
Journal of Quantum Information Science, 2020, 10, 73-103 
https://www.scirp.org/journal/jqis 

ISSN Online: 2162-576X 
ISSN Print: 2162-5751 

 

DOI: 10.4236/jqis.2020.104006  Oct. 30, 2020 73 Journal of Quantum Information Science 
 

 
 
 

In Praise and in Criticism of the Model of 
Continuous Spontaneous Localization of the 
Wave-Function 

Sofia D. Wechsler 

Kiryat Motzkin, Israel 

           
 
 

Abstract 
Different attempts to solve the measurement problem of the quantum me-
chanics (QM) by denying the collapse principle, and replacing it with changes 
in the quantum formalism, failed because the changes in the formalism lead 
to contradictions with QM predictions. To the difference, Ghirardi, Rimini 
and Weber took the collapse as a real phenomenon, and proposed a calculus 
by which the wave-function should undergo a sudden localization. Later on, 
Ghirardi, Pearle and Rimini came with a change of this calculus into the CSL 
(continuous spontaneous localization) model of collapse. Both these propos-
als rely on the experimental fact that the reduction of the wave-function oc-
curs when the microscopic system encounters a macroscopic object and in-
volves a big amount of its particles. Both these proposals also change the 
quantum formalism by introducing in the Schrödinger equation additional 
terms with noisy behavior. However, these terms have practically no influ-
ence as long as the studied system contains only one or a few components. 
Only when the amount of components is very big, these terms become signif-
icant and lead to the reduction of the wave-function to one of its components. 
The present work has two purposes: 1) proving that the collapse postulate is 
unavoidable; 2) applying the CSL model to the process in a detector and 
showing step by step the modification of the wave-function, until reduction. 
As a side detail, it is argued here that the noise cannot originate in some clas-
sical field, contrary to the thought/hope of some physicists, because no clas-
sical field is tailored by the wave-functions of entanglements. 
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1. Introduction 

In a profound analysis of tests of quantum systems, [1], J. von Neumann con-
cluded that once a quantum system in the initial state ψ  is tested 
(non-destructively) and produces the result kλ , the system remains in a state 

kφ  with the property that any subsequent measurement of the system for the 
same observable, would produce the same result, kλ  (see for instance page 
138 in [1]). This conclusion was always confirmed by the experiment. G. 
Lüders refined von Neumann’s work examining cases with degenerate eigen-
values [2]. But the question remains what happens with the other components 

1 1 1, , , , ,k k Nφ φ φ φ− +   of the initial wave-function. Do they disappear, or do they 
continue to exist? 

The complementary question concerns tests done exclusively for the result 

kλ , in which the detector remains silent. For instance, in the test of a one par-
ticle wave-function (OPWF) comprising N wave-packets space-separated, a de-
tector is placed only on the wave-packet kφ . If the detector does not click, was 

kφ  destroyed?  
Some scientists believe that 1 1 1, , , , ,k k Nφ φ φ φ− +   in the first case, and kφ  

in the second case, disappear. But neither von Neumann, nor Lüders, brought a 
rigorous proof that such a disappearance really occurs. So, the reduction of the 
wave-function, or “collapse”, remained just as a postulate. Lüders motivated: 

“statements on the change of state due to measurement do not arise out of 
quantum theory itself through the inclusion of the measurement apparatus 
in the Schrödinger equation. Measurement, an act of cognizance, adds an 
element not already contained in the formulation of quantum theory.” 

Other physicists, displeased by the enigmatic collapse postulate, launched 
“interpretations” of the quantum mechanics (QM). Trying to explain the 
process of measurement of quantum systems without this postulate, they in-
troduced modifications in the standard quantum formalism, or even addition-
al universes. The price of altering the formalism was a contradiction with the 
quantum predictions for one or another experiment. So happened with the 
most popular interpretations, e.g. the mechanics of de Broglie and Bohm [3] 
[4],1 the full/empty waves hypothesis—see for example [6] for explanation of 
the concept2—the consistent histories [7],3 the transactional interpretation 

 

 

1The de Broglie-Bohm interpretation of QM is based on the assumption of particles floating inside 
the wave-function and following continuous trajectories. The existence of such continuous trajecto-
ries was disproved in [5] Section 3. 
2From the proof against continuous trajectories in the Section 3 of [5] one infers that a “full wave” 
cannot follow a continuous trajectory. On the other hand, neither can it jump from one region to 
another one, space-separated, because in this case a wave-packet could be an empty wave when 
meeting a detector, and become a full wave later and trigger a subsequent detector. That would con-
tradict our experiments on quantum systems. 
3The consistent histories theory is mainly due to R. Griffith. Regrettably, it disobeys the quantum 
formalism. As an example, in the “histories” (13.7) in [7] it appears that after passing through a 
beam-splitter, the wave-function is truncated. Such a truncation is not allowed by the quantum for-
malism, since the transformation of the wave-function by a beam-splitter is unitary. 
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[8].4 
All these interpretations ignored the well known experimental fact that the 

reduction of the wave-function occurs in the presence of a macroscopic object 
and perturbs so many of its particles until its macroscopic state changes.  

There is one proposal which, to the difference from the above interpretations, 
took the collapse postulate “seriously”, and suggested a bridge between the 
quantum and the classical formalism. Ghirardi, Rimini and Weber (GRW) [9] 
thought that the wave-function of a quantum system might undergo at random 
times a sudden shrinking to a small region (localization). They too proposed 
changes in the Schrödinger equation; however, the changes have negligible effect 
on the quantum system containing a small number of components, and great ef-
fect–localization–when very many components are involved. Thus, in fact, the 
quantum formalism would not be changed. 

A few years later, Ghirardi, Pearle, and Rimini (GPR) came with a refined ver-
sion of the GRW proposal, the “continuous spontaneous localization” (CSL) 
[10],5 by which the localization occurs progressively in time, instead of sudden-
ly.6 

The modification in the Schrödinger equation consists in adding a stochastic 
noise and non-linear terms. The stochasticity of the noise mimics the stochastic-
ity of the result of the measurement. The magnitude of these supplementary 
terms increases with the number of particles involved. 

The issue that the collapse occurs in the presence of many particles was put by 
D. Bedingham in a definite way, [17]  

“Our experience in the use of quantum theory tells us that the state reduc-
tion postulate should not be applied to a microscopic system consisting of a 
few elementary particles until it interacts with a macroscopic object such as 
a measuring device.” 

Remark 1: This text uses frequently the word “particle”, and it also appears in 
citations. Unless otherwise specified, this word means a simple quantum system, 
of one or a few components.  

 
R. Feynman also described the effect of the involvement of a big amount of 

particles—section 2.3 of [18], 

 

 

4Inspired by the Wheeler–Feynman absorber theory, J. G. Crammer proposed the hypothesis that 
both the emitter of a quantum system and the detector, emit a forward-in-time wave and a back-
ward-in-time wave. The detection is supposed to occur if “hand-shake” occurs between the for-
ward-in-time wave of the emitter and the backward-in-time wave of the detector. However, to the 
difference from the Wheeler–Feynman absorber theory in which the two waves superpose, in the 
formalism of the transaction interpretation appears the arithmetical product of the two waves. This 
replacement is motivated by claiming that the product gives the Born rule. But that is at variance 
with the quantum formalism in which the Born rule involves the inner product (an integration over 
the variables) of two waves, not their simple arithmetical product. 
5In fact, the model in [10] is a continuation and enhancement of proposals of N. Gisin, [11], and of 
Pearle [12]. 
6This model is described also in the Section 3 of [13], Sections 7 and 8 of [14], section II F in [15], 
and section II C of [16]. 
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“The classical approximation, however, corresponds to the case that the 
dimensions, masses, times, etc., are so large that S is enormous in relation 
to ħ (=1.05 × 10–27 erg∙sec). Then the phase of the contribution S/ħ is some 
very, very large angle … small changes of path will, generally, make 
enormous changes in phase, … The total contribution will then add to zero; 
for if one path makes a positive contribution, another infinitesimally close 
(on a classical scale) makes an equal negative contribution. … But for the 
special path ( )x t , for which S is an extremum, a small change in the path 
produces, in the first order at least, no change in S. All the contributions 
from the paths in this region are nearly in phase, …, and do not cancel out” 

So, when the number of components of a system increases so much that it 
becomes a macroscopic object, the wave-function of the total system is destroyed. 
Unfortunately, Feynman’s explanation covers only the particular case of a 
OPWF consisting in a single wave-packet, not in a superposition of a couple of 
wave-packets space-separated. 

