
Journal of Software Engineering and Applications, 2024, 17, 638-663 
https://www.scirp.org/journal/jsea 

ISSN Online: 1945-3124 
ISSN Print: 1945-3116 

 

DOI: 10.4236/jsea.2024.178035  Aug. 28, 2024 638 Journal of Software Engineering and Applications  
 

 
 
 

A Neuro T-Norm Fuzzy Logic Based System  

Alex Tserkovny 

Applied AI Services, Brookline, USA  

 
 
 

Abstract 
In this study, we are first examining well-known approach to improve fuzzy 
reasoning model (FRM) by use of the genetic-based learning mechanism [1]. 
Later we propose our alternative way to build FRM, which has significant 
precision advantages and does not require any adjustment/learning. We put 
together neuro-fuzzy system (NFS) to connect the set of exemplar input fea-
ture vectors (FV) with associated output label (target), both represented by 
their membership functions (MF). Next unknown FV would be classified by 
getting upper value of current output MF. After that the fuzzy truths for all 
MF upper values are maximized and the label of the winner is considered as 
the class of the input FV. We use the knowledge in the exemplar-label pairs 
directly with no training. It sets up automatically and then classifies all input 
FV from the same population as the exemplar FVs. We show that our ap-
proach statistically is almost twice as accurate, as well-known genetic-based 
learning mechanism FRM. 
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1. Introduction 

Neural Network (NN) is regression machine that associates inputs with outputs 
[2]. It may represent input/output transformations, for which no models are 
known. A NN is a black box with N input values { }, 1,q

jX x j N= = , 1,q Q=  
that form a feature vector (FV) X to obtain an output vector Z that designates 
the class, identification, group, pattern, or associated output codeword of the 
input vector X. To train NN a set of Q exemplar input FVs is mapped to a set of 
output target vectors { }. , 1,qT t q Q= = , also called labels, so that each .

qx  maps 
more closely to .

qt , than to another target. This allows the NN to make interpo-
lations and extrapolations that map any input X to Z that best matches label T(q) 
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for the correct index q. When trained, a NN is a computational machine that 
implements an algorithm that is specified by the input nodes, 

The original backpropagation NNs (BPNNs) are trained by steepest descent 
on the weights that minimize the output sum-squared error E, were  

. 2

1,

q q

q Q
E z t

=

= −∑  

Here zq is the computed output for the input vector xq, and tq is the target 
output (label) to which xq is supposed to map. Each zq is a differentiable function 
of the weights wnm, so training is done on each single weight by taking steps 
along the direction of steepest descent of the E via  

1i i
nm nm

nm

Ew w
w

α+  ∂
= +  ∂ 

 

where α is the step size parameter, also called the learning rate, and i is the itera-
tion number. The starting values of the wnm are drawn randomly, usually be-
tween −0.5 and 0.5 for a cautious start. Training usually requires thousands of 
epochs, of which each is a set of steps to adjust each weight in {wnm} once (or 
sometimes more than once). However, the learning of one weight tends to un-
learn the other weights, so epochs are continued until the sum-squared error is 
sufficiently small. Another problem of BPNNs is that the learned set of weights 
yields a local minimum, of which it has been shown that there are many [2] so 
that the learning is very likely to not be optimal. BPNNs have only a single global 
minimum and are thus preferable. But for most trained NNs there is also the 
problem of overtraining, by which reducing the sum-squared error to a very 
small value causes the noise on the input exemplars to be learned. This reduces 
the accuracy when other feature vectors are put through the NN that have dif-
ferent noise values. 

2. Fuzzy Neural Network (FNN) 
2.1. The Structure 

The FNN in this study (Figure 1) is considered to be a private case of NFS to 
generate fuzzy rules and MFs. Note that the core of the system is multilayered 
network-based structure [1]. Such a system would generate both fuzzy rules and 
MFs. The source of exemplar input-output data would be described later.  
 

