≤  almost surely.   (7) 

From squeeze Theorem, we obtain the result.                          
Remark 3.1. From Lemma 3.1 we deduce that, if the issuer’s rating of a finan-

cial variable becomes too large or deteriorates considerably, this financial varia-
ble is worthless. No economic agent is willing to buy it. 

Up to now in risk measures treatment, to the best of our knowledge, there ex-
ists no research work that takes explicitly into account the rating of the issuer of 
a financial variable. This omission of the specific uncertainty coming from the 
issuer can entails undervaluation of the actual degree of riskiness associated to a 
financial instrument and consequently can explain the fact that all risk measures 
proposed up to now turn out to be insufficient to protect the investors in period 
of financial crisis against excessive losses. The approach that we propose in the 
next section, incorporate the rating of the issuer in the valuation of the degree of 
riskiness. The properties of known risk measures have been preserved in our ap-
proach. This can allow to have another approach of portfolio allocation problem. 

4. An Extension of Risk Measures 

In this section we propose an extension of risk measure in static case. Trading is 
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made at time 0t =  and liquidation at time T. Firstly, let’s define a penalized (or 
adjusted-to-rating) future wealth or future payoff of a financial instrument. For 
a given financial variable issued by an economic particle with initial rating 0X  
in the corresponding market. We denote by ( )Y X  its adjusted-to-rating future 
payoff; where X is its random future rating in the corresponding market. We al-
so denote by Y the future payoff of the same financial variable if it was issued by 
an economic particle with rating 0. If tS  is the price at time t of this financial 
variable, from relation (4) we have *e tkX

t tS S−= , where *
tS  is the price of the 

same financial variable if it was issued by an economic particle with rating 0. We 
have the relation 

( ) ( ) ( )0
01 e 1 ,Tk X XR R− −+ = +                    (8) 

where 0R  and R are respectively the total return of investment on the financial 
variable issued by economic particle with rating 0 and initial rating 0X . By tak-
ing the logarithm in relation (8), we have 

( ) ( ) ( )0 0ln 1 ln 1 .TR R k X X + = + − −                   (9) 

The relation (9) agree with works of Ee in 2008 [32], Jorion and Zhang in 2007 
[33], Linciano in 2004 [34] and Ditchev and Piotroski in 2001 [35]. These au-
thors emphasize on the negative impact of bad rating on returns. To obtain 
( )Y X , the idea is to penalize the future wealth Y. The penalization depends on 

the sign of 0X X− , by subtracting a quantity { } { }( ) ( )
0 01 2 0X X X X p X Xχ χ≤ >+ −   

from Y, where p is an increasing function with ( )0 0p = , χ  is the characteris-
tic function and 1 2,   are positive real number such that 1 2<   and reflect-
ing the different impact of rating downgrade and rating upgrade as stated by 
Choy et al in 2006 [31]. 

In this way, the adjusted-to-rating future payoff is less than Y if 0X X>  and 
greater than Y if 0X X< . In the extreme case where X is too large, the future 
payoff can be equal to zero an even less than zero. 

Definition 4.1. The adjusted-to-rating future payoff of a financial variable is-
sued by an economic particle with initial rating 0X  in the corresponding mar-
ket, is given by the relation 

( ) { } { }( ) ( )
0 01 2 0X X X XY X Y p X Xχ χ≤ >= − + −             (10) 

where 1, ,p χ   and 2  are defined as above. 
Remark 4.1. The adjusted-to-rating future payoff is equal to Y if 0X X= . 

This can be interpreted by the fact that in this case, there is no uncertainty com-
ing from the rating of the issuer. We recover by this way the case where the rat-
ing is not taken into account. For the investor, the difference is just on the 
amount invested at the beginning of trade. 

4.1. Scenario-Based Risk Measures 

Before giving an extension of risk measure in scenario-based risk measures, let’s 
recall the definition of coherent risk measure given by Artzner et al. [5]. 
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A map ( ): Lρ ∞ Ω →   is a coherent risk measure if it satisfies the following 
axioms 
• Subadditivity: ( ) ( ) ( ) ( ), ,X Y X Y X Y Lρ ρ ρ ∞+ ≤ + ∀ ∈ Ω . 
• Positive homogeneity: if 0λ ≥ , then ( ) ( )X Xρ λ λρ= . 
• Monotonicity: if X Y≤ , then ( ) ( )X Yρ ρ≥ . 
• Translation invariance: if m∈ , then ( ) ( )X m X mρ ρ+ = − . 

Here ( )L∞ Ω  is the set of essentially bounded real value random variables 
defined on Ω . Given a financial variable issued by an economic particle with 
initial rating 0X , we defined the associated adjusted-to-rating future wealth 
( )Y X  by the relation (10). In the case of capital requirement risk measures or 

scenario-based risk measures, a good candidate for  

{ } { }( ) ( )
0 01 2 0>X X X X p X Xχ χ≤ + −   is a premium to be put aside or invested in a 

safe way together with the given financial variable in order to rule out possible 
loss coming from the risk bearing by the rating of the issuer. At the end, if there 
is an improvement in the rating of the issuer, this amount will be an additional 
gain, otherwise it will be a buffer reducing potential losses. Given a scena-
rio-based risk measure ρ  and a financial variable with adjusted-to-rating fu-
ture wealth ( )Y X , we defined the level of riskiness of ( )Y X  by applying ρ  
to (10). 

Remark 4.2. 1) ( )( ) ( )Y X Yρ ρ>  if almost surely 0X X> . This means that 
bad ratings have positive impact on the level of riskiness. 

2) ( )( ) ( )Y X Yρ ρ<  if almost surely 0X X< . This means that good ratings 
have negative impact on the level of riskiness. 