The present work focuses on the CSL formalism. This formalism is not re-
garded as an explanation of the collapse process, because it is not yet known 
which field is this noisy field. The stochastic Schrödinger equation (SSE) is re-
garded as the best tool for investigating the collapse, and what this text does is to 
apply the CSL model for following what happens in a detector during the detec-
tor process. None of the “interpretations” of QM is able to do such a thing. 

Applied to the process in a detector, the model predicts the expected predic-
tions: as long as a small number of particles from the detector are entrained, no 
localization occurs. However, as this number increases the localization appears. 
It is dictated by the noise. Some evolutions of the noise enhance very much the 
number of involved particles and the detector clicks. Other evolutions of the 
noise begin, at a certain time, to reduce the number of involved particles, and in 
the end the detector remains unperturbed and does not click; also, the 
wave-packet which did not trigger the detector, is erased. 

Another purpose of this work is to prove that, in partial disagreement with 
Lüders, the disappearance of a wave-packet that didn’t trigger a detector placed 
on its path, is demanded by the QM formalism. It is strange that the supporters 
of the CSL model didn’t try to prove that. The present work tries to remove this 
lacuna. 

By the end of writing this work I was notified of a recent article, [19], which 
also studies the detection process with the CSL model, though, with a different 
approach and a more complicated setup. To the difference from the present 
work, which shows step by step the wave-function reduction as the process in a 
detector unfolds, in [19] is examined the process in another element of the elec-
tric circuit, completely classical, which does not come in contact with the 
wave-function. A brief description of the analysis in [19] is done in Subsection 
5.5.  

This mysterious noise in the SSE challenged the supporters of the CSL model 
to ask which field might stand behind it. N. Gisin pointed out in [20] that the 
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interaction appearing in SSE between the quantum system and this noise is sim-
ilar with the interaction of a quantum system with an environment. L. Diósi ad-
vanced the idea that it may be a universal gravitational noise [21] [22] [23], but 
Ghirardi et al. criticized that proposal [24].  

Personally, I don’t believe that the noisy field may be classical, despite the 
hope expressed by Bassi and Ghirardi in [25], that the noise would be ultimately 
proved to be classical, e.g. gravitational. Although the present work does not deal 
with entanglements, it can be said in general that a classical field and its noise 
cannot be tailored in each type of experiment by the respective wave-function. 
Even within a single type of experiment, the noise won’t be tailored by the setup 
that each experimenter chooses for his/her particle, all the more that each choice 
is at the free will of the chooser. Worse than that, the requirements on the noise 
are bound to become harder if the experimenters’ labs are in relative movement. 

The rest of the text is organized as follows: Section 2 describes the evolution of 
the detection in a macroscopic detector, taking as an example a proportional 
counter with gas ionization. Section 3 proves a couple of theorems in support of 
the necessity of the reduction postulate. Section 4 develops the mathematical 
tools for the treatment of a stochastic process, starting from the general Itô equ-
ation. Then it applies the tools on a microscopic system, showing that, in agree-
ment with the principles of the CSL model, such a system won’t undergo locali-
zation. Section 5 treats the detection process in a gas proportional counter. It is 
proved that as the number of the electron-ion pairs produced by ionization in-
creases, the localization occurs. A difficulty is pointed to, which remains to be 
examined in future works. Section 6 contains conclusions. 

2. The Macroscopic Detector 

Typically, a macroscopic detector contains a sensitive material. When some par-
ticle enters the detector, some physical property of the respective type of particle 
interacts with the sensitive material producing a perturbation which is amplified 
in different ways, and a detection is reported. Or, if the wave-function consists in 
a quantum superposition and a detector is placed only on one of the wave-packets, 
in part of the trials of the experiment the detector remains silent. 

In this text the proportional counter of cylindrical symmetry is taken as ex-
ample of detector, Figure 1. The detailed description of this apparatus and its 
functioning can be found in [26] [27] [28]. 

A gas, usually of the noble type as He, Ar, Xe, or others, is placed between two 
electrodes of opposite electrical charges. The incident particle ionizes a couple of 
atoms in the gas generating so-called “primary electrons and ions”.  

Both the electrons and the ions are accelerated by the electric field, though the 
electrons, having the mass at least 104 times smaller than an ion, get a corres-
pondingly higher acceleration. Thus, within the time necessary to the electron 
for reaching the anode, the ion practically doesn’t move. 

In the cylindrical counter the anode is a thin metallic wire passing through the  
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Figure 1. A proportional counter of cylindrical symmetry. 
(See explanations in the text). 

 
center of the tube. Thus, the electric field increases as the distance from the 
anode decreases. At a certain distance rc from the central axis the field becomes 
so intense that the “primary electrons” mentioned above have gained enough 
high kinetic energy for ionizing other atoms—Figure 2(a). Thus, the number of 
free electrons is doubled. The free electrons available after this first generation of 
so-called “secondary ionizations”, are quickly accelerated and undergo a second 
generation of pair-producing collisions (PPCs), doubling again the number of 
free electrons.  

The process continues this way, each primary electron producing in short 
time an “avalanche”—Figure 2(b)—named in the literature “Townsend ava-
lanche”, and the number of secondary electrons per primary electron is called 
multiplication factor. The region cr r<  is called the “avalanche region”. 

After a certain amount of pairs are produced, the (almost) static cloud of ions 
in the avalanche region limits the intensity of the field, so, the production of ad-
ditional pairs is stopped. The electrons produced so far are absorbed by the 
anode, entailing a short output signal with steep rise. The positive ions drift 
slowly toward the cathode producing an additional signal, much longer and with 
slower rise. 

Some atoms may absorb the energy of the hitting electrons, but instead of un-
dergoing ionization they rise to upper levels from which they de-excite with 
emission of energetic photons. Such a photon interacts further with an atom and 
sets free an electron by the photo-electric effect. The electron starts an additional 
avalanche, in the same way as a primary electron did. However, in a proportion-
al counter such a process has negligible probability. 

3. The Collapse Principle Is Unavoidable 

The purpose of the present section is to prove that the principle of wave-function 
reduction is unavoidable. We assume that the detectors are ideal. We will con-
sider an OPWF with a couple of wave-packets, and for simplicity we will restrict 
our study to the case in which only one of the wave-packets illuminates a detec-
tor. One of two events will occur: the detector clicks, or, it “responds” by silence. 
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Figure 2. Amplification in proportional detectors. Both figures (a) and (b) are taken from 
the reference [27]. (a) An energetic incident particle collides with the atoms in the coun-
ter, ionizing some of them. The electrons resulting from the direct interaction of the vi-
siting particle with the atoms move toward the anode, and in the avalanche region cr r<  
their energy increases so much that they ionize additional atoms, producing additional 
electron-ion pairs. The electrons are accelerated until another generation of ionizations 
occurs. (b) The process continues in the same way, each generation of ionizations doubl-
ing the number of free electrons. After a couple of such generations, whole avalanches are 
created. 

3.1. Measurements in Which the Detector Remains Silent  

How could a detector remain non-impressed by a wave-packet?  
Many scenarios can be proposed. It is impossible to deal with all the sugges-

tions the imagination can advance, all the more that some suggestions may con-
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tradict in different ways the laws of physics. There are two options which seem 
to me plausible: 

1) The perturbation produced by the wave-packet in the detector is too small 
for changing the macroscopic state of the material in the detector. 

2) The wave-packet is retro-flected in the detector, and exits without perturb-
ing even one particle.  

The following theorems rule out these options. 
 
Theorem 1:  
If a wave-packet meets a detector without triggering it, no particle in the de-

tector remains perturbed.  
Proof:  
From a down-conversion pair of photons, the idler photon is sent to a detec-

tor Q, and the signal photon is sent to a detector S—Figure 3. The signal 
wave-packet is split by the 50% - 50% beam-splitter BS, into two copies, one re-
flected, a , and one transmitted, b . Both copies travel to a rotating mirror 
M, initially in horizontal position. The paths from the nonlinear crystal which 
produces the pair (not shown in the figure) to the detector Q and to the mirror 
M are tuned so that the idler reaches and triggers Q, just after the wave-packet 
a  was reflected by M. Upon the click of Q, M is rotated to vertical position. 