 

Figure 1. Neuro-fuzzy system. 
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A more detailed scheme of neuro-fuzzy system is depicted in Figure 2. For 
simplicity’s sake we presented only two inputs X1 and X2 and one output Z.  

The first layer of neurons simply distributes inputs of the system among neu-
rons of the subsequent layer. The second layer consists of several groups of neu-
rons equivalent to the number of inputs (for our case 2). 

Neurons in each group represent MFs for fuzzy labels used as values for the 
input connected with this group. Output of every such neuron is value of mem-
bership of the input to the corresponding fuzzy level. This process is called 
“fuzzification” and these neurons are “fuzzifiers.” 
 

 

Figure 2. Detailed scheme of neuro-fuzzy system. 
 

Neurons of the third layer represent fuzzy rules. Number of neurons in this 
layer can be the same as the number of rules in the logical system IF-THEN. 

Neurons of the fourth layer determine MFs of fuzzy labels. Neurons of this 
layer perform the most complex operation, called Compositional Rule of Infer-
ence (CRI). Thus, the output MF is determined. 

In the fifth layer the defuzzification procedure is performed. This means de-
termination of crisp value output based on inferred fuzzy value. 

Figure 2 shows a detailed structure of neuro-fuzzy system, which is like one 
for BPNN, mentioned in previous section, and hence allows investigation by the 
similar methods, but there are some differences. In NFS each neuron is specified 
not by a set of weight/threshold/universal activation function only, but also by 
complex processing unit with an individual function and set of parameters. And 
lastly the neurons between consecutive layers are not fully-connected unlike in 
case of traditional BPNN [1]. 

2.2. Fuzzy Reasoning Model 

As it was mentioned above, in this study we first are examining well known [1] 
approach to improve FRM by using genetic-based learning mechanism. Later we 
propose our alternative way to build FRM, which has significant precision ad-
vantages and does not require any adjustment/learning. 
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In [1] it was stated that the selection of acceptable MFs is generally a subjec-
tive decision, but change in MFs may significantly alter the performance of the 
fuzzy models. It was claimed that the genetic algorithm (GA) allows to generate 
an optimal set of parameters for the fuzzy model, based either on their initial 
subjective selection or on a random selection.  

From now on we adopt the following fuzzy conditional statements to describe 
a particular knowledge-based state [1]:  

IF x is A1 THEN z is B1 
ALSO 

IF x is A2 THEN z is B2 
ALSO 

……………                         (2.1) 
ALSO 

IF x is Aq THEN z is Bq 

where x and z are linguistic variables, and 1, , qA A  and 1, , qB A  are fuzzy 
sets on X and Z, respectively. The fuzzy conditional statements (2.1) can be for-
malized in the form of the fuzzy relation ( ),R X Z  

 ( ) ( )1 2, , , , , ,i qR X Z ALSO R R R R=    (2.2) 

where ALSO represents a sentence connective which combines the iR  into the 
fuzzy relation, ( ),R X Z  and iR  denotes the fuzzy relation between X and Z 
determined by the i-th fuzzy conditional statement, in which z = Bi corresponds 
to i-th NNs label. The NN learning goal is to find pairs of fuzzy sets iA  and 

iB , 1,i Q=  such that the mean square error e2 between the fuzzy model output 
values and experimental output values would be the smallest. The mean square 
error e2 is calculated by formula 

 
( )2

12
2

1

Q
i ii

Q
ii

z z
e

z

∗
=

∗
=

−
=
∑
∑

 (2.3) 

where iz∗  is the experimental output value of the object for some current value 
i; zi is the corresponding fuzzy model output value; Q is number of experiments. 

In [1] the demand function ( )sin 1z x x= ⋅  was used to generate the set of 
output values z. Results are presented in Table 1.  
 
Table 1. Training data. 