3) ( )( ) ( )Y X Yρ ρ=  if almost surely 0X X= . 
Definition 4.2. For a risk measure ρ , the acceptance set associated is de-

fined by 

( ) ( ){ }| 0 .Y L Yρ∞= ∈ Ω ≤
 

Remark 4.3. The acceptability can depend on supervisors like: 
1) The regulator who takes into account the unfavorable states when allowing 

a risky position which may call for the resources of the government, for example 
as a guarantor of last resort. 

2) The investment manager who gives his portfolio to a trader. 
3) The exchange’s clearing firm that has to secure transactions between all 

parties. 
Theorem 4.1. Given a risk measure and its acceptance set  , let ( )Y X  be 

the adjusted-to-rating future wealth associated to a financial variable issued by 
an economic particle with initial rating 0X  and Y the future wealth if it is is-
sued by an economic particle with rating 0. Let’s suppose that Y ∈ . 

1) If 0X X≤  almost surely, then ( )Y X ∈ . 
2) If 0X X>  almost surely, then ( )Y X ∈  if and only if  

( )2 0Y p X X− − ∈  . 
Proof. Since risk measure as defined in [5] is static, the premium  
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{ } { }( ) ( )
0 01 2 0X X X X p X Xχ χ≤ >+ −   to be put aside or invested in a safe way to-

gether with the given financial variable in order to rule out possible loss coming 
from the risk bearing by the rating of the issuer, is bounded. In fact this amount 
cannot exceed the initial investment Y if the financial variable was issued by an 
economic agent rated 0 (AAA). That is if ( )Y L∞∈ Ω , then ( ) ( )Y X L∞∈ Ω  
too. 

1) If 0X X≤  almost surely, then from the definitions of the function p and 
( )Y X , we have 

( ) ( )1 0 .Y X Y p X X Y= − − ≥  
Using the monotonicity of ρ , we conclude that ( )( ) ( ) 0Y X Yρ ρ≤ ≤ . 
2) If 0X X>  almost surely, then from the definitions of p and ( )Y X , we 

have 

( ) ( )2 0Y X Y p X X= − −  
and the conclusion follows.                                           

Theorem 4.2. The properties of ρ , namely subadditivity, positivity, mono-
tonicity, translation invariance (and convexity if applicable) are preserved. 

Proof. It is obvious.                                               
Let’s now talk about representation theorem. For coherent risk measures, 

Freddy Delbaen [36] proved that under mild continuity assumptions, they can 
be represented as worst expected loss with respect to a given set of probability 
models. In our setting, we have the following representation result.          

Theorem 4.3. Let ( ): Lρ ∞ Ω →   be a coherent risk measure. There exists a 
closed convex set   of P-absolutely continuous probability measures such that 

( )( ) { } { }( ) ( ) ( )
0 01 2 0sup , .X X X X

Q
Y X Y p X X Y Lρ χ χ ∞

≤ >
∈

 = − + + − ∀ ∈ Ω 


   

QE  is the expectation under Q. This characterization generalizes the earliest 
one given by Artzner et al. [5] in the case of finite sample spaces. 

Proof. Replacing X by ( )Y X  in [36], Theorem 2, we obtain the expected re-
sult. 

The law invariance property is also preserved because the motion of an eco-
nomic particle in economic space follows an Ornstein-Ulhenbeck process with 
specific characteristics known at every time. 

The definition we gave above is for static risk measures. It doesn’t take into 
account additional information that can be granted during the period of trading. 
Evaluation is done only one time; it’s the reason why they are also called single 
period risk assessment. Cvitanić and Karatzas [37] proposed an approach of 
multi-period risk assessment that follows the first one proposed by Hakansson 
[38] as an improvement of Harry Markowitz’s model. Other approaches were 
provided by several authors such as Detlefsen and Scandalo [8], Föllmer and 
Penner [39] and Bion-Nadal Jocelyne [40]. These authors expressed risk as capi-
tal requirement. Detlefsen and Scandalo [8] proposed a suitable way to assess 
periodically the riskiness of a given financial variable incorporating available ad-
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ditional information. They defined it as conditional risk measure and they pro-
vided a robust representation of this class of risk measures under the assump-
tions of continuity from above. A dynamic risk measure is a family of condition-
al risk measures. Given a sub-σ-algebra   of   modeling the available addi-
tional information, let’s define the subspace 

( ){ }| is -measurable .L Y L Y∞ ∞= ∈ Ω 
 

In their paper, Detlefsen and Scandalo [8] defined a conditional convex risk 
measure as follows. A function ( ): L Lρ ∞ ∞Ω →   is a conditional convex risk 
measure if it satisfies the following relations: 

1) Translation invariance. For any ( )X L∞∈ Ω  and any Z in L∞ , 

( ) ( ) .X Z X Zρ ρ+ = −  

2) Monotonicity. For any X and Y in ( )L∞ Ω : 

( ) ( ).X Y X Yρ ρ≤ ⇒ ≥  
3) Conditional convexity. For any X and Y in ( )L∞ Ω  and Λ  in L∞  with 

0 1≤ Λ ≤  

( )( ) ( ) ( ) ( )1 1 .X Y X Yρ ρ ρΛ + − Λ ≤ Λ + −Λ
 

4) ( )0 0ρ = . 
We obtain the conditional measure of risk adjusted-to-rating by applying ρ  

to ( )Y X . In our setting, the representation provided by Detlefsen and Scandalo 
[8] is expressed as follows. 

