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Abstract 
In this work, we applied the invariant method to calculate the coherent state 
of the harmonic oscillator with position-dependent mass, which in modern 
physics has great application. We also obtain the calculation of Heisenberg’s un-
certainty principle, and we will show that it is verified. 
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1. Introduction 

The study of the coherent state of problems involving Harmonic oscillators with 
position-dependent mass has attracted considerable interest in the past few years 
[1]-[10]. Apart from their intrinsic mathematical interest, these problems have 
involked much attention because of their connections with many other problems 
belonging to different areas of physics, such as plasma physics, gravitation, quan-
tum optics, quantum liquids, and nonlinear oscillator. 

Moreover, one can find the formalism of position—dependent-mass in many 
other branches of physics, quantum information, etc. 

Referring to literature, one can also see that the problem associated with posi-
tion-dependent mass has attracted many researchers and still has very popular 
applications in various branches of physics. Much of the works on the position- 
dependent mass systems have been studied with a singular mass of the type [11] 
[12] [13]. We choose the position dependent mass under the form: 

How to cite this paper: Qotni, C. and Lari- 
bou, H. (2022) Coherent States and Uncer-
tainty Product of the Harmonic Oscillator 
with Position-Dependent Mass. Journal of 
Quantum Information Science, 12, 13-20. 
https://doi.org/10.4236/jqis.2022.121002 
 
Received: February 11, 2022 
Accepted: March 18, 2022 
Published: March 21, 2022 
 
Copyright © 2022 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

  
Open Access

https://www.scirp.org/journal/jqis
https://doi.org/10.4236/jqis.2022.121002
https://www.scirp.org/
https://doi.org/10.4236/jqis.2022.121002
http://creativecommons.org/licenses/by/4.0/


C. Qotni, H. Laribou 
 

 

DOI: 10.4236/jqis.2022.121002 14 Journal of Quantum Information Science 
 

( ) 2

0e axm x m −=                        (I.1) 

The position stated above is asymmetric in nature. In fact, it has been seen 
that mass has an asymmetric function of position(x) in semiconductor physics. if 
a is negative, then the (Equation (I.1)) will be 0 at large values of x. 

2. Position-Dependent Mass of the Harmonic Oscillator 

The Harmonic oscillator Hamiltonien considered here is: 

( )
( ) 22

0 2

2 2
x m xp

H x
m x

ω
= +                   (II.1) 

where x and px are canonically conjucate with [ ],x p iћ=  and m(x) and 0ω  
are, respectively, the mass (position dependent) and constant frequency associ-
ated with the oscillator, and which are arbitary real function of the time. From 
Equation (II.1) we obtain the motion equation: 

( ) ( ) ( ) ( )2
0 0x t t x t x tρ ω+ + =                   (II.2) 

where: 

( ) ( )
( )

m x
t

m x
ρ =



                       (II.3) 

The Hamiltonian of the Equation (II.1) can be transformed to 1H ′ ; 
22

20
1

02 2
X mPH X

m
Ω′ = +                     (II.4) 

where: 

( ) ( )
( )

( ) ( ) ( )
( )

2 2
2 2

0 2

1
4 2

m x m x m x m x
t

m x m x
ω

   −
 Ω = − + 
    

  

         (II.5) 

By making the following change of variable: 

( )

1
2

0m
X x

m x
 

=  
  

                      (II.6) 

( ) ( ) ( )
( )

1
12

0 2
0 2X x

m xm
P p m m x x

m x m x
 

= +     
  



            (II.7) 

where 0m  is a constant mass. Note that [ ] [ ], ,X P x p= , which implies that the 
commutation relations remain the same in both coodonates. Also, observe that 
the Hamiltonian Equation (II.4) is of the form of that considered by Lewis and 
Reissenferd [14] [15] [16]. 