Q Input values Experimental Output values 

1 0.15 0.056 

2 0.18 −0.120 

3 0.21 −0.210 

4 0.24 −0.205 

5 0.27 −0.140 

6 0.30 −0.057 
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Continued 

7 0.33 0.037 

8 0.36 0.128 

9 0.39 0.213 

10 0.42 0.290 

11 0.45 0.358 

 
Note that [ ]0.15,0.45x∈ , [ ]0.21,0.358z∈ − . 
To compare our results with those from [1] we use the same linguistic de-

scriptions of the relationship between x and z to specify the characteristics of the 
function: 

IF x = small THEN z = zero 
ALSO 
IF x = bit larger than small THEN z = negative small 
ALSO 
IF x = larger than small THEN z = negative large 
ALSO 
IF x = smaller than medium THEN z = negative large 
ALSO 
IF x = bit smaller than medium THEN z = negative medium 
ALSO 
IF x = medium THEN z = negative small 
ALSO                                                   (2.4) 

IF x = bit larger than medium THEN z = zero 
ALSO 
IF x = larger than medium THEN z = positive small 
ALSO 
IF x = smaller than large THEN z = positive medium 
ALSO 
IF x = bit smaller than large THEN z = larger than medium 
ALSO 
IF x = large THEN z = smaller than large 

All linguistic terms from (2.4) are defined in the following Table 2. 
 
Table 2. Linguistic variables for input/output. 

Value of variable , 0,10i Xx U i∈ =  

, 0,7j Zz U i∈ =  X Z 

small (s) negative large (nl) 0 

bit larger than small (bls) negative medium (nm) 1 

larger than small (ls) negative small (ns) 2 

smaller than medium (sm) zero 3 
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Continued 

bit smaller than medium (bsm) positive small (ps) 4 

Medium (m) positive medium (pm) 5 

bit larger than medium (blm) larger than medium (lm) 6 

larger than medium (lm) smaller than large (sl) 7 

smaller than large (sl)  8 

bit smaller than large (bsl)  9 

Large (l)  10 

 
In [1] it was assumed that to find the crisp output value corresponding to the 

input value x = 0.26 one had to successively apply the fuzzification, fuzzy logic 
inference mechanism and defuzzification. Experimental output value, found by 
formula  

( )sin 1z x x= ⋅ , was ( )0.26 sin 1 0.26 0.17z = ⋅ = − .  

In [1] membership degrees of values for both input fuzzy set, i XA U⊂ ,
[ ]1,10i∀ ∈  and output one j ZB U⊂ , [ ]1,7j∀ ∈ , were determined by (6.1) 

from Appendix. From Figure 3 we see that variable x has 11 linguistic values, 
whereas the variable z has 8 (see Figure 4) in Appendix. All linguistic values are 
presented in Table 2. The following is simulation results from [1] by (a.1): 
 

 

Figure 3. MF of fuzzy sets for input X. 
 

 

Figure 4. MF of fuzzy sets for output Z. 
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μX(“0.26”) = 0/0 + 0/1 + 0/2 + 0.33/3 + 0.67/4 + 0/5 + 0/6 + 0/7 + 0/8 + 0/9 + 
0/10  

It was shown that the knowledge-based inference mechanism was applied. 
The rule base (2.4), consisting of fuzzy linguistic rules, was used. Consequences 
of multiple (11) rules resulted in the fuzzy output set (see Figure 5), constructed 
on universe UZ and bounded by the following MF: 

μz(“−0.17”) = 0.33/0 + 0.67/1 + 0/2 + 0/3 + 0/4 + 0/5 + 0/6 + 0/7. 
 

 

Figure 5. Geometric interpretation of inference mechanism and center of gravity method 
of defuzzification X. 
 

Then defuzzification was applied. For this matter, the “center” of gravity de-
fuzzification method (a.2) from Appendix was used (see Figure 6). 
 

 

Figure 6. GA-generated improved MFs for input X. 
 

Output values for given input values were calculated in the same way (see Ta-
ble 3). Note that fuzzy rules and MFs were generated heuristically. In [1] it was 
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mentioned that these rules could not provide the model precision required. To 
achieve the latter, it is necessary to tune appropriately the rules, as well as the 
shape and the center of the MF. To this end GA was used. 