Theorem 4.4. Let ( ): L Lρ ∞ ∞Ω →   be a conditional convex risk measure 
which admits a dual representation. When ρ  is applied to penalized future 
wealth, it remains representable and 

( )( ) { } { }( ) ( ) ( ){ }0 01 2 0ess.sup | ,Q Q X X X XY X E Y p X X Qρ χ χ α∈ ≤ >
 = − − + − − 

  
 

where { }| is absolutly continuous with respect to and inQ Q P Q P= =  , 
α  is a (random) penalty function. 

Proof. Replacing X by ( )Y X  in the proof given by Detlefsen and Scandalo 
[8], Theorem 1, the expected result is obtained.                          

4.2. Deviation Risk Measures 

In the category of deviation risk measures we can cite, amongst others, variance 
and standard deviation of the return introduced by Markowitz [1] and the com-
bination of semi-variance of return introduced by Hamza and Janssen [4]. In the 
case of deviation risk measure, p can be defined as follows 

1) If 0X X=  almost surely, ( )0 0p X X− =  almost surely. It means that 
there is no risk of loss coming from the rating of the issuer. 

2) If 0X X≠  almost surely, then { } { }( ) ( )
0 01 2 0X X X X p X Xχ χ≤ >+ −   is the 

random potential loss or gain on return which can be granted due to the rating’s 
variation of the issuer. 
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If ρ  is a given deviation risk measure, the idea here is the same as before, to 
apply ρ  to adjusted-to-rating future return. 

4.3. Quantile-Based Risk Measures 

In this class of risk measures, we are concerned with the distribution of future 
losses. Given a financial variable, issued by an economic particle with initial rat-
ing 0X , its adjusted-to-rating future loss ( )Y X  is given by the relation 

( ) { } { }( ) ( )
0 01 2 0 .X X X XY X Y p X Xχ χ≤ >= − + − 

 

Here { } { }( ) ( )
0 01 2 0X X X X p X Xχ χ≤ >+ −   is the potential loss or gain coming 

from the change in the rating of the issuer. Quantile-based risk measures include 
Value at Risk (VaR), expected shortfall (ES), tail conditional expectation (TCE) 
and conditional value at risk (CVaR). In the existing literature, these risk meas-
ures don’t take explicitly into account the rating of the issuer. Our idea here is 
also to apply each of these risk measures to adjusted-to-rating future loss. This 
allows to incorporate the rating of the issuer in the assessment of the degree of 
riskiness of the issued financial instrument. 

The example of VaR stands as follows. Given a financial instrument issued by 
an economic agent with initial rating 0X , by applying the VaR on the ad-
justed-to-rating future loss ( )Y X , we obtain the relation 

( )( ) { } { }( ) ( )( ) ( ) ( )
0 0

1
1 2 0 ,X X X X Y XVaR Y X VaR Y p X X Fβ β χ χ β−

≤ >= − + − = 
 

where ( )0,1β ∈  is the degree of confidence and ( )Y XF  is the cumulative dis-
tribution function of ( )Y X . 

4.4. Utility-Based Risk Measures 

In this category of risk measures, used mainly in the insurance industry, p has 
the same interpretation as in scenario-based risk measures. Namely p is a pre-
mium to be put aside or invested in a safe way together with the given financial 
instrument in order to rule out possible loss coming from the adverse change in 
the rating of the issuer. At the end of period, if there is an improvement in the 
rating of the issuer, this amount will be an additional gain. Otherwise it will be a 
buffer reducing potential losses. The idea here is also to apply to ad-
justed-to-rating future wealth the utility function of the regulator. 

For example, given a financial variable issued by an economic agent with ini-
tial rating 0X , its adjusted-to-rating future payoff ( )Y X  is defined by 

( ) { } { }( ) ( )
0 01 2 0 .X X X XY X Y p X Xχ χ≤ >= − + − 

 

If the utility function of regulators is in the form ( ) e yu y λ−= − , where λ  is 
the degree of risk aversion, then the measure of risk obtained is 

( )( ) { } { }( ) ( ) ( )1 2 00 01 ln e ln e .X X X X p X X YY X E E
λ χ χ λρ

λ
≤ >+ − −     = +         

 
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5. European Option Pricing in Economic Space 

In Section 2, we introduced the notion of economic space and economic particle. 
In Section 3, we proposed a model of price process taken into account the rating 
of the underlying issuer. In what follows, we propose a new approach of Euro-
pean option pricing in economic space. An option is a contract in which the 
writer of the option grants to the buyer of the option the right, but not the obli-
gation, to purchase from or sell to the writer something at a specified price 
within a specified period of time (or at a specified date). The writer, also referred 
to as the seller, grants the right to the buyer in exchange for a certain sum of 
money which is called the option price or option premium. The price at which 
the asset may be bought or sold is called the exercise price or strike price. The 
date after which an option is void is called the expiration date. When an option 
grants the buyer the right to purchase the designed instrument from the seller, it 
is referred to as a call option, or call. When the option buyer has the right to sell 
the designed instrument to the writer, the option is called a put option, or put. 
Buying calls or selling puts allows the investor to gain if the price of the under-
lying asset rises. Selling calls or buying puts allows the investor to gain if the 
price of the underlying asset falls. An option is also categorized according to 
when the option buyer may exercise the option. The option that may be exer-
cised at any time before (including) the expiration date, is referred to as Ameri-
can option whereas the option that may be exercised only at the expiration date 
is called European option. The formula proposed by Black and Scholes [26] as 
the price or premium of an European call (or put) didn’t take into account the 
rating of the issuer of the underlying asset. To the traditional characteristics of 
an option, we add the exercised rating κ  that determines the desired quality of 
the underlying at expiration date. In the case of exercise of the option, the seller 
must buy or sell to the buyer the underlying financial variable having κ  for the 
specified price K. Hence, for a given financial variable issued by a given eco-
nomic agent, the option contract should specify the strike, the period or expira-
tion date and the exercise rating. At the maturity, there are four possibilities: 
• The quality of the underlying (rating of the issuer) can deteriorate in such a 

way that even its price is below the strike. 
• The quality can be improved, but the underlying’s price is less than the strike. 
• The quality can be deteriorated but the underlying’s price is greater than the 

strike. 
• The quality can be improved and the underlying’s price is greater than the 

strike. 