Thus, the wave-packet b  which reaches the region of the mirror M later than 
a  because of a retarding system of mirrors m, does not meet M, and continues 

its travel on the same track as a . At this step the wave-function of the signal 
photon becomes, considering all the reflections at mirrors, 
 

 
Figure 3. A which-way experiment. The colors in the figure are only for eye-guiding. BS 
is a beam-splitter, m are fixed mirrors, M is a rotatable mirror, S and Q are ideal detectors. 
From a down-conversion pair, the idler photon (green) travels toward the detector Q, and 
the signal photon (orange) lands on a fair beam-splitter BS, where its wave-packet is split 
into a reflected part a , and a transmitted part b . The mirror M is initially in hori-
zontal position, thus, a  is reflected by M and directed toward the detector S. Imme-
diately after that, the idler photon meets the detector Q which clicks. Upon this event, M 
is rotated to vertical. So, the wave-packet b  retarded by three mirrors m, doesn’t en-
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counter the mirror M and travels towards the detector S, along the same track as a . 

( )i 2a bφ = − + .                       (1) 

In continuation, the wave-packets a  and b  follow their common track 
toward the detector S. The wave-packet a  is the first one to meet the detector. 
At the interaction with a first particle (atom/molecule) from the sensitive ma-
terial in the detector, an entanglement is generated 

( )u p p u u
1 1 1i 2A a A b Aφ → − + ,              (2) 

where the upper-script “p” means “perturbed”, and “u” means “unperturbed”. 
Both the incoming particle and the one belonging to the detector are per-

turbed. Further, they meet and perturb additional particles as explained in the 
previous section. As long as the number of perturbed particles is small, their to-
tal system continues to be described by the quantum formalism, 

( )p p p u u u
1 2 1 2i 2a A A b A AΦ = − +  ,          (3) 

Assume that meanwhile, the wave-packet b  also reaches the detector S. It 
starts a new chain of perturbations. For simplicity, we assume that the two sets 
of perturbed particles are disjoint.  

Let t be a time at which a  engaged N perturbed particles, and b , M per-
turbed particles, with both N and M still small enough for allowing a quantum 
description. Equation (3) evolved into 

( )p p p u u p u u p p
1 1 1 1i 2N M N Ma A A A A b A A A A′ ′ ′ ′Θ = − +    . (4) 

The particles correlated with b  were marked with a prime for avoiding 
confuse with those correlated with a . 

Now, let’s see what the RHS of (4) tells us.  
One can see that if the particles 1 MA A′ ′

  are perturbed, then 1 NA A  
should not have been perturbed, therefore they could not begin an avalanche. In 
particular, one can set 1N = . 

Symmetrically, if the particles 1 NA A  were perturbed, then 1 MA A′ ′
  are 

forced to remain unperturbed, therefore they cannot begin an avalanche. In par-
ticular, one can set 1M = .  

That confirms the theorem and rules out the option (1). 
 
Theorem 2:  
A wave-packet that did not impress an ideal, absorbing detector, was de-

stroyed. 
Proof:  
As the ideal detector has perfectly reflecting walls, the escape can be only by 

retro-flection on the walls and exit through the input window.  
Consider again a pair of down-conversion photons, in which the idler is sent 

to a detector Q, and the signal to a beam-splitter BS—Figure 4. At BS, the signal 
wave-packet is split into a reflected copy a , and a transmitted copy b . The 
latter flies in continuation through the vicinity of a rotating mirror M, initially  
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Figure 4. Test of the possibility of retro-flection of a wave-packet by an ideal detector. 
The colors in the figure are only for eye-guiding. BS is a beam-splitter, m is a fixed mirror, 
M is a rotatable mirror, S and Q are ideal, absorbing detectors. From a down-conversion 
pair, the idler photon (green) travels toward the detector Q, and the signal photon 
(orange) to BS. The mirror M is initially parallel to the path of the transmitted beam b , 
therefore the beam does not meet the mirror. Then, b  travels on and is reflected by the 
fixed mirror m. At this time, the idler photon meets the detector Q which clicks. Upon 
the click of Q, M is rotated to a position perpendicular to the path between BS and m. 
The wave-packet a  reflected by BS, travels freely for a much longer time than needed 
to b  to meet the detector S. 

 

parallel to the path of b . Then, b  is reflected by a fixed mirror m and flies 
toward a detector S. 

The length of the path from the nonlinear crystal which produces the pair (not 
shown in the figure) to the detector Q, is equal to that to the mirror m. Upon the 
click of Q, the mirror M is rotated counter-clockwise by 90˚. Thus, if b  is re-
tro-flected inside the detector toward the input window, it exits, returns to the 
mirror m, where it is reflected toward the mirror M which now is perpendicular 
to the path of b . So, b  is reflected back and returns to the detector S. 

As far as is known to me, the experiment proposed here was not performed. 
However, there are other experiments, which showed that the repetition of a test 
of an observable on the same quantum system produced the same result as the 
first test, [29]. The QM itself predicts this. 

So, if b  is indeed retro-flected and returns to the detector, neither this time 
would the detector click. Under the hypothesis that the silence of the detector is 
due to retro-flection of b  by the detector, the round trip would continue infi-
nitely, and the detector would all the time remain silent.  

However, this is impossible. An ideal, absorbing detector cannot be traversed 
endlessly, without the wave-packet interacting even with one particle inside. Si-
milarly, a wave-packet cannot wander endlessly inside an ideal, absorbing de-
tector, and never interact with a particle. In fact, it can't happen even once. 
Therefore, the wave-packet should have been destroyed. 

Thus, the theorem is proved, ruling out the option (2). 

https://doi.org/10.4236/jqis.2020.104006


S. D. Wechsler 
 

 

DOI: 10.4236/jqis.2020.104006 83 Journal of Quantum Information Science 
 

These two theorems leave a strange image: a wave-packet that enters a detec-
tor and does not produce a click, does not disturb even one particle in the de-
tector. It does not remain endlessly in the detector, neither escapes from it. 

The theorem below brings an additional argument against the option that the 
wave-packet didn’t trigger a detector by exiting it. 

 
Theorem 3: 
It’s impossible that a wave-packet which met an ideal detector and didn’t 

trigger it, exited the detector unchanged. 
Proof: 
The proof will be done by disproving the opposite, that the wave-packet exited 

the detector unchanged.  
The experimental arrangement bears some similarity to the Elitzur-Vaidman 

interaction-free measurement [30], Figure 5. From a down-conversion pair, the 
signal photon lands on the input beam-splitter, BS, of a Mach-Zehnder interfe-
rometer. The idler photon is sent to a detector Q for heralding the presence of 
the signal photon. The signal photon exits BS in the state 

( )i 2a bφ = + .                       (5) 

After reflected by the mirrors m, a  and b  cross one another. In the 
crossing region is placed a recording plate RP (e.g. a photographic plate). The 
internal arms of the interferometer are of equal length. Therefore, in absence of 
the detector A, a  and b  produce on the RP an interference pattern. In 
each trial of the experiment a spot is left on the plate. 

If the detector A is in place, the situations changes: in the trials in which both 
detectors Q and A click, the RP is not impressed, it is impressed only in the trials 
in which Q clicks, but A doesn’t. That means, the number of the spots on the RP 
is half the number obtained in the absence of A. 

Now, let’s see what would be the implications if b  exited the detector, un-
changed.  

For the trials in which Q clicks, but A remains silent, the theorem 1 says that  
 

 
Figure 5. An experiment of Elitzur-Vaidman type. The colors are only for eye-guiding. 
From an idler-signal pair of down-conversion photons the idler (green) is sent to a de-
tector Q, and the signal (orange) to a 50% - 50% beam-splitter, BS. m are fixed mirrors, A, 
and Q, are ideal, absorbing detectors and RP is a recording (e.g. photographic) plate. The 
significance of the dashed path b'—pale orange—is explained in the text. 
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no particle in A is perturbed. If we select only these trials, the wave-function de-
scribing them would be 

( )
( )

u u u u
1 2 1 2

u u
1 2

i i 2

i i 2

a A A b A A

A A a b

′ ′Φ = +

′= +

 



            (6) 

Let’s ignore the unperturbed particles of A and concentrate on the signal 
photon. It would be described by 

( )i 2a bφ′ ′= + .                     (7) 

which would produce on the RP an interference pattern.  
Even if b′  would differ from b  by a change in phase, ieb bφ′ = , still 

an interference pattern would be produced on the RP. 
However, the QM doesn’t predict such effects. 
To summarize these three theorems, a wave-packet which does not impress a 

detector, perturbs no atom in the detector, and again doesn’t perturb even if it is 
repeatedly returned to the detector. Neither does it remain in the detector en-
dlessly.  