2 30.26; 0.155; 7.7854 10x y e −= = − = ×  

 
Table 3. Comparison of models. 

Q 
Input 
values 

Experimental 
Output values 

Output values of the 
GA-Generated 

fuzzy model 

Output values 
Of the fuzzy 

model 

Output of 
presented fuzzy 

model 

1 0.15 0.056 0.030 0.030 0.0334 

2 0.18 −0.120 −0.091 −0.060 −0.129 

3 0.21 −0.210 −0.209 −0.210 −0.21 

4 0.24 −0.205 −0.210 −0.210 −0.21 

5 0.27 −0.140 −0.160 −0.150 −0.13 

6 0.30 −0.057 −0.060 −0.060 −0.048 

7 0.33 0.037 0.027 0.030 0.033 

8 0.36 0.128 0.120 0.120 0.115 

9 0.39 0.213 0.196 0.210 0.196 

10 0.42 0.290 0.300 0.300 0.28 

11 0.45 0.358 0.360 0.360 0.358 

Mean Square Error 0.00624 0.01153 0.00341 

2.3. Genetic-Based Learning 

In [1] it was shown that 11 fuzzy sets were used in linguistic rules preconditions 
(see Table 2). Consequently, it was encoded 11 × 3 − 2 = 31 points. Each point 

1 1, ,3iu i =  took value from a domain [ ],i iD a b U= ⊆ . It was supposed that if 

1 0.15u =  was the value from an interval [ ]0.12,0.16 U⊆ , then 2 0.18u =  
from [0.17, 0.20] etc. Then the processes of encoding and decoding were applied, 
they were described in both [1] and [3]. The GA algorithm is briefly described in 
Appendix. 

The mean square errors for both original ( 2 311.53532 10e −= × ) and GA-based 
( 2 36.24290 10e −= × ) fuzzy models are presented in Table 3. 

3. T-Norm Based Approach 

In contrast with above mentioned method, we are using different knowledge 
based one. It is built upon our unique way to fuzzification/defuzzification tech-
nique and use of t-norm based fuzzy logic [4] for logical inference, which, in 
general does not require additional learning. But in case of “extreme” adjust-
ment necessity we propose a special procedure, which also based on the same 
fuzzy logic. 
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3.1. Fuzzification of Input/Output 

For each 1,i Q= , where Q is the number of exemplar input, we represent each 
FNN input ix  as a fuzzy set, forming linguistic variable, described by a triplet 
of the form 

{ } ( ), , , 1, ,i i
X xX x U X x T u i Q= ∈ = , 

where ( )xT u  is extended term set of the linguistic variable “Input” from Table 
2, X  is normal fuzzy set with correspondent MF [ ]: 0,1x XUµ → . To normal-
ize values of *x  we use  

min

max min

, 1,
i

norm
x xx i Q

x x
−

= =
−

, 

We will use the following mapping  

( ): | 1X x X normX U u Ent CardU x∂ → = − ×   , 

where 

 ( )
x

x x xU
X u uµ= ∫  (3.1) 

On the other hand, to determine the estimates of the MF in terms of single-
tons from (3.1) in the form ( ) [ ]| 0,

j jx x x Xu u j CardUµ ∀ ∈  we propose the fol-
lowing procedure. 

 
[ ]

( ) ( )

0, ,
11 1

1j

X

x x X norm
X

j CardU

u j Ent CardU x
CardU

µ

∀ ∈

= − × − − ×
−

  
 (3.2) 

MF for an input from (3.2) is shown in Figure 7. 
 

 

Figure 7. MF of fuzzy sets for X. 
 