5.1. An Extension of the Black and Scholes’ Equation 

The Black Scholes and Merton’s (BSM) equation is one of the most famous equ-
ation in the field of mathematical finance. Its solution which expresses the price 
of an European option is on the basis of the lightning development of derivatives 
market and insurance premium. It permitted to develop the first model of credit 
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risk by Merton [9]; namely the first structural model of credit risk. But this work 
didn’t take into account the rating of the issuer of the underlying asset. To derive 
the Black Scholes and Merton’s PDE for an European option in economic space, 
we make the following assumptions 

1) Trading is made on a fixed period of time T. 
2) There is no restriction on selling and buying stocks. 
3) There is no dividends, frictions and transactions costs. 
4) There is no arbitrage opportunity. 
5) There exists a risk free savings account (in a bank rated AAA) with con-

stant interest rate r. 
6) The option is written on a single financial variable. 
Let tS  and tX  be the price and rating of the underlying respectively at time 

t. In the original Black Scholes model a risk free self financing portfolio is con-
structed by using the underlying asset and a derivative which is used to hedge 
the underlying asset. In the present case, due to the existence of additional risk, 
namely the risk coming from the deterioration of the rating of the underlying’s 
issuer, to hedge this additional risk, we consider another derivative written on 
the rating of the underlying’s issuer. Hence we construct a portfolio containing 
at any time t one option ( ), ,t t tV t X S V≡  on the underlying, ( )tξ  units of the 
financial variable and ( )tη  units of another option ( ), ,t t tU t X S U≡  to hedge 
underlying’s issuer rating. The portfolio’s value at time t is given by the relation 

( ) ( ) ( ) .t t tt V t S t Uξ ηΠ = + +                   (11) 

Under the self financing assumption, the change in the portfolio is expressed 
as follows 

( ) ( ) ( )d d d d .t t tt V t S t Uξ ηΠ = + +                 (12) 

We assume further that the functions tV  and tU  are 1  in time and at 
least 2  for other variables. If we assume that the variance of the random effect 
on the variation of underlying’s rating is proportional to the current rating, then 
the function f in relation (5) can be chosen in the form 

( ) ( ), ,f t x t xγ=  
where ( )tγ  is a real valued integrable function assuming positive values. If the 
parameters α , λ  and γ  are positive real numbers, then rating dynamics 
follows a Cox, Ingersoll and Ross process introduced in 1985 [41] to model the 
interest rate process. In this case, from Feller [42], an examination of the boundary 
classification criteria in our setting shows that, for a given economic particle, 

1) if 22α γ< , then 0 (AAA) is an attracting rating and can be reached if the 
initial rating is strictly greater than 0, 

2) if 22α γ≥ , then if the initial rating is strictly positive, then it can no longer 
reach 0. 

For tractability reasons, we suppose in what follows that these parameters are 
constant. 

Under the assumption that ( ) [ ]0,t t T
B

≥
 and ( ) [ ]0,t t T

W
≥

 are independent Brow-
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nian motions, applying the Itô’s Lemma to the derivatives tV  and tU  and us-
ing relations (5) and (6), we obtain the following relations 

2
2 2
0 2

2 2
2 2

2

1d d d d d
2

1 d d ,
2

t t t t
t t t t

t t t

t t
t t t

t tt

V V V V
V t S X S t

t S X S

V V
X t k S X t

S XX

σ

γ γ

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂

∂ ∂
+ −

∂ ∂∂

          (13) 

2
2 2
0 2

2 2
2 2

2

1d d d d d
2

1 d d ,
2

t t t t
t t t t

t t t

t t
t t t

t tt

U U U U
U t S X S t

t S X S

U U
X t k S X t

S XX

σ

γ γ

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂

∂ ∂
+ −

∂ ∂∂

         (14) 

where 2 2 2 2
0 tk Xσ σ γ= + . 

Substituting (13) and (14) into (12), the change in the portfolio becomes 

( )

( )

( ) ( ) ( )

2 2 2
2 2 2 2
0 2 2

2 2 2
2 2 2 2
0 2 2

1 1d d
2 2

1 1 d
2 2

d d .

t t t t
t t t t

t tt t

t t t t
t t t t

t tt t

t t t t
t t

t t t t

V V V V
t S X k S X t

t S XS X

U U U U
t S X k S X t

t S XS X

V U V U
t t S t X

S S X X

σ γ γ

η σ γ γ

η ξ η

 ∂ ∂ ∂ ∂
Π = + + − ∂ ∂ ∂∂ ∂ 

 ∂ ∂ ∂ ∂
+ + + − ∂ ∂ ∂∂ ∂ 
   ∂ ∂ ∂ ∂

+ + + + +   ∂ ∂ ∂ ∂   

 (15) 

In order for the portfolio to be hedged against movement in financial varia-
ble’s price and rating of the underlying’s issuer, the last two terms of (15) must 
be zero. This implies that 

( ) ( ) ( )and ,

t

t t t

tt t

t

V
V U X

t t t
US S
X

ξ η η

∂
∂ ∂ ∂

= − − = −
∂∂ ∂
∂

            (16) 

where we suppose that 0t

t

U
X
∂

≠
∂

. 

