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Abstract 
Convective heat transfer coefficients, materializing exchanges between solid 
wall (here typha) and its environment, influence its behavior under excitation 
pulse. Temperature of wall and its density of flow vary with these coefficients 
according to its thickness (in depth). This study therefore focuses on the 
evaluation of convective heat transfer coefficient on front face and the optim-
al insulation thickness. 
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1. Introduction 

Use of local insulation materials from vegetable (biodegradable) or mineral ori-
gin [1] is alternative for environmental protection, on the one hand, and needs 
to ensure good energy efficiency [2] [3], on the other hand. Use of synthetic ma-
terials (polystyrene [4] [5], polyurethane [6] [7], glass wool [8] [9]) guarantees 
efficiency and profitability, but is nevertheless harmful to environment [10]. 
Option of substituting and/or combining synthetic materials with natural ones 
(local materials) has been subject of several research studies [11]-[16]. To ensure 
good insulation of buildings, material must have low thermal conductivity and 
be able to stand heat exchanges between it and its surrounding environment. 
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External parameters that can influence behavior of wall are: excitation pulse, 
solar radiation and convection coefficients [17]. Knowledge of thickness of insu-
lation material is also an important parameter to consider for optimal insulation 
[18] [19] [20]. 

Heat transfer coefficient influences behavior of the material in response to ex-
citations it undergoes. It materializes heat exchanges between walls of material 
and its surrounding environment (exterior and interior). Much research has fo-
cused on his determination [21]-[26]. 

In this paper, we will study spectroscopy of convection coefficient at front face 
of typha panel [27] [28] and also determine corresponding optimal thickness of 
insulator. 

2. Theory 
2.1. Study Model 

Study model is shown in Figure 1, it is panel made of typha with thickness L. 
Transverse dimensions are large enough to consider that heat transfer is unidi-
rectional. Heat exchanges between material and two sides (exterior and interior) 
are assumed to be convective. They are quantified by heat transfer coefficients 
on front and back sides. 
• T1 (˚C) and T2 (˚C): temperature in frequency dynamic mode of external and 

indoor environment respectively; 
• T01 and T02 (˚C): maximum amplitude of T1 and T2 respectively; 
• T0 (˚C): initial temperature of insulating material; 
• L (m): length of material along x-axis; 
• h1 and h2 (W∙m−2∙K−1): heat transfer coefficient at front and back face panel 

respectively. 

2.2. Mathematical Formulation 

Conservation of energy at any point of material is governed by following heat 
equation: 

   T TC P
t x x

ρ λ∂ ∂ ∂ = ⋅ + ∂ ∂ ∂ 
                    (1) 

 

 
Figure 1. Wall typha. 
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where: 
• ρ (kg∙m−3): density of material; 
• C (J∙kg−1∙K−1): mass thermal capacity; 
• λ (W∙m−1∙K−1): thermal conductivity of material; 
• P (W∙m−3): internal heat supply (heat sink) of material; 
• x (m): depth position. 

Simplified form of this equation, in absence of internal heat sinks and for 
constant thermal conductivity (assumed isotropic material) is given by: 

T T
t Cp

λ
ρ

∂
= ⋅∆

∂
                        (2) 

Study is done in one dimension and equation becomes: 

( ) ( )2
1 2 1 2

2

, , , , , , , ,1T x h h t T x h h t
tx

ω ω
α

∂ ∂
=

∂∂
              (3) 

where: 
• ( )1 2, , , ,T x h h tω : Temperature in material. 

Cp
λα

ρ
=                            (4) 

• h1: heat exchange coefficient front face; 
• h2: heat exchange coefficient rear face; 
• α: Thermal diffusivity coefficient of the material (m2∙s−1). 

Solving this equation requires establishment of boundary conditions: 

( )( )1 1 2 1
0

0, , , ,
x

T h T h h t T
x

λ ω
=

∂
= −

∂
                 (5) 

( )( )2 1 2 2, , , ,
x L

T h T L h h t T
x

λ ω
=

∂
− = −

∂
                (6) 

Form of the solution of Equation (3) in dynamic frequency regime is: 

( ) ( ) ( )1 2 0, , , , sinh cosh ei tT x h h t A x B x Tωω β β= + +            (7) 

where: 

( )1
2

iωβ
α

= +                         (8) 
1

 β : complex diffusion length. 
Expression of heat flow density 

Tλ= − gradϕ                          (9) 

φ (W∙m−2): heat density flow modulus, After resolution of Equation (9), we 
obtain the following expression: 

( ) ( ) ( )1 2, , , , cosh sinh ei tx h h t A x B x ωϕ ω λβ β β= − + .         (10) 

2.3. Spectroscopic Expression of Heat Exchange Coefficient 

To determine spectroscopic expression of heat exchange coefficient h1 at front 

https://doi.org/10.4236/jsbs.2020.102005


S. K. B. Thiam et al. 
 

 

DOI: 10.4236/jsbs.2020.102005 55 Journal of Sustainable Bioenergy Systems 
 

face, we first study evolution of heat density flow as function of heat exchange 
coefficient at rear face h2 (Figure 2). 

Heat density flow increases with h2 and reaches maximum for h2 > 50 
W∙m−2∙K−1; derivative function of heat density flow (11) allows to obtain the ex-
pression of h1 (13). 