The conceptual difference between our approach to define MF and the one, 
traditionally used in fuzzy control systems, is that we define all values of a lin-
guistic variable over entire physical scale of input/output parameters via nor-
malization mechanism and therefore mathematically reject the notion of interval 
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based MFs. 
Going forward for each 1,i Q= , where Q is the number of exemplar output, 

we also represent each FNN output iz  as a fuzzy set, forming linguistic varia-
ble, described by a triplet of the form 

{ } ( ), , , 1, ,i i
Z zZ z U Z z T u i Q= ∈ = , 

where ( )zT u  is extended term set of the linguistic variable “Output “from Ta-
ble 2, Z  is normal fuzzy set with correspondent MF [ ]: 0,1z ZUµ → . We use 
the same normalization procedure 

min

max min

i

norm
z zz

z z
−

=
−

, 1,i Q= , 

With the following mapping ( ): | 1Z z Z normZ U u Ent CardU zΩ → = − ×   , 
where 

 ( ) .
Z

z z zU
Z u uµ= ∫  (3.3) 

On the other hand, similarly to the previous cases, to determine the estimates 
of the MF in terms of singletons from (3.3) in the form  

( ) [ ]| 0,
k kz z z Zu u k CardUµ ∀ ∈  we propose the following procedure.  

 
[ ]

( ) ( )

0, ,
11 1 ,

1

Z

z zk Z norm
Z

k CardU

u k Ent CardU z
CardU

µ

∀ ∈

= − × − − ×  −

 (3.4) 

where MF for an output from (3.4) is shown in Figure 8. 
 

 

Figure 8. MF of fuzzy sets for Z. 

3.2. Defuzzification of an Output 

Given the fact that “Output” linguistic variable is represented by normal MF of 
the type (3.3) and for a goal of defuzzification we must find the value of index 

*k , which corresponds to the following singleton value from (3.3), given (3.4) 

( ) [ ]
* *

* | 1, 0,
k k

z z Zk u u k CardUµ∃ == ∀ ∈ , 
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and the value of Output [ ]* max min,
k

z z z∈  would be defined as 

 *
* max min

min1k
Z

z zz k z
CardU

−
= × +

−
 (3.5) 

3.3. Fuzzy Inference 

To convert (3.1)-(3.4) into fuzzy logic-based statement and terms from Table 2 
we use a Fuzzy Conditional Inference Rule (FCIR), formulated by means of 
“common sense” as a following conditional clause: 

 P = “IF ( X  is X), THEN ( Z  is Z)” (3.6) 

In other words, we use fuzzy conditional inference of the following type [5]: 

Ant 1: If Input is X then Output is Z 
Ant 2: Input is X' 

--------------------------------------------             (3.7) 
Cons: Output is Z'. 

where , XX X U′ ⊆  and , ZZ Z U′ ⊆ . 
Note that statements (3.6) and (3.7) represent “modus-ponens” syllogism. 

Given that we use the following type of implication [1] 

 
( )1 , ,
1,

x z x z
X Z

x z
 − ⋅ >→ = 

≤
 (3.8) 

For practical purposes, described down below, we will use Fuzzy Conditional 
Rule (FCR) of the following type 

 
( ) ( )( ) ( ) ( )

( ) ( )( ) ( )( ) ( )( )( ) ( )
1 2,

1 1 ,
X Z

X Z X Z

x x z z x x z z x zU U

R A x A z X U U Z X U U Z

u u u u u uµ µ µ µ
×

= × → × ¬ × → ×¬

= → ∧ − → −∫



 (3.9) 

Given (3.8) from (3.9) we are getting 

 

( ) ( )( ) ( ) ( )( ) ( )( ) ( )( )( )
( )( ) ( ) ( ) ( )

( ) ( )
( )( ) ( ) ( )

1 2, 1 1

1 , ,

1, ,

1 , ( ) .

x x z z x x z z

x x z z x x z z

x x z z

z z x x z z x x

R A x A z u u u u

u u u u

u u

u u u u

µ µ µ µ

µ µ µ µ

µ µ

µ µ µ µ

= → ∧ − → −

 − ⋅ <
= =


− ⋅ <

(3.10) 

Given a unary relationship ( )( )1R A x X′ ′=  one can obtain the consequence 
( )( )2R A z′  by CRI to ( )( )1R A x′  and ( ) ( )( )1 2,R A x A z  of type (3.10): 

( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( ) ( )( )( ) ( )

( ) ( ) ( )( ) ( )( ) ( )( )( )

2 1 2,

1 1 ,

1 1
X X Z

XZ

x x x x x z z x x z z x zU U U

x x x x z z x x z z zx UU

R A z X R A x A z

u u u u u u u u

u u u u u u

µ µ µ µ µ

µ µ µ µ µ

′ ×

′∈

′ ′=

= → ∧ − → −

 = ∧ → ∧ − → − 

∫ ∫

∫







 

(3.11) 

Corollary 1. 
If fuzzy sets XX U⊆  and ZZ U⊆  are defined as (3.1) and (3.3) respective-

ly, and are represented by unimodal and normal MFs, and also  

X ZCardU CardU≠ , whereas ( ) ( )( )1 2,R A x A z  is defined by (3.10), then the 
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number of singles in matrix (3.10) is less or equal 2. 
Proof: 
Because of unimodality and normality of MFs from (3.1) and (3.3), given 

(3.10) and the fact that 

[ ] [ ]

( )

( )

0, , 0, |
1 1

1
1 1

1

X Z X Z

X norm
X

Z norm
Z

j CardU k CardU CardU CardU

j Ent CardU x
CardU

k Ent CardU z
CardU

∀ ∈ ∀ ∈ ≠

→ × − − ×  −

≠ × − − ×  −

 

the following is taking place. 
1) The one single in a matrix is always there, because 

( )1 1 0
1 X norm

X

j Ent CardU x
CardU

× − − × =  −
 

and 

( )1 1 0
1 Z norm

Z

k Ent CardU z
CardU

× − − × =  −
, 

or 

( )* 1X normj Ent CardU x= − ×    and ( )* 1Z normk Ent CardU z= − ×    

Therefore from (3.1) and (3.3) 

[ ] ( )
[ ] ( )
( ) ( )

* *

* *

* *

*

*

0, | ! | 1;

| 0, | ! | 1;

, , 1

j j

k k

j k

X x x x

Z z z z

R x z x z

j CardU j u u

k CardU k u u

u u u u

µ

µ

µ

∀ ∈ ∃ =

∀ ∈ ∃ =

→ =

 

2) The only second single in a matrix is when 

( )1 1 1
1 X norm

X

j Ent CardU x
CardU

× − − × =  −
  

and 

( )1 1 1
1 Z norm

Z

k Ent CardU z
CardU

× − − × =  −
, 

or 

( ) ( )1 1X norm Xj Ent CardU x CardU− − × = −    

and 

( ) ( )1 1Z norm Zk Ent CardU z CardU− − × = −   , 

which means 1normx =  and [ ] **
max1 ! 1, | i

normz i Q x x= →∃ ∈ = , 
*

max
iz z=  and j 

= 0, k = 0. (Q. E. D.). 

3.4. Aggregation 

The aggregation (2.2) of knowledge-based situation (2.1) can be formalized in 
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the form of the fuzzy relation ( ),R X Z . We interpret a sentence connective 
ALSO as a fuzzy set Union 

( ) 1 2, i qR X Z R OR R OR R OR R=      

In terms of (3.9)-(3.11) we use an aggregation of the following form  

 ( ) ( )( ) ( ) ( )( )1 2 1 21
, ,Q

aggr ii
R A x A z R A x A z

=
=


 (3.12) 

3.5. Build of Neuro-Fuzzy System 

We use an experimental input/output value pairs from Table 1. 
Let us define the following in terms of neuro-fuzzy system. We are using 11 

rules from (2.4). For input/output fuzzification we use (3.2) and (3.4) respec-
tively. For FCR we use (3.10). For FCIR we use (3.11). For output defuzzification 
we use (3.5). 