The only option that remains is that the wave-packet is destroyed in the de-
tector. 

3.2. Measurements in Which the Detector Clicks— 
A Non-Decidable Problem  

So far we dealt with the fate of wave-packets which don’t impress a detector. 
However, there exists also the complementary problem, if a wave-packet yes 
triggers a detector, what happens with the other wave-packets of the 
wave-function? The experiment shows that when we place detectors on them, 
the detectors remain silent. Therefore, according to the conclusion of the pre-
vious subsection, these wave-packets disappear. The question is, when exactly do 
they disappear?  

Assume a dynamic experiment, i.e. the detectors are not permanently present 
in the setup, we introduce them when we wish. So, let’s place a detector on the 
path of one wave-packet and concentrate on a trial in which the detector clicks. 
After the click we wait for a while, and place detectors on the other wave-packets. 
The QM predicts that the other detectors won’t click, therefore their 
wave-packets disappeared. But when did that happen? Immediately with the 
click in the first detector, or when they met their own detectors? 

 
Theorem 4: If a wave-packet of an OPWF triggers a detector, no experiment 

can confirm that the other wave-packets still exist. 
Proof: 
Two types of tests can be done on a wave-packet: a which-way test, or, inter-

ference with another wave-packet. According to the which-way tests, if one of 
the wave-packets made click the detector on its path, the other detectors remain 
silent. It is impossible to say whether the silence is because nothing impinges on 
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these detectors, or, the wave-packets impinged on the detectors but were de-
stroyed in the detectors. 

Then, it remains to try if interference experiments can provide more informa-
tion. 

Figure 6 illustrates a Sciarrino-type experiment [31] [32]. On two 50% - 
50% beam-splitters, BSA and BSB, land identical photons from a degene-
rate-down-conversion pair. From each photon, the reflected part a  ( b ) is 
sent to another 50% - 50% beam-splitter, BS, while the transmitted part a′  
( b′ ) is sent to a 2D detector array, DA, consisting in miniature absorbing de-
tectors.7 The total wave-function of the photons at this step, is 

( )( )1 1i i i  
2 2 2 2

a b b a a b a b
a a b b

′ ′ ′ ′ + − 
′ ′Φ = + + = − 

 
.  (8) 

In continuation, we will not be interested in two detections on the same side 
of the setup, i.e. both beyond BS or both on the DA. So, we will work only with 
the state 

( ) 2a b b a′ ′= +ψ .                      (9) 

If the detector A is not present in the setup, the wave-packets a  and b  
land on the beam-splitter BS, where they undergo the transformation 

( ) ( )i 2 ,     i 2a c d b c d→ + → + .             (10) 

Introducing this in (9) there results 

i i1 i
2 2 2

a b a b
c d

′ ′ ′ ′ + − 
→ + 

 
ψ .              (11) 

 

 
Figure 6. A Sciarrino-type experiment. The colors are only for eye-guiding. BSA, BSB and 
BS, are 50% - 50% beam-splitters. They are illuminated by identical photons from a de-
generate-down-conversion pair. A, C, D, are ideal, absorbing detectors, C and D are fixed, 
and A is removable. DA is a recording 2D array of miniature, absorbing detectors. They 
record the time and the x-y coordinates of the absorbed photon in each trial and trial of 
the experiment. The time is also recorded for each detection in C, and for each detection 
in D.  

 

 

7Such a net of detectors was used in the experiments described in [33] [34]. 
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This state tells that if one collects separately the recordings in all the trials in 
which the detector C clicked, the detector array would have recorded an interfe-
rence pattern. Analogously, if one collects separately the recordings in all the tri-
als in which the detector D clicked, another interference pattern is obtained. 

However, if the detector A is introduced, there won’t be interference patterns. 
The case of interest for the theorem 4 is when A clicks. As A is an ideal, ab-

sorbing detector, this click testifies that the wave-packet a  was absorbed, so 
what exits A is vacuum. At this step Equation (9) becomes, 

( )0 2b b a′ ′= +ψ .                    (12) 

Introducing the transformation (10) (the RHS part of the transformation) 
there results 

i1 0
2 2

c d
b a

 + 
′ ′→ + 

 
ψ .                 (13) 

Then, if no click is recorded in the detector C or D, (13) becomes 

( ) ( )0 0 2 0 2b a b aϑ ′ ′ ′ ′= + = + .          (14) 

It seems that the wave-packets a′  and b′  would produce interference, 
confirming that although the wave-packet a  was detected, a′  survived. 

However, all the wave-functions (12) thru (14) are wrong. They ignore the 
involvement of the particles in the detector A. As long as the quantum descrip-
tion can still be used, (14) should be replaced by 

( )p p u u
1 2 1 20 2b A A a A A′ ′Φ = + 〉  .         (15) 

So, no interference is possible. 
That does not prove that at the click of A, the wave-packet a′  is destroyed. 

It only proves that attempting to check by an interference experiment whether 
a′  exists after a  is detected, is doomed to fail. 

Thus, the theorem 4 is proved. 
To summarize: if a  was detected, then, when a′  touches the detectors 

DA it produces no detection. 
There are two possible explanations of that. 1) a′  disappeared in conse-

quence of the detection of a , or, 2) it continued to exist and was destroyed in 
the detectors DA. 

We wanted to know which explanations is the correct one. It turned up to be 
non-decidable. Neither which-way experiments, nor interference experiments, 
prove whether the wave-packet a′  continues to exist or is destroyed if a  is 
detected. 

4. Stochastic Evolution of a Microscopic System 

In the Section 2.1 of [10], GPR developed an equation for a stochastically evolv-
ing system described by a state-function ψ . They started from a very general 
equation of this type, the Itô equation, 
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ˆ ˆd d dn n
n

C t A B = + 
 

∑ψ ψ .                    (16) 

In this equation Ĉ  and { }ˆ
nA  are operators, and { }nB  is a set of real, 

Wiener processes.8 Since in this text we are going to work with a single operator 
Â  we rewrite (16) for our case, 

( )ˆ ˆd d dC t A B= +ψ ψ .                      (17) 

A Wiener process B is stochastic, the quantity B may take at a time t from the 
beginning of the trial, an arbitrary value, on condition that the differential ele-
ment ( ) ( ) ( )d dB t B t t B t= + −  obeys certain constraints. For a white noise 
these constraints are: 

( )d 0B t = , i) ( ) 2
d dB t tγ=   , ii)                (18) 

where the average is taken over all the trails, at the time t measured since the be-
ginning of each trial. γ is a parameter expressing the intensity of the noise. 

Replacing the non-Hermitian part of the operator Ĉ  with ˆiH− , where Ĥ  
is the Hamiltonian, Equations (16) and (17) would look like a Schrödinger equa-
tion, though with additional terms besides the Hamiltonian. The presence of ad-
ditional terms yields a different solution, and non-normalized, in comparison 
with the solution of the standard Schrödinger equation. For normalizing 

1 2

tt t tφ  =  ψ ψ ψ ,                     (19) 

GPR did the appropriate changes in (16). Next, applying the Itô formalism [35], 
they obtained a non-linear SSE, which for a single Hermitian operator Â , reads  

( ) ( ) ( )
21 ˆ ˆˆd i d d d

2t tH t A R t t A R t B tφ γ φ    = − − − + −     
  , i) ( ) ˆ

t tR t Aφ φ= . ii)9   

(20) 

Remark 2: For Equation (20) to reduce to the Schrödinger equation, the last 
two terms in (20i) must bring a negligible contribution to the solution, in com-
parison with ˆi dH t . It will be seen in the end of this section and in the next sec-
tion that as long as a system consists in a few microscopic components the last 
two terms have indeed a negligible effect. 

 
Remark 3: It was proved in [13] that a nonlinear equation would allow faster 

than light communication. However, the stochastic character of the noise im-
pedes such a possibility.  