( )1 2

2

, , , ,
0

x h h t
h

ϕ ω∂
=

∂
                     (11) 

( ) ( ) ( )1 2

2 2 2

, , , , cosh sinh
e 0i tx h h t A x B x

h h h
ωϕ ω β β

λβ
∂ ∂ ∂ 

= − + = ∂ ∂ ∂ 
    (12) 

Resolution of Equation (12) allows us to obtain following expression: 

( )
( ) ( )( )

( ) ( )( ) ( )

2
02 0

1
02 0 0 01

sinh e
, ,

cosh e e

i t

i t i t

L T T
h L t

L T T T T

ω

ω ω

λβ β
ω

λβ β

−

− −

−
= −

− + −
.      (13) 

3. Results and Discussions 

Figure 3 shows evolution of heat exchange coefficient h1 as function of excita-
tion pulse under thickness influence. Heat transfer coefficient increases with ex-
citation for the different thickness values. Each maximum of h1 corresponds to 
resonance frequency ωr. 

Cutoff frequencies ωc are intersections of tangent lines of two consecutive 
parts of the concavity of curve. 

Table 1 shows that resonant and cutoff frequencies increase as depth decreas-
es. Maximum value of heat exchange coefficient for a resonant frequency de-
creases with thickness of insulating panel. 

Figure 4 gives us the variation of h1 as a function of thickness, taking into ac-
count the resonance frequencies. The heat transfer coefficient increases with the  

 

 
Figure 2. Module of heat flux density versus heat transfer coefficient at the rear face: in-
fluence of h1, ω = 10−3.7 rad∙s−1. 
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Figure 3. Evolution of h1 as function excitation pulse ω (rad.s−1); influence of thickness. 

 
Table 1. Determination of resonance and cut-off frequency. 

thickness (m) 0.25 0.248 0.245 0.239 0.233 0.229 0.223 

h1max (W∙m−2∙K−1) 29.5 22.58 18.38 13.52 10.79 9.07 7.86 

ωc (rad/s) 
10−4.207 10−4.201 10−4.188 10−4.184 10−4.167 10−4.166 10−4.144 

10−4.133 10−4.124 10−4.121 10−4.095 10−4.066 10−4.052 10−4.032 

ωr (rad/s) 10−4.171 10−4.164 10−4.156 10−4.139 10−4.123 10−4.107 10−4.09 

 

 
Figure 4. Evolution of h1 as function of thickness; influence of resonance pulse ωr. 
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thickness of the material and reaches a maximum value. This maximum of h1 
corresponds to a minimum thickness that allows good insulation. 

In fact, higher heat transfer coefficient on front panel, thicker insulating pan-
el. This thickness is called optimal thermal insulation thickness: Xop (Table 2). 

Maximum of heat transfer coefficient is more important when pulsation is 
low, this corresponds to an increase of heat flow in material due to excitation. 
Indeed, period being inversely proportional to excitation frequency, latter lasts 
longer optimal insulation thickness decreases due to relaxation phenomena. 

When material thickness exceeds optimal thickness, heat transfer coefficient 
on front face of panel decreases, which means that heat transfer coefficient no 
longer, has any influence on material’s behavior. 

Figure 5 is obtained from Table 2, in fact, we were able to plot logarithm of 
maximum heat transfer coefficient h1max as function of logarithm of optimal 
thickness Xop. 

The resulting curve can be assimilated linear function characterize by 
equation: 

( ) ( )1maxlog log oph a X b= +                   (14) 

1max e
ab

oph X =                          (15) 

Coefficients a and b are determined from curve by using Equation (15). 
11.328

1max 1.48 10 oph X = ×                      (16) 

Figure 6 and Figure 7 show respectively phase diagram of the heat transfer 
coefficient and its corresponding Nyquist representations for different values of 
the material thickness [29]. 

 
Table 2. Resonance pulse and optimal depth value for h1max. 

h1max (W∙m−2∙K−1) 

ωr (rad∙s−1) 

Xop (m) 

23.39 

10−4.171 

0.25 

21.051 

10−4.164 

0.249 

16.734 

10−4.156 

0.246 

12.057 

10−4.139 

0.241 

9.693 

10−4.123 

0.236 

8.144 

10−4.107 

0.23 

7.125 

10−4.09 

0.225 

 

 
Figure 5. Maximum values of h1 as function of optimal thickness values. 
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Figure 6. Phase of h1 as function of excitation pulse; influence of thickness. 
 

 
Figure 7. Nyquist representation of h1; influence of thickness. 

 
These graphs make it possible to highlight equivalent electrical phenomena of 

typha panel such as capacitive, inductive or resistive aspects [14] [30] [31] [32] 
[33]. 

For values of 10−4.4 ≤ ω ≤ 10−4.2, heat transfer coefficient phase changes slightly 
in an almost linear way. For ω ≥ 10−4.2, phase decreases considerably and this 
decrease is even more important when thickness is significant. 

The phase is negative or zero which corresponds to an equivalent electrical 
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circuit in R, L, C where the capacitive phenomena prevail over the inductive 
phenomena [30] [31] [32] [33]. 

4. Conclusion 

In this article, method of characterizing heat transfer to face of material is stu-
died from heat exchange coefficient. It was then evaluated order of magnitude of 
this coefficient in relation to optimal insulation thickness of typha panel. Indeed, 
it has been shown that convection coefficient influences insulation thickness, 
heat transfer coefficient is an important factor to consider when choosing the 
insulation thickness. 
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