The condition that the portfolio is risk free implies that the change in the 
portfolio is equal to the change in the risk free saving account; that is 

( ) ( )d dt r t tΠ = Π . Equation (12) thus becomes 

( ) ( ) ( )( )d .t t tt r V t S t Uξ ηΠ = + +                 (17) 

Now, equating (15) with (17), and using (16), we obtain the following relation 
2 2 2

2 2 2 2
0 2 2

2 2 2
2 2 2 2
0 2 2

1 1
2 2

1 1
2 2

.

t t t t t
t t t t t t

t t tt t

t

t

t t t t t
t t t t t t

t t tt t

t

t

V V V V VS X k X S rV rS
t S X SS X

V
X

U U U U US X k X S rU rS
t S X SS X

U
X

σ γ γ

σ γ γ

∂ ∂ ∂ ∂ ∂
+ + − − +

∂ ∂ ∂ ∂∂ ∂
∂
∂

∂ ∂ ∂ ∂ ∂
+ + − − +

∂ ∂ ∂ ∂∂ ∂
=

∂
∂

  (18) 
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The left hand side of (18) depends only on the function tV  and the right 
hand side depends only on the function tU . Hence, they are equal to a function 

( ), ,t th h t X S≡ . Following Heston [43], we can select the function h having the 
form 

( ) ( ) ( ), , , , ,t t t t th t X S X t X Sα λ δ= − − +               (19) 

where ( ), ,t tt S Xδ  is the price of rating risk. This allows us to obtain the equa-
tions to be written as 

( )

2 2 2
2 2 2 2
0 2 2

1 1
2 2

, , 0

V V V Vy x k xy
t x yy x

V Vry h t x y rV
y x

σ γ γ∂ ∂ ∂ ∂
+ + −

∂ ∂ ∂∂ ∂
∂ ∂

+ − − =
∂ ∂

            (20) 

and 

( )

2 2 2
2 2 2 2
0 2 2

1 1
2 2

, , 0.

U U U Uy x k xy
t x yy x

U Ury h t x y rU
y x

σ γ γ∂ ∂ ∂ ∂
+ + −

∂ ∂ ∂∂ ∂
∂ ∂

+ − − =
∂ ∂

            (21) 

In the case of European call option with strike K, maturity T and exercise rat-
ing κ , the goal of the buyer is to buy at time T the underlying asset with quality 
(rating) κ  at a price of K. For an European put option with same characteris-
tics, the goal of the buyer is to sell at time T the underlying with quality κ  at a 
price of K. 

From relation (4), we have 
( )* e ,Tk X

T TS S κ−=  
where *

TS  and TS  are prices at time T of the underlying having rating κ  and 

TX  respectively. Hence, the payoffs of these European options are 

( ) ( )( ), , max e ,0Tk X
TV T K S Kκκ −= −

 
and 

( ) ( )( ), , max e ,0Tk X
TV T K K S κκ −= −

 
for a call and a put respectively. 

The payoff of the function U is the potential prejudice undergone in case of rat-
ing deterioration and is given in both case (call and put options) by the relation 

( ) ( ) ( )( )*, , max ,0 max e 1,0Tk X
T T TU T K S S S κκ −= − = −

 
and it represents the maximum between the difference of prices and 0. 

The problems to be solved for the European call option with strike K, maturity 
T and exercise rating κ  are 

( ) ( ) [ )

( ) ( )( ) ( )

2 2 2
2 2 2 2 *
0 2 2

*

1 1 , , 0, , , 0,
2 2

, , max e ,0 , ,k x

V V V V V Vy x k xy ry h t x y rV t x y T
t x y y xy x

V T x y y K x yκ

σ γ γ + +

−
+ +

∂ ∂ ∂ ∂ ∂ ∂
+ + − + − − = ∈ × × ∂ ∂ ∂ ∂ ∂∂ ∂

 = − ∈ ×

 

 
 (22) 
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and 

( ) ( ) [ )

( ) ( )( ) ( )

2 2 2
2 2 2 2 *
0 2 2

*

1 1 , , 0, , , 0,
2 2

, , max e 1,0 , ,k x

U U U U U Uy x k xy ry h t x y rU t x y T
t x y y xy x

U T x y y x yκ

σ γ γ + +

−
+ +

∂ ∂ ∂ ∂ ∂ ∂
+ + − + − − = ∈ × × ∂ ∂ ∂ ∂ ∂∂ ∂

 = − ∈ ×

 

 
 (23) 

For European put option with same characteristics, the problems to be solved are 
obtained by replacing the payoff in (22) by ( ) ( )( ), , max e ,0Tk X

TV T K K S κκ −= −  
and (23) remains unchanged. 

5.2. Closed-Form Solution of European Call Option 

In the sequel, we assume that ( ), ,t tt X S xδ δ=  where δ  is a positive real 
number. Hence, h is defined by 

( ) ( )( ), , .h t x y xα λ δ= − − +
 

For the problem (22), we will investigate a solution of the form 

( ) ( ) ( )1 2, , , , ,V t x y V t y V t x= +                   (24) 

where 1V  and 2V  belong to the set [ ]( )2,1 2 0,T×   of 2  functions in 
space variables (x and y) and 1  functions of time variable t. 