3. Resolution of the Schrodinger Equation of the Harmonic 
Oscllator with Position Dependent Mass by the Invariant 
Method 

It is well known that an exact invariant for Equation (II.4) is given by [17]: 
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( ) ( )22 2 2
0 0

0

1
2 XI t m X P m X

m
α α α− = + − 

            (III.1) 

where X satisfies that equation: 

( )2 0X X X+Ω =                      (III.2) 

And α  function satisfies of the equation: 

( )2
3

1Xα α
α

+Ω =                     (III.3) 

The invariant ( )I t  satisfies the equation [18] [19]: 

[ ]1
d 1 , 0,
d
I I I H I I
t t iћ

+∂ ′= + = =
∂

               (III.4) 

We will choose the real solutions of Equation (III.3), so that we can make ( )I t  
Hermetian. Further, the eigenfunctions ( ),n X tϕ  of ( )I t  are considered to form. 
Complete orthogonal set corresponding to the time and position-independent ei-
genvalue nϑ . Thus: 

( ) ( ), ,n n nI X t X tϕ ϑ ϕ=                   (III.5) 

( ) ( )( ), , ,n n n nX t X tϕ ϕ δ′ ′=                  (III.6) 

Let the time-dependant Schrödinger equation be: 

1iћ H
t

∂Ψ
= Ψ

∂
                      (III.7) 

With 
2 2

2
1 02

02 2
ћH m X

m X
− ∂ Ω

= +
∂

              (III.8) 

with P iћ
X
∂

= −
∂

 has been used. The solutions ( ),n X tΨ  of the Schrodinger 

Equation (III.7) are related to ( ),n X tϕ  by the relation [20]: 

( ) ( ) ( ), e ,ni t
n n tX t Xµ ϕΨ =                   (III.9) 

The phase function ( )n tµ  satisfy to the equation: 

( ) ( )1

d
d
n

n n

t
ћ i H t

t t
µ

ϕ ϕ∂
= −

∂
              (III.10) 

knowing that each nΨ  satisfies the Schrödinger equation, then the general so-
lution of (III.7) verifies the following equation: 

( ) ( ) ( ), e ,ni t
n n nnX t C X tµ ϕΨ = ∑               (III.11) 

With nC  are time-independent coffecients. 

4. Solution of the Schrodinger Equation with Position  
Dependent Mass 

In this works we are interested in solving the schrodinger equation with position 
dependent mass.we consider the unitary transformation: 

2
0

2e
im X
ћV
α
α

−

=


                       (IV.1) 
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The eigenvalue Equation (III.5) becomes: 

( ) ( ) n n nI y yϕ λ ϕ′ ′ ′=                     (IV.2) 

where: 
2 2

20
2

02 2
mћI VIV y

m y
+ − ∂′ = = +

∂
                (IV.3) 

and: 
1 2

n nUϕ α ϕ′ =                       (IV.4a) 

Xy
α

=                         (IV.4b) 

The Equation (IV.2) is an ordinary on –dimensionnal Schrodinger equation 
whose equation solution is given by: 

( )

0

1 2

1 2 1 2

2
0 0, e

!2

m
Xћ

n nn

m m X
X t H

ћћ n
αϕ

α

−
 
 
 

   ′ =  
π


 

          (IV.5) 

For the haronic oscillator, we have 

1
2n ћ nλ  = + 

 
                      (IV.6) 

The Hermitian polynomial of order n is Hn, thus, by using (Equations (III.9), 
(VI.1), (VI.4) and (IV.5)) we find that the solution of the transformed Schrodinger 
Equation (III.7) is given by: 

( ) ( )

( )

( )
( ) ( )

( )

1 2

1 2

1

20 0
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       Ψ = +    
       

   ×   


π

 



 (IV.7) 

Whith the phase functions ( )tγ  are given by [20]: 

( )
( )20

1 d
2

t tt n
t

γ
α

′ = − +  ′  ∫
                  (IV.8) 

in this work we observe that solutions IV.7 for Equation (III.7) were also obtained 
by Khandekar and Lawande [20] using Feynman path integrals. 

By making a change of variable dependent on time [21]: 

( ) ( ) ( )
0

1 2
m x

t
m

x tα
 

=  
 

                   (IV.9) 

where x(t) is the position, and is a real function of the time that is to dermined. 
Equation of motion is giveen by: 

( )
( )

2 0
0 3

m
x x x x

m x x
ρ ω+ + =                  (IV.10) 

If we chose the position dependent mass: ( ) 0ea xm x =  and 0
0 eam = , where 
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the equation of motion is giveen by: 

2 2
0 0 3

1
exx a x x

x
ω+ + =                    (IV.11) 