 
Further, GPR tried to prove—Section 2.2. of [10]—that a system evolving by 

the non-linear SSE obtained by them ends up in an eigenfunction of the set 

 

 

8A Wiener process refers to a parameter B(t) which varies continuously in time, however, the value 
of the increment dB(t) jumps from time to time, so that the derivative of B(t) has points of discon-
tinuity. 
9Detailed explanations of these calculi are given in the section 7 of [14]. 
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{ }ˆ
nA . By analogy, our Equation (20) with a single operator, Â , should have as 

solution one of the eigenstates of Â . The purpose of this section and of the next 
one is to check in detail this inference. 

GPR decided to ignore in the influence of Ĥ  during the process of localiza-
tion, motivating:  

“Since we are interested here in discussing the physical effects of the new 
terms, we disregard for the moment the Schrödinger part of the dynamical 
equation.” 

This decision is not trivial. The effect of Ĥ  may indeed be ignored if the lo-
calization occurs extremely quickly on the time scale of the evolution by Ĥ . 
However, if the Hamiltonian contains an interaction term which represents the 
cause of the locolization of the system, the localization occurs at the pace of the 
evolution by Ĥ . This will be the case in this text. Fortunately, it will be shown 
that Ĥ  cancels out in the calculi, simplifying them. 

For understanding the physical ground of the calculi in continuation the fol-
lowing explanation is necessary: 

 
Remark 4: consider that the wave-function φ  is of the form 

 

( )j j
j

t aφ = ∑A ,                       (21) 

where ja  is the eigenstate corresponding to the eigenvalue ja . The experi-
ment shows that the probability of obtaining the result ja , is ( ) 2

j tA . However, 
from phenomenological point of view, ( ){ }2

j tA  are the intensities of the ei-
genwaves. The connection between the intensity of the eigenwave ja  and the 
probability to obtain, in a trial of the experiment, the result ja , is simple: the 
greater is the intensity of an eigenwave, the greater is the probability that it 
would be detected. So, when we say that in a certain trial of an experiment oc-
curs localization, say, on ja , the meaning is that in that trial the intensity 

( ) 2
j tA  of the eigenwave ja  increases to 1, while the intensities of all the 

other eigenwaves decrease to zero.  
For proving that the CSL model predicts localization, GPR followed a proce-

dure that is exposed below with a single operator Â , and without ignoring the 
Hamiltonian. 

Let ˆ
jP  be the projection operator on the eigenstate ja . φ  can be ex-

panded as follows:  
ˆ

j
j

Pφ φ= ∑ .                        (22) 

From the above relation one immediately obtains 
ˆ ˆ

j j
j

A a Pφ φ= ∑ , i) 2 2ˆ ˆ
j j

j
A a Pφ φ= ∑ , ii) ( ) ˆ ˆ

j j j j
j j

R t a P a Pφ φ φ φ= =∑ ∑ . iii)  

(23) 

Obviously from (21) and (22),  
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( )  ˆ
j j jP t aφ = A , i) ( ) 2ˆ

j jP tφ φ = A . ii)            (24) 

It is more useful for our purpose to work with the intensities, than with the 
amplitudes. Introducing (22) in (20), using equalities (23), and projecting on the 
eigenstate ma , 

( ) ( ) ( )21ˆ ˆd i d d d
2m m m m mP E t a R t t a R t B t Pφ γ φ = − − − + −        

 .    (25) 

The following identity results from the rules of the Itô stochastic calculus—see 
also section 7.3 in [14], 

ˆ ˆ ˆ ˆ ˆ ˆ ˆd d d d dm m m m m m mP P P P P P Pφ φ φ φ φ φ φ φ       = + +        .    (26) 

We will calculate the components of this equation using (21)-(25) and the 
properties (18) of dB. 

( )

( ) ( ) ( ){ } ( )

( ) ( )

2

2 2

2 2

ˆd d ,

ˆ ˆ ˆ ˆd d

d 2 d ,

ˆ ˆd d d .

m m

m m m m

m m m

m m m m

P t

P P P P

a R t t a R t B t t

P P a R t t t

φ φ

φ φ φ φ

γ

φ φ γ

 =   
   +   

= − − + −      

    ≈ −     

 

A

A

A

           (27) 

In the calculus of ˆ ˆd dm mP Pφ φ        we ignored terms with ( )2dt  and the 
terms with d dB t , vis-à-vis the terms with dB and the terms with dt, since dt is 
usually extremely small.  

Let’s notice that the terms with the Hamiltonian cancelled one another out. 
Introducing the RHSs of (27) in (26) there results 

( ) ( ) ( ) ( )2 2
d 2 dm m mt t a R t B t  = −    

A A .               (28) 

One may be eluded by the form of this equation and think that dividing both 
sides by ( ) 2

m tA , it is possible to integrate and get, 

( ) ( ) ( ) ( )
0

22
0 exp 2 d

t

m m m
t

t t a R Bτ τ
  = −   
  
∫A A .            (29) 

However, (23iii) and (24ii) show that ( )R t  also depends on the set 
( ){ }2

j tA . Then, the solution of (28) should rather be calculated iteratively, each 
iteration corresponding to an elementary interval dt. One can start from 0t , a 
time before the noise began to act on the quantum system, so all ( ){ }2

0j tA  are 
known from the initial wave-function. A given iteration would calculate the set 
of the differentials ( ){ }2

d j t 
  

A  using (28), and the next iteration will update 
( ){ }2

0j tA  and calculate a new set ( ){ }2
d j t 
  

A . The new differentials will be 
used in the iteration that follows, and so on. A specific example is given in Sub-
section 5.2.  

Though, (29) is useful for getting an approximate evaluation of the evolution 
of ( ){ }2

j tA  during a detection. Let’s check for instance, under which condi-
tions the intensity ( ) 2

m tA  may vanish. For such an end, the value of the ex-
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ponential in the RHS of (29) should be −∞ .  
In practice, if the exponent in the RHS of (29) accumulates at a time 1t  a 

value, say, −13, it would render ( ) 2
1m tA  quite small, of the order of 

( ) 2 6
0 2.3 10m t −× ×A . 

Admitting that the eigenvalues { }ja  are dimensionless and of the order of 
unity, e.g. the spin projection of a spin 1 boson with   being set equal to 1, R 
would be of the same order of magnitude.  

According to (18ii), dB  fluctuates around dtγ . In the section 5 we will 
give a numerical example which imposes dt to be about 5 × 10−13 s, and 

1800 sγ −=  which is by very many orders of magnitude greater than γ values 
provided by experiments on the CSL model [36]. 

So, a simple choice for dB would be ±2 × 10−5.  
According to (18i), from 0t  to 1t  the sign of dB may change an arbitrary 

number of times, even after each dt; despite of that, let’s admit that dB is orches-
trated in some way to be always of sign opposite to ( )ma R τ−   . 

With these data, for the exponent in the RHS of (29) to accumulate until the 
time 1t  the value –13, the integral in (29) has to be the sum of 

( )5 56.5 2 10 3.25 10−× = ×  pieces. As each such piece lasts 5 × 10−13 s, the de-
crease of 2

mA  would take 5 133.25 10 5 10 s 162.5 ns−× × × = . This is a long time. 
For comparison, as we will see in Subsection 5.3, in a proportional counter the 
interval of time until the output signal begins to rise is 0.1ns, an interval cca. 1.6 
× 103 times shorter. And that, besides the fact that the constraint (18i) does not 
allow dB to be always of sign opposite to [ ]ma R− . 

The conclusion is not that the CSL model is wrong, to the contrary. Since the 
calculus above was done for a simple system, e.g. one quantum particle, it was 
expected according to the very principle of the model that no localization can 
occur. As the model says, the localization appears in a multi-component system. 
A totally different situation will be described in the next section. 

5. The CSL Model and the Detection Process 

In this section the CSL model is going to be tested on the process occurring in-
side a detector when a quantum particle enters and more and more particles 
from the detector are perturbed. As said in Section 2, we do our rationale on a 
detector working in the proportional regime. It will be supposed that the initial 
wave-function is a OPWF of the form 

( ) ( ) ( )   0 1 0 1 2 0 2 3 0 3t t t tΨ = Ψ + Ψ + ΨA A A , i) ( )
3 2

1
1k

k
t

=

=∑ A , ii)   (30) 

where kΨ  indicates the presence of a quantum particle on the path k. It will 
also be supposed that an ideal detector is placed on the wave-packet 1Ψ ; no 
detectors will be placed on the other wave-packets. It is expected that the model 
make the following predictions: 

1) If the detector clicks, the intensity of the wave-packet 1Ψ  has increased 
to 1. The number of electron-ion pairs in the detector becomes equal to the 
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number of pairs that would have been produced if the initial wave-function pos-
sessed only one wave-packet, 1Ψ , (so that the detection by the ideal detector 
would have been sure). 