The payoff ( )( )max e ,0k xy Kκ− −  can also be written as 

( )( )
( ) ( )e e

max e ,0 .
2

k x k x
k x

y K y K
y K

κ κ

κ

− −

−
− + −

− =
 

Using relation (24), problem (22) is transformed into the following problems 
1) For all fixed 0x ≥  

( ) [ )

( )
( )

2
2 2 *1 1 1
0 12

*
1

1 0, , 0,
2

e
, ,

2

k x

V V Vry y rV t y T
t y y

y K
V T y y

κ

σ +

−

+

∂ ∂ ∂
+ + − = ∈ × ∂ ∂ ∂


−

= ∈






       (25) 

2) For all fixed > 0y  

( )( ) ( ) [ )

( )
( )

( )

2
22 2 2

22

2

1 0, , 0,
2

e, , ,
2

k x

V V Vx x rV t x T
t xx

y KV T x x y
κ

γ α δ λ +

−

+

∂ ∂ ∂
+ + − + − = ∈ × ∂ ∂∂


− = ∈




  (26) 

The following Theorem gives a solution to the problem (22). 
Theorem 5.1. If ( )2 2kγ δ λ< + , the function V defined for all  

( ) [ ) *, , 0,t x y T + +∈ × ×   by 

( ) ( )
( )

( )

( )

2
2 1

1

2

e
, , 2 1 e exp 1 e

2

e

k xr T T

T T

r

c c yV t x y N d kx
c k c k

K N d

α
δ λ τγ κτ

τ

− − +
−−

−

     = − +  −      − −     
−

 (27) 

is a solution of the problem (22), 
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where 

T tτ = − , 

( )
2
0

1
0

e 1ln
2

k xy r
K

d

κ

σ τ

σ τ

−   + +       = , 

( )
2
0

2
0

e 1ln
2

k xy r
K

d

κ

σ τ

σ τ

−   + −       = , 

( )
( )( )2

2

1 e
Tc

δ λ τ

δ λ

γ − +

+
=

−
 and 

N is the cumulative function of the normally distributed random variable. 
To give a proof of Theorem 5.1, we need the following result well-known as 

the Feynman-Kac formula. 
Lemma 5.1 [44] Let φ  and f be two real valued continuous functions on   

and [ ]0,T×  and satisfying the relation 

0, 0.fφ ≥ ≥  

Let ( ) ( )
2

2

1, ,
2t b z t a z t

z z
∂ ∂

= +
∂ ∂

  be a differential operator on [ )( )2,1 0,T×  . 

We consider its associated canonical diffusion ( ) [ ] ( ) [ ]( ),
, ,

, , , , z t
s ss t T s t T

Z
∈ ∈

     

defined by 

( ) ( ) [ ]*d , d , d , ,s s s s

t

Z s Z s s Z W s t T
Z z

ρ ν = + ∈


=
            (28) 

Let ( ),c z t  be a continuous function bounded below and w a 
[ )( )2,1 0,T×   continuous function on [ ]0,T×  and a solution of the prob-

lem 

( ) [ )

( ) ( )

, , 0,

, , .

t
w w cw f z t T
t

w z T z zφ

∂ + − = ∈ × ∂
 = ∈

 


              (29) 

Let us assume further that a and b are Lipschitz continuous on [ ]0,T×  
and that q is uniformly elliptic. We also assume that w has a polynomial growth 
for every t in [ ]0,T . Then we have the representation formula 

( ) ( ) ( ) ( ) ( ), d , d, ,, e , e d .
T s

s ut t
Tc Z s s c Z u uz t z t

T st
w z t Z f Z s sφ − −∫ ∫   = −      ∫ 

 
Here [ ]( )0, ,T=    is the set of continuous functions on [ ]0,T  with val-

ue in  ,   is the set of Borelian subset of [ ]( )0, ,T  ,  
( ),s vZ t v sσ= ≤ ≤  is the σ-algebra generated by vZ  ( )t v s≤ ≤ , ,z t  is 

the law of the process ( )s s t
Z

≥
 on   and ,z t  is the expectation with respect 

to ,z t . 
We give now the proof of Theorem 5.1. 
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Proof. We split problem (22) into problems (25) and (26). 
These problems can be written as 

( ) [ )

( )
( )

1 *1
1 1

*
1

0, , 0,
0

e
, ,

2

t

k x

V V rV t y T
t

x
y K

V T y y
κ

+

−

+

∂ + − = ∈ × ∂ ∀ ≥ −
= ∈

 



          (30) 

and 

( ) [ )

( )
( )

22
2 2

2

0, , 0,
0

e, ,
2

t

k x

V V rV x t T
t y

y KV T x x
κ

+

−

+

∂ + − = ∈ × ∂ ∀ >
− = ∈

 


         (31) 

where the operators 1
t  and 2

t  are defined by 
2

1 2 2
0 2

1
2t ry y

y x
σ∂ ∂

= +
∂ ∂


 

and 

( )( )
2

2 21 .
2t x x

x x
γ α δ λ∂ ∂

= + − +
∂ ∂


 

The canonical diffusions associated to 1
t  and 2

t  are respectively defined 
by 

1
0d d d ,s s s s

t

Y rY s Y W s t
Y y

σ = + ≥


=
                  (32) 

and 

( )( ) 2d d d ,s s s s

t

X X s X W s t

X x

α δ λ γ = − + + ≥


=
           (33) 

Here ( ) [ ]
( )

,
1, 2i

s s t T
W i

∈
=  are two standard Brownian motions. 

The process in (32) follows a log-normal distribution with mean r and va-
riance 2

0σ τ . From [41], the process in (33) follows a non-central chi-square dis-

tribution with 2

4α
γ

 degrees of freedom and non centrality parameter  

( )( )
0 2 e T t

Tc x δ λλ − + −=  defined by 

( )

2

2 0

22 1

01
2

2

00
2

2
e ,

2!

n

z

n

z

zG z
n n

α
γ

α
λγ

λ

λ α
γ

+ −

− + ∞−

=

 
     =  

   Γ + 
 

∑

 

where ( ) 1
0

e du tu t t
∞ − −Γ = ∫  and 

( )
( )( )2

2

1 e
Tc

δ λ τ

δ λ

γ − +

+
=

−
. 