5. Coherent States and Uncertainty Product 

Coherent states play an important role in quantum optics, especially in laser 
physics and much work was performed in this field by Roy J. Glauber who was 
awarded the 2005 Nobel prize for his contribution to the quantum theory of op-
tical coherence. We will try here to give a good overview of coherent states of la-
ser beams. The state describing a laser beam can be briefly characterized as hav-
ing by an indefinite number of photons, but a precisely defined phase, in contrast 
to a state with fixed particle number, where the phase is completely random. There 
also exists an uncertainty relation describing this contrast, which we will plainly 
state here but won’t prove [22] [23] [24] [25]. It can be formulated for the un-
certainties of amplitude and phase of the state, where the inequality reaches a 
minimum for coherent states, or, as we will do here, for the occupation number n 
and the phase nϕ  [22] [26] [27]. Next the coherent states of the harmonic oscillator 
with position-dependent mass, we proced as follows consider the operator a and 
a+ given by: 

( ) ( )

1 2
1

2
Xa m i P

m x ћ t
α

α

    
= +    
        

             (V.1.a) 

( ) ( )

1 2
1

2
Xa m i P

m x ћ t
α

α
+

    
= −    
        

            (V.1.b) 

Whith , 1a a+  =  , in terms of a and a+ the invariant I ′  can be written as: 

1
2

I ћ aa+ ′ = + 
 

                      (V.2) 

Now, Hartleyand and Ray [27] have shown that coherent states for I ′  have 
the form: 

( )
( )

( ) ( )
2

1 2

2
, e e

!
n

nk t
k n

k
n

kt
n

ϕ σ ϕ σ
−

′ ′= ∑              (V.3) 

where ( )nk t  is given by VI.7 and k is an arbitrary complex number. Note 

that when ( ) 0 1 2
0

1tα α
ω

→ =  the coherent states ( ),k tϕ σ′  became the correct  

coherent states for the usual time independent harmonic oscillator. The coherent 
states for theharmonic oscillator with position dependent-mass are obtained by the 
inverse transformation on ( ),k tϕ σ′  or given by in this work with ( ) 0ea xm x = , 
we have: 

( ) ( ) ( )
21 1

22 20, e ,
xxi
ћx

k kx t a x x tϕ ϕ α− ′= 



                (V.4) 

We can be rewite the state in the form: 
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( ) ( ) ( )0

2 21

1 2, exp e ,
2 2e x

a x
k k

tx xx t i x x t
ћx

γ
ϕ ϕ σ

−        ′= − +      
      

     (V.5) 

With ( ),k x tϕ  is the coherent state that we have shown for the harmonic os-
cillator with position-dependent mass, and these states correspond to the fol-
lowing eigenvalue equation: 

( ) ( ) ( ), ,k kA x t k t x tϕ ϕ=                    (V.6) 

With: 

( ( )
1

0
0

2
1

2
A V aV m i xp m x xx

m ћ
+  

= = + −    
 

           (V.7) 

and: 

( ) ( )02
0e ik tk t k=                        (V.8) 

( )
( ) ( )

0
0 20

d1
2

t m t
k t

m x x t
′

= −
′∫                   (V.9) 

In this work we choose the mass ( ) 0m x m cte= = , the states reduce to the co-
herent states of the time-dependent harmonic oscillator. 

we calculated the product of the uncertainties of x and p in the state ( ),k x tϕ , 
we have: 

( )
0

2
2 2

2ea x

ћx x∆ =                     (V.10.a) 

( )
02 2 2

2
2

2

1e 1 e
2

a x
xћx x x

x
 ∆ = +  

               (V.10.b) 

In this work the uncertainty product is given by the following expression: 

2 1 22 21 e
2

xћx p x x ∆ ∆ = +   

6. Conclusions 

The study and analysis of coherent states play an interesting role in quantum 
physics, in particular, in the study of quantum optics. Quantum superpositions 
are particularly interesting to coherent states, which exhibit various non-classical 
effects such as compression, phase coherence, and sub-poissonian statistics due to 
the quantum interference between the consistent components [28] [29]. 

Moreover, coherent states have been of particular interest in the context of quan-
tum information theory whose main subjects are quantum computation, quantum 
teleportation and quantum cryptography [30]. In the past few years, there have been 
an upsurge of research about the quantum teleportation of a superposed coherent 
state in terms of optical elements [31] [32]. 

The efficiency of coherent states in various fields of semiclassical physics thanks 
to its interest, we describe various aspects of semiclassical coherent state propa-
gation, ranging from recent experiments in atomic physics to the mathematical 
aspects of “quantum chaology” that predate the results we found. 
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