2) If the detector remains silent, ( ) 2
1 tA  decreases to zero according to the 

theorem 1 which requires that the number of electron-ion pairs in the detector, 
become null.  

5.1. The Test of a Many-Component System—The Process inside a  
Detector 

With the impingement of 1Ψ  on the detector, the OPWF changes into an 
entanglement. As described in Section 2, the visitor wave-packet may cause a 
couple of primary ionizations, and then, each primary electron is dragged by the 
electric field to the multiplication region. Thus, the entanglement takes the form 

( ) ( ) ( ) ( )    1 2 2 3 3
1

0 0jt
j

t c t j t t
∞

=

Φ = + Ψ + Ψ∑A A A , i) ( ) 2

0
1j

j
c t

∞

=

=∑ , ii)  

(31) 

where j is the number of electron-ions pairs in the detector. The upper limit of j 
is the number of atoms in the detector, a number known only as an order of 
magnitude. But this number is huge in comparison with the number of elec-
tron-ion pairs that may appear, for which reason it was set to ∞ . 

GPR developed an equation for the evolution of a set of identical particles – 
section 3.1 in [10], 

( ) ( ) ( )21ˆ ˆ ˆd i d d d d d ,
2

H t N t N B tγ = − − + 
 ∫ ∫r r r r rψ ψ ,        (32) 

where the operator ( )N̂ r  was attached to the density of number of particles at 
the position r, and ( )ˆ

t
N r  is the average number of particles at the position r 

and time t. Details on how ( )N̂ r  can look like, on its eigenfunctions and ei-
genvalues, can be found in [14] Section 8.1 and [10] Section 3.1. 

Normalizing the wave-function (32) as we did in the former section – relation 
(19) – one gets 

( ) ( )

( ) ( ) ( )

21ˆ ˆ ˆd i d d d
2

ˆ ˆd d ,

t t

tt

H t N N t

N N B t

φ γ

φ

  = − − −  
 + −   

∫

∫

r r r

r r r r
              (33) 

GPR obtained Equation (32) for a fixed number of particles. However, in a 
detector which could click the situation is different; the visitor particle perturbs 
more and more particles from the detector as the time passes. In the case of a 
proportional counter, inside the avalanche region the number of electron-ion 
pairs increases exponentially in time as explained in Section 2. That would re-
quire that the Hamiltonian comprise creation and annihilation operators, e.g.  

( ) ( ) ( )† †
e ion atom

ˆ ˆ ˆ ˆ, , , c.c.G a t a t a t= +r r r ,                  (34) 
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and the increase in time of the number of PPCs would make Ĥ  more and 
more complicated. Fortunately, in our calculi the Hamiltonian will be eliminated, 
as it was eliminated in the calculi in Section 4.  

Another problem is that in part of the collisions are not produced electron-ion 
pairs but excited atoms on high levels. Then, the atoms de-excite through emis-
sion of high energy photons, which set free new electrons by the photo-electric 
effect. These electrons ionize atoms, starting secondary avalanches, i.e. ava-
lanches which do not originate in primary electrons. 

For avoiding these complications we shall make a couple of assumptions, part 
of them adopted also in [26] chapter 6, section III A.  

*) Since the probability of secondary avalanches in the proportional counter is 
small, we assume that no free electron is lost, each free electron undergoes a 
PPC.  

“The only multiplication process is through electron collisions (any pho-
toelectric effects are neglected), that no electrons are lost to negative ion 
formation, and that space-charge effects are negligible”. [26] 

**) In the present study there is no benefit from assuming that dB is position 
dependent inside the detector. This fact will appear more convincing in Subsec-
tion 5.2. Therefore, inside the detector, dB will be considered as varying only in 
time. 

The space-distribution of the electrons and ions inside the detector is also 
going to be irrelevant in our analysis. Given also the assumption (**), we can 
work with a simpler equation 

( ) ( ) ( )
21ˆ ˆ ˆ ˆ ˆd i d d d

2t tt t
H t N N t N N B tγ Φ = − − − + − Φ 

 
 , i) ˆ ˆ

t tt
N N= Φ Φ . ii)   

(35) 

where the operator N̂  is associated with the total number of electron-ion pairs 
in the detector, N̂ j j j= . Applying it to the wave-function (31i) and calcu-
lating ˆ

t
N  according to (35ii) 

( ) ( ) 

2
1

ˆ
t

N t Y t= A , i) ( ) ( ) 2

1
j

j
Y t j c t

∞

=

= ∑ . ii)          (36) 

 
Remark 5: the formulas (36) may eventually confuse the reader, so, it is better 

to stress the difference between ˆ
t

N  and ( )Y t . As one can infer from (36i), 
Y(t) is number of electron-ion pairs that would be present in the detector if 

( ) 2
1 tA  were equal to 1, i.e. if the wave-function consisted in only one 

wave-packet, 1Ψ . In this case the ideal detector would have reported the inci-
dent particle, with certainty. However, the wave-function contains three 
wave-packets, not one. Inspecting the wave-function (31) one can infer that the 
Y(t) pairs could be found in the detector, with the probability ( ) 2

1 tA , and with 
a probability ( ) 2

11 t− A  no pairs would be found. ˆ
t

N  takes in consideration 
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this situation.  
 
In continuation, for finding out whether the model can predict (a) or (b), we 

try to get an equation for the evolution in time of 2
1A . We begin by projecting 

Equation (35i) onto the Fock state of m pairs,  

( )
2

ˆ ˆd d

1 ˆ ˆ ˆi d d d
2

m mt t

m m tt t

P P

E t N m t N m B t Pγ

Φ = Φ

    = − + − + − Φ     
 

        (37) 

and use that in the identity (26). The result is similar with (28) with the only dif-
ference that—see (31)—instead of (24) one has 

( ) ( ) 1m̂ mtP t c t mΦ = A , i) ( ) ( )2 2
1m̂ mtP t c tΦ Φ = A . ii)     (38) 

Doing this replacement in (28), 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2
1 1 1

ˆd d 2 dm m mt
t c t t c t m N c t t B t   + = −    

A A A   (39) 

For getting rid of ( ) 2
d mc t  we do summation over m, use (31ii) and (36ii), 

then, replace ˆ
t

N  by (36i), 

( ) ( ) ( ) ( ) ( )2 2 2
1 1 1d 2 1 dt t Y t t B t = −  

A A A .              (40) 

5.2. General Implications 

Comparing Equation (40) with (28), it’s obvious that the presence of Y(t) in the 
former—see Remark 5—makes ( ) 2

1 tA  vary in time, by much bigger steps than 
in the case of one single particle. According to the explanations in Section 2 and 
the assumption (*), Y increases exponentially in time, 

0 2k
kY n= ,                            (41) 

where 0n  is the number of the primary electrons and k is the number of the last 
PPC generation. 

If the physical conditions constraint 

( ) 2
10 1t≤ ≤A ,                          (42) 

is obeyed during the detection process, Equation (40) shows that 2
1A  would 

increase if d 0B > , and decrease if d 0B < , since Y is positive. For sufficiently 
high values of Y, d 0B >  would augment 2

1A  toward 1—expectation (a), 
while d 0B <  would lower 2

1A  toward 0—expectation (b).  
A specific example is given in the next subsection.  
It would be appealing to divide on both sides of (40) by ( ) ( )2 2

1 11 t t −  
A A  

and integrate the equation, if dB were a known function. But it isn’t. What one 
can do is to solve (40) iteratively, by assuming some sequence 1 2d ,d ,B B    

However, the validity of (40) is limited: if from some iteration results 
2

1d 0<A  with 2 2
1 1d >A A , in the next iteration one will get 2

1A  negative, 
which is non-physical. The following limitation emerges straightforwardly from 
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(40) 

( ) ( ) ( )2
12 1 d 1Y t t B t − <  

A .                    (43) 

If in some iteration there results ( )2 2
1 1d 1> −A A , in the next iteration 2

1A  
would exceed 1, which is non-physical too. Obviously, if ( )2 2

1 1d 1> −A A , 
2

1d A  is positive. There emerges immediately from (40) 

( ) ( ) ( )2
10 2 d 1Y t t B t< <A .                    (44) 

Adding up these two inequalities side by side, one gets the limits between 
which Equation (40) is valid: 

( ) ( )1 2 d 2Y t B t− < < .                      (45) 

5.3. A numerical Evaluation 

We are going to check whether the CSL model predicts the results (a) and (b), by 
following the process in a proportional counter of cylindrical symmetry—Figure 
1—containing a mixture of 95% Xe and 5% CO2. The parameters of this counter, 
suitable for a number of PPC generations equal to 12, are detailed in the Appen-
dix.  