Since 1V  and 2V  represent prices, we can reasonably assume that they have 

https://doi.org/10.4236/jmf.2020.102019


C. Tadmon, E. R. Njike-Tchaptchet 
 

 

DOI: 10.4236/jmf.2020.102019 326 Journal of Mathematical Finance 
 

polynomial growth. Hence by applying Lemma 5.1 to (30) and (31) respectively, 
we have 

( ) ( ) ( )( ) ( )( )1 1 2
1 1, e 2 1 e 2 1 for all 0
2 2

k x rV t y y N d K N d xκ τ− −= − − − ≥    (34) 

and 

( ) ( ) ( )2 0 0

1, e exp d e d for all 0 .
2 2

r k r

T

kV t x y z G z z K G z z y
c

τ κ τ∞ ∞− − −  
= − >     

∫ ∫  (35) 

We now have 

( )

2

0
2

0

22 1

01 1
2

2
0

00
2

exp d
2

2
exp e d .

2 2!

T

T

n

k z
c

nT

k z G z z
c

z

k zz z
c

n n

α
γ

α λ
γ

λ

λ α
γ

∞

+ −

 
− + −   ∞−∞

=

 
 
 

 
      =        Γ + 

 

∫

∑∫

 

If 1 0
T

k
c

− > , we can make the change of variable 1
T

kv z
c

 
= − 
 

. 

But 
( )( )

( )

2 1 e
1 1 .

2T

kk
c

δ λ τγ

δ λ

− +−
− = −

+  

If the condition ( )2 2kγ δ λ< +  is fulfilled, that is 
( )

2

1
2

kγ
δ λ

<
+

, then the 

relation 

1 0
T

k
c

− >
 

is satisfied and we can make the change of variable 1
T

kv z
c

 
= − 
 

 in the first 

integral of relation (35) and it becomes 

( )

2

2 2

22 1

*2 11
2

2
0

0*
2

2ee exp e d
2!

n

z
r T T

nT T

z

c c x zy k z
c k c k

n n

α
γ

α α
λδ λ τγ γτ

λ

κ
λ α

γ

∗

+ −

− − +− + ∞−∞−

=

 
          −      − −        Γ + 

 

∑∫

 

where 0
*

T

T

c
c k

λ
λ =

−
. The proof is completed.                             

The following Theorem gives the behavior of V when the rating x tends to ∞ . 
Theorem 5.2 Under the hypothesis ( )2 2kγ δ λ< + , we have the relation 

( )
*

lim , ,
2x

yV t x y
→∞

=                       (36) 

where *y  is the price at time t of the underlying having rating κ . 
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Proof. Equation (27) can be rewritten as 

( ) ( )
( )

( )

2
2 1*

1

2

e
, , 2 1 e exp 1

2

e

r T T

T T

r

c cyV t x y N d kx
c k c k

K N d

α
δ λ τγτ

τ

− − +
−

−

     = − +  −      − −     
−

 (37) 

with 

*
2
0

1
0

1ln
2

y r
K

d
σ τ

σ τ

   + +   
  =  and 

*
2
0

2
0

1ln
2

y r
K

d
σ τ

σ τ

   + −   
  = . 

At time t, the value *y  is independent of x. 
Since 2 2 2 2

0 k xσ σ γ= + , we have ( )1lim 1x N d→∞ =  and ( )2lim 0x N d→∞ = . 
We also have 

( ) ( )( ) ( )( )
( )( ) ( )

2

2 2

2 1 ee 1 0.
2 e

T

T

kc
c k k k

δ λ τδ λ τ

δ λ τ

γ δ λ

δ λ γ γ

− +− +

− +

− + −
− = <

− + − +
 

This implies that 

( )2
2 1

elim e exp 1 0.r T T
x

T T

c ckx
c k c k

α
δ λ τγτ

− − +
−

→∞

   
 − =     − −      

 

5.3. Greeks and Hedging 

We now talk about the Greeks, which are measures of sensitivity of the option 
price with respect to its variables. They are another way to measure risk asso-
ciated to an investment. In fact risk associated to a specific variable is canceled if 
the partial derivative of the price with respect to this variable vanishes for all t. 

To obtain Greeks, we need to solve problem (23). We will investigate a solu-
tion of the form 

( ) ( ), , , .U t x y yW t x=                      (38) 

Using the relation (38), the problem (23) is transformed as follows 

( )( ) ( ) [ )

( ) ( )( )

2
2 2

2

1 0, , 0,
2 0

, max e 1,0 ,k x

W W Wy x k x t x T
t xx y

W T x xκ

γ α δ λ γ +

−
+

  ∂ ∂ ∂
+ + − + + = ∈ ×   ∂ ∂∂  ∀ >

 = − ∈





 (39) 

We have the following result. 
Theorem 5.3 The function U defined for all ( ) [ ) *, , 0,t x y T + +∈ × ×   by 

( )
( )

( )( )( ) ( )

2
2

2 11 1

1 1

1 1
1 2

e
, , exp

1 2 1 2

k
T T

T T

T T

c c xU t x y y k
c k c k

G c k G c

α
δ λ γ τ

γ
κ

κ κ

− − + +       = −    − −     

× − − − + 



       (40) 
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is a solution of the problem (23), 
where 

( )( ) ( )

2

*
2 11

22 1
*
1

1
221 2

1 * 00
1

2

2
2 e d

2!

T

n

z
c k

T n

z

zG c k z
n n

α

γ

α
λγκ

λ

κ
λ α

γ

+ −

− +
−− ∞

=

 
 
    − =  

   Γ + 
 

∑∫ , 

( )

2

2 11

22 1

11
221 2

2 00
1

2

2
2 e d

2!