 
Table 1 shows the evolution of 2

1A  along the detection process. As initial 
values are taken ( ) 2

1 0 0.4t =A , and 0 10n = . kT  denotes the time elapsed 
between the kth and the (k + 1)th PPCs generation. It contains a couple of ele-
mentary intervals dt, and appears in the tables in units dt—as said in section 4, 
dt is chosen equal to 5 × 10−13s. For each kT , we replace Y(t) by the RHS of (41). 
It is quite a rough approximation, since not all the PPCs in a generation occur 
strictly simultaneously, though, what we seek out for the moment is a general 
image of the unfolding of the process.  
 
Table 1. (a) (part 1). (b) (part 2). 

(a) 

k 1 2 3 4 5 6 7 

Tk 26 23 22 20 18 17 15 

Σ(k)sign(dB) –4 1 0 2 0 –1 3 

Yk 20 40 80 160 320 640 1280 
2

1A  0.4 0.4 0.4 0.4 0.4 0.39 0.42 

(b) 

k 8 9 10 11 12 

Tk 14 13 12 11 10 

Σ(k)sign(dB) −2 −1 2 3 0 

Yk 2560 5120 10,240 20,480 40,960 
2

1A  0.4 0.28 0.3 0.98 0.99999 
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The rest of the data in the kth column correspond to the end of the interval kT . 
The symbol Σ(k)sign(dB) denotes the sum of the signs of dB within kT . Let’s re-
mind that in the section 4 we chose 5d 2 10B −= ± × . 

For each elementary interval dt, the sign of dB is picked arbitrarily. Thus, the 
dB signs in each kT  are quite balanced, and so are along all the detection which 
lasts 201 elementary intervals: one can check that the sum of the quantities 
Σ(k)sign(dB) over all the process, i.e. over all the values of k, is equal to 3. 

The formulas (A11) and (A10) obtained in the Appendix A for calculating kT , 
are repeated below: 

12
1 12.84 10 sT −= × , i) 1 0.917k kT T+ ≈ . ii)             (46) 

Beyond the column 11 the formula (40) cannot be used for arbitrary dB values 
in each dt, because it would violate the inequality (45), i.e. would produce for 

2
1A  values greater than 1, or negative. Though, I succeeded to avoid obtaining 

2
1 1>A  and 2

11 0− <A  inside 12T , for some particular dB sets. As one can 
see, 2

1A  increased to a value very close to 1. 
Also, calculating N̂  at the end of 12T  with the relation (36i), there re-

sulted N̂ Y≈  (the exact result was 40959.59). Thus, the dB sequence used in 
Table 1, leads to the solution (a).10 

 
Table 2 follows a different dB sequence with arbitrary signs, which leads to 

the prediction (b). 
One can see that 2

1A  practically vanishes, and so does N̂ . The value ob-
tained with the formula (36i) is 0.7, while by the theorem 1 it should be much 
less. Though, given the very approximate calculi done here it makes no sense to 
investigate the difference. 

Here, Equation (40) could not be used beyond the column 11. This equa-
tion makes the transit from the quantum to the classical domain, so, the fact 
that its validity stops seems to tell that the system of particles became classical.  
 
Table 2. (a) Part 1. (b) Part 2. 

(a) 
k 1 2 3 4 5 6 7 
Tk 26 23 22 20 18 17 15 

Σ(k)sign(dB) 0 −1 −2 0 4 −1 1 
Yk 20 40 80 160 320 640 1280 

2

1A  0.4 0.4 0.4 0.4 0.42 0.41 0.42 

(b) 
k 8 9 10 11 12 

Tk 14 13 12 11 10 
Σ(k)sign(dB) 2 1 −2 −3 0 

Yk 2560 5120 10,240 20,480 40,960 
2

1A  0.45 0.47 0.19 3.4 × 10−5  

 

 

10The calculi for the tables were performed with the utility EXCEL, and the reader may request a 
copy of them by e-mail. 
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Therefore, in continuation the system should be treated with the Relation (41) 
which is purely classical. In support of that come the results in Table 1 and Ta-
ble 2: before Equation (40) becomes invalid, 2

1A  becomes practically equal to 
1, respectively zero. Substituting in the formula (36i) the final result for 2

1A  
in these tables, one gets N̂ Y≈ , respectively ˆ 0N ≈  as requires the theo-
rem 1. 

5.4. A Difficulty 

Not every dB sequence leads to a physical result, (a) or (b).  
Even a different arrangement of the sequence of signs of dB within some in-

terval kT  in Table 1 and Table 2 may lead to a totally different final result. See 
for instance in Table 3: the part 1 is identical with the part 1 of Table 1, so, it is 
not repeated here. In the part 2, the row Σ(k)sign(dB) is the same as the corres-
ponding row in the part 2 of Table 1. However, in the interval 11T  the sequence 
of signs of dB {1, 1, 1, –1, –1, 1, 1, –1, 1, –1, 1} was changed with the sequence 
{–1, 1, 1, –1, –1, 1, 1, –1, 1, 1, 1}. As one can see, the resulting 2

1A  is com-
pletely different.  

But, the essential fact is that after the process in the detector ended, there are 
no more PPC generations, though the result is neither 2

1 1≈A  as in Table 1, 
nor 2

1 0≈A  as in Table 2. What is the output of the detector in such a trial? 
And what about the other two wave-packets, are they erased, or not? 

Another problem with the response of the detector is that, in repeated trials, 
the physical results (a) and (b), should appear with the probabilities predicted 
by the initial wave-function, 2

1A , respectively 2
11− A . So, it seems that the dB 

series have to be controlled by the initial wave-function. But, it is not clear how 
could that be possible, because the value of 2

1A  changes in time, apparently 
there is no memory of ( ) 2

1 0tA . 
In connection with this problem, P. Pearle said in [12], that the probability of 

a solution of the normalized CSL equation is given by the norm of the 
non-normalized equation, not by the probability of the dB sequence which drove 
the evolution of the wave-function. 

“Let dΩ is the probability measure in the space of Brownian functions, and 
wΩ  be the particular Brownian function responsible for the evolution of 
the particular wavefunction ψΩ , with squared norm  

( ) ( ) 22 d ,N t x x tψΩ Ω= ∫  11 

… the probability that ψΩ  lies in the ensemble12 is ( )2N tΩ , not dΩ. 
… One expects that since dw (or dB) is as likely to fluctuate positively as 
negatively, the randomly fluctuating term13 will have only a modest effect  

 

 

11Equation (8) in [12]. 
12In the ensemble of possible solutions. 
13i.e. the term with dw or dB in the CSL equation—explanation of the present author. 
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Table 3. Part 2. 

k 8 9 10 11 12 

Tk 14 13 12 11 10 

Σ(k)sign(dB) −2 −1 2 3 0 

Yk 2560 5120 10,240 20,480 40,960 
2

1A  0.4 0.28 0.3 0.44 0.34 

 
for the majority of Brownian motions… Therefore, the norms of the wave-
functions evolving subject to these Brownian motions will decrease roughly 
exponentially… 
On the other hand, for that minority of Brownian motions for which 
dw(x,t), or a set of dB(z,t)… happens to be of one sign significantly more 
frequently than of the other sign, the norm of the associated wavefunctions 
will grow…”14  

However, Equation (40) in the present text has shown that the fluctuating sign 
of dB does not diminish the influence of the noise, since this influence is aug-
mented by Y, which increases all the time. 

S. Adler proposed as a solution to the above problem, a proof in [37] by which 
the CSL model predicts that the square variance of the measured operator, tends 
to regain its initial value if the measurement takes a very long time, and if the 
square of the measured operator commutes with the Hamiltonian or the Hamil-
tonian is negligible in comparison with the other terms in the SSE. These condi-
tions are not fulfilled in the general case. In our case the Hamiltonian cannot be 
neglected, as it drives the creation of electron-ion pairs. It contains creation and 
annihilation operators, e.g. (34). Neither does it commute with the square of the 
measured operator, i.e. with ( )22 ?

e ion e ion
ˆ ˆ ˆ ˆ ˆ   N a a a a= . 

5.5. Brief Discussion of a Related Work 

An analysis, related with the one presented in this text was done in [19]. A pho-
ton wave-function was supposed to contain two wave-packets, one of them hits a 
detector, the other doesn’t. The configuration of the experiment is presented in 
Figure 7. The authors declared: 
 

 
Figure 7. An alternative detection configuration. The circuit contains a Lithium-ion bat-
tery (LIB), a detector (DET), an amplifier (AMP), and a flash drive that records the signal. 

 

 

14The wave-functions Pearle discussed are non-normalized. To the difference, we work here with the 
solutions of (34), which are normalized. 
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“our essential assumption is that a measurement is completed by the time a 
permanent record of the event is made, that can be read out at a later time. 
Each part of the setup has a different time scale, namely the detection time 
tD, the amplification time tA, and the recording time tR. We thus identify the 
measurement time tM with the sum of these time scales.” 

The authors tried first to admit that the collapse is completed when the detec-
tor produces an output. That would have been logical, but they encountered a 
problem: for the value they assigned to the parameter λ (γ in the present text) 
the collapse took too much time. On the other hand, as they showed in [36], this 
value depends on experiment—is not a universal constant. So, it’s not clear why 
they didn’t assign a greater value to that prameter.  

Instead of that, they considered that the collapse ends in the battery. It seems 
non-logical. The battery is not a particle detector, all it does is to push current 
through a circuit. But, even before the battery, neither the amplifier nor a oscil-
loscope get as input a wave-function. One tunes the intensity of the input to 
these devices with a rheostat, not by a beam-splitter.  

Besides, the amplification factor in a proportional ionization detector is not 
1018 particles, but 103 to 104. 

6. Conclusions 

The CSL model for the measurement process of quantum systems has the ad-
vantage over different interpretations of the QM, that it does not propose 
changes in the QM formalism as long as the studied object consists only in one 
or a few microscopic components. In this case the SSE reduces to the Schrödin-
ger equation, as the additional terms are negligibly small. However, as the num-
ber of components of the system increases, these terms increase in magnitude 
becoming more significant than the Hamiltonian. In this way is simulated the 
passing from the microscopic to the macroscopic objects. 

The CSL model is not an explanation of the collapse of the wave-function, as 
long as the nature of the noise incorporated in the SSE is not known. What it is 
clear, as explained in section 1, is that no classical field is the source of this noise. 
Thus, for the moment, this model represents a tool for investigating the collapse. 
In studying the noise, the test of the model on an experiment with a OPWF and 
a detector on only one of the wave-packets, is only a beginning. It already left 
open a problem, described in Subsection 5.4. 

The configuration with detectors placed only on some of the wave-packets of 
a wave-function is an incomplete (or, non-maximal) test, in the sense defined in 
[38]. Despite the result obtained in the end of Table 1(b) that 2

1A  becomes 
practically equal to 1, one still cannot give a rigorous answer to the question 
asked in the beginning of section 1: when do the wave-packets 2Ψ  and 3Ψ  
disappear?  

The immediate answer of a reader would be, because Equation (35) is norma-
lized, 2

1 1=A  entails instantly 22
2 3 0+ =A A . I prefer to postpone the an-
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swer until entanglements and relativistic cases are examined. 
In this context I have to express criticism on a trend that seems to predomi-

nate at present: big efforts are invested in fitting Gaussian noises, non-white 
noise, finding the values of the parameter γ, while beyond the corner await the 
entanglements and the relativity, that may impose requirements that the CSL 
won’t be able to satisfy.  

If the CSL model won’t be able to predict correctly the results of such experi-
ments, it would remain just another model for local hidden variables. 
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Appendix 

For each primary electron are liberated in the avalanche region a number M of 
secondary electrons, number known under the name “multiplication factor” 

1 Δ2 aV V VM −= ,                          (A1) 

where 1V  is the potential on the surface of the avalanche region, aV  is the po-
tential on the surface of the anode, and ΔV the potential fall along a path of an 
electron between two PPCs. 

W. Diethorn calculated the potential fall 1aV V− , and obtained section III.B 
part 3 in [28], 

( ) ( )
0 0

1 ln
ln lna

V V
V V

b a apK b a
 

− =  
  

,                (A2) 

where 0V  is the potential difference between the anode and cathode, a is the ra-
dius of the wire, b the internal radius of the cathode, p the pressure, and K is the 
minimal field intensity per unit of pressure, at which a secondary ionization can 
occur.15 For the mixture of gases mentioned in Subsection 5.3, table 6.1 in chap-
ter 6 section III.A of [26] indicates Δ 31.4 VV =  and 36600 V cm atmK = ⋅ , 
so that with 0.008 cma = , 1 cmb = , 0 1750 VV = , and 0.4 atmp = , one ob-
tains 1 400.5 VaV V− ≈ . Using this in (A1) there results, under the assumption 
(*) in section 5.1, that the number of PPC generations in the avalanche is 12. (In 
fact, 1 Δ 12.75aV V V− ≈  i.e. the last PPC generation does not take place on the 
surface of the anode.) 

With the numerical data mentioned above there results a multiplication factor 
4096M = . 

In the cylindrical geometry the relation between the potential at two points, at 
distances 1r , respectively 2r , from the central axis, is 

( ) ( )2 1
2 1

0

ln ln
V Vr r b a

V
−

= − .                    (A3) 

Setting 2r b= , 1r  equal to the radius of the avalanche region, and 

1 1750 400.5 1349.5 VV = − ≈ , one gets 1 0.024 cmr = . From this radius inwards, 
we can make iteratively a rough evaluation of the radius of each PPCs region. 

( )1
0

Δ 31.4exp ln exp 4.8283 0.917
1750k k

Vr r b a
V+

 − − = = × ≈     
.     (A4) 

The duration of the interval of flight between two PPCs can be calculated with 
the equality d dr t= v . As we will see below, the energies at which an electron is 
accelerated in the avalanche region render its wavelength so small that the 
movement of the wave-packet can be calculated with the classical kinematics. So, 
for the velocity ( )rv  in the region [ ]1,k kr r +  we can use the formula 

( ) ( ) 02
kr rr V V e m= −v ,                     (A5) 

 

 

15The notation of the parameters here differs from that in [28], it is the same as in [26]. 
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e being the elementary charge, 0m  the electron mass, and kr r< .  
With the help of (A3) we can translate the difference of potentials in (A5) into 

ratios of radiuses 

( ) ( ) ( ) ( )90

0

2 ln 1.077 10 ln
ln k k

V e
r r r r r

b a m
= − ≈ × −v ,        (A6) 

the result being in units of cm/s. Thus, we get the equation 

( ) 9d ln 1.077 10 dkr r r t− = × .                   (A7) 

This equation is difficult to integrate, so, let’s try to simplify it. From (A4) one 
can see that r and kr  are very close, therefore we can develop ( )ln kr r  in 
Taylor series of the quantity kr r ε− = . Retaining only the first order of small-
ness, ( )ln k k kr r rε ε − − ≈  . Thus, we obtain the differential equation 

9 d1.077 10 d
1 k

xt r
x

−
× =

−
, i) kx r r= . ii)              (A8) 

where the radius is in cm, and the time in seconds. 
Integrating the RHS of (A8i) from kr  to 1kr + , and the LHS from the time the 

electron reaches to radius kr  to the time it reaches 1kr + , interval we denote by 

kT , there results 
9

11.077 10 2 1k k k kT r r r+× = − .                   (A9) 

From this equation and from (A4) it’s obvious that the following recursive re-
lation emerges 

1 1 0.917k k k kT T r r+ += ≈ .                     (A10) 

However, we have first to calculate 1T . Setting in (A9) 1k = , using 

1 0.024r =  found above, one obtains 
12

1 12.84 10 sT −= × .                        (A11) 
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