T

n

z
c

T n

z

zG c z
n n

α

γ
α

λ
γκ

λ

κ
λ α

γ

+ −

− +
− ∞

=

 
     =  

   Γ + 
 

∑∫ , 

( )
( )2

2
1

2

2

1 e
T

k

k
c

δ λ γ τ

δ λ γ

γ
− + +

+ +
=

 − 
 

, ( )( )2
1

1 2 e
k T t

Tc x
δ λ γ

λ
− + + −

=  and 
1

* 1
1 1

T

T

c
c k
λ

λ =
−

. 

Proof. The problem (39) can be written as 

( ) [ )

( ) ( )( )

3 0, , 0,
0

, = max e 1,0 , 0

t

k x

W W t x T
t x

W T x xκ

+

−

∂ + = ∈ × ∂ ∀ ≥
 − ≥


           (41) 

where the operator 3
t  is defined by 

( )( )
2

3 2 21 .
2t x k x

x x
γ α δ λ γ∂ ∂

= + − + +
∂ ∂


 

The canonical diffusion associated to 3
t  is defined by 

( )( )2 3d d d , ,

.
s s s s

t

X k X s X W s t

X x

α δ λ γ γ = − + + + ≥


=
         (42) 

Here ( ) [ ]
3

,s s t T
W

∈
 is a standard Brownian motion. From [41], the process in 

(42) follows a non-central chi-square distribution with 2

4α
γ

 degrees of freedom 

and non centrality parameter ( )( )2
1

1 2 e
k T t

Tc x
δ λ γ

λ
− + + −

=  defined by 

( )

2

2 1

22 1

11
2

2

01
2

2
e .

2!

n

z

n

z

zG z
n n

α
γ

α
λγ

λ

λ α
γ

+ −

− + ∞−

=

 
     =      Γ + 

 

∑

 
Since W represents a price, we can reasonably assume that it has polynomial 

growth. Hence by an appropriate change of variable and application of Lemma 
5.1, we have the result.                                               

Some Greeks are necessary to obtain hedging’s portfolio. From relation (16) 

they are V
y

∂
∂

, U
y

∂
∂

, V
x

∂
∂

 and U
x

∂
∂

. 
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These Greeks are given in the following Lemma. 
Lemma 5.2. For an European call option with strike K, maturity T and exer-

cise rating κ , principal Greeks are given as follows 

1) ( ) ( )
( )2

2 1

1
e1 1e e exp 1

2 2
k x r T T

T T

c cV N d kx
y c k c k

α
δ λ τγκ τ

− − +
− −

    ∂  = − +  −      ∂ − −     

, 

2) 

( )

( )( )( ) ( )

2
2

2 1 1

1 1

1 1
1 2

1 e
exp

1 2 1 2

k
T T

T T

T T

c c xU k
y c k c k

G c k G c

α
δ λ γ τ

γ
κ

κ κ

− − + +   ∂   = −    ∂ − −     

× − − − +

, 

3) ( ) ( ) ( ) ( )
2
1

12 2
2

1 1
0

e e , ,
2 2

d k xk xV ky k N d W t x y
x

κκ γ
σ τ

− + −− ∂
= + +  ∂ π 

, 

4) 

( ) ( )

( ) ( )( ) ( )( )

( ) ( ) ( )

2
22

2 2

2

2 2

2 11 1

1 1

1
1 1 1 1 1 1

2 21

1 1 1
2 21

e
e exp

12 2
2 2

1 e 1 2 2 2
2

k
k T T

T T

T
T T T T

k
T T T

c c xU y k
x c k c k

ck c k G c k c G c k

c G c G c

α
δ λ γ τ

γδ λ γ τ

α α

γ γ

δ λ γ τ
α α

γ γ

κ

κ κ

κ κ

− − + +
− + +

−

− + +

−

    ∂    = −    ∂ − −     
 
 × − + − − − −
 
 

 
 + − +

  

, 

where 

( ) ( ) ( )
( )2

2

1
e1, , e 1 e exp 1

2
k x r T T

T T

c c xW t x y yk kx
c k c k

α
δ λ τγκ δ λ τ

− +
− − + +

     = − +  −      − −     

, 

( )

2

*
2 1

2

22 1
*
1

1
2

1 2
2 * 001

1
2

2
e d
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Proof. Direct computations give the result.                            
Remark 5.1 Consider an European call option with strike K, maturity T and 

exercise rating κ . At every time t T< , the hedging portfolio should contain 
( )tξ  quantity of underlying asset and ( )tη  quantity of another option on is-

suer’s rating. ( )tξ  and ( )tη  are obtained by using Lemma 5.2 and relations 
(16). 

6. Conclusion 

In this paper, we proposed a new notion of economic space similar to notion of 
space in Physics that by definition has infinite dimension due to the unaccoun-
tability of financial variables in the market. The coordinates of an economic par-
ticle are represented by its rating on different financial variables issued. The dy-
namics of an economic particle in economic space has been proposed as well as 
new price process taking into account the rating of the issuer. We also proposed 
an extension of known risk measures to adjusted-to-rating future payoff or 
wealth. This new definition allows to put aside additional capital to rule out the 
loss of money that can be granted due to the adverse change of the rating of the 
issuer. This new approach enables reduction of the exposition of the investor 
towards specific risk coming from the issuer of a financial instrument. We ex-
tended the Black Scholes and Merton’s equation by deriving new PDE of Euro-
pean option pricing taking into account the underlying’s rating and obtained the 
corresponding hedging portfolio. Our future challenge is to propose another 
approach of credit risk models and portfolio selection taking explicitly into ac-
count the rating. 
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