1) Neurons of the second layer (fuzzification) for rule 1: 
μX(“small”) = μX(“0.15”) = 1.000/0 + 0.900/1 + 0.800/2 + 0.700/3 + 0.600/4 + 

0.500/5 + 0.400/6 + 0.300/7 + 0.200/8 + 0.100/9 + 0.000/10  
μZ(“zero”) = μZ(“0.056”) = 0.571/0 + 0.714/1 + 0.857/2 + 1.000/3 + 0.857/4 + 

0.714/5 + 0.571/6 + 0.429/7  
2) Neurons of the third layer (FCR) for rule 1: 
R1(A1(x), A2(z)) = (μX(“small”) → μZ(“zero”)) = (μX(“0.15”) → μZ(“0.056”)) =  

 
X → Z 0 1 2 3 4 5 6 7 

0 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 

1 0.057 0.071 0.086 0.000 0.086 0.071 0.057 0.043 

2 0.114 0.143 0.114 0.000 0.114 0.143 0.114 0.086 

3 0.171 0.200 0.100 0.000 0.100 0.200 0.171 0.129 

4 0.229 0.171 0.086 0.000 0.086 0.171 0.229 0.171 

5 0.214 0.143 0.071 0.000 0.071 0.143 0.214 0.214 

6 0.171 0.114 0.057 0.000 0.057 0.114 0.171 0.229 

7 0.129 0.086 0.043 0.000 0.043 0.086 0.129 0.171 

8 0.086 0.057 0.029 0.000 0.029 0.057 0.086 0.114 

9 0.043 0.029 0.014 0.000 0.014 0.029 0.043 0.057 

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 
3) Neurons of the second layer (fuzzification) for rule 2: 
μX(“bit larger than small”) = μX(“0.18”) = 0.900/0 + 1.000/1 + 0.900/2 + 

0.800/3 + 0.700/4 + 0.600/5 + 0.500/6 + 0.400/7 + 0.300/8 + 0.200/9 + 0.100/10  
μZ(“negative small”) = μZ(“−0.12”) = 0.857/0 + 1.000/1 + 0.857/2 + 0.714/3 + 

0.571/4 + 0.429/5 + 0.286/6 + 0.143/7  
4) Neurons of the third layer (FCR) for rule 2: 
R2(A1(x), A2(z)) = (μX(“bit larger than small”) → μZ(“negative small”)) = 

(μX(“0.18”) → μZ(“−0.12”)) =  
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X → Z 0 1 2 3 4 5 6 7 

0 0.086 0.000 0.086 0.071 0.057 0.043 0.029 0.014 

1 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 

2 0.086 0.000 0.086 0.071 0.057 0.043 0.029 0.014 

3 0.114 0.000 0.114 0.143 0.114 0.086 0.057 0.029 

4 0.100 0.000 0.100 0.200 0.171 0.129 0.086 0.043 

5 0.086 0.000 0.086 0.171 0.229 0.171 0.114 0.057 

6 0.071 0.000 0.071 0.143 0.214 0.214 0.143 0.071 

7 0.057 0.000 0.057 0.114 0.171 0.229 0.171 0.086 

8 0.043 0.000 0.043 0.086 0.129 0.171 0.200 0.100 

9 0.029 0.000 0.029 0.057 0.086 0.114 0.143 0.114 

10 0.014 0.000 0.014 0.029 0.043 0.057 0.071 0.086 

 
5) Neurons of the second layer (fuzzification) for rule 3: 
μX(“0.21”) = 0.800/0 + 0.900/1 + 1.000/2 + 0.900/3 + 0.800/4 + 0.700/5 + 

0.600/6 + 0.500/7 + 0.400/8 + 0.300/9 + 0.200/10  
μZ(“−0.21”) = 1.000/0 + 0.857/1 + 0.714/2 + 0.571/3 + 0.429/4 + 0.286/5 + 

0.143/6 + 0.000/7  
6) Neurons of the third layer (FCR) for rule 3: 
R3(A1(x), A2(z)) = (μX(“larger than small”) → μZ(“negative large”)) = 

(μX(“0.21”) → μZ(“−0.21”)) =  
 

X → Z 0 1 2 3 4 5 6 7 

0 0.000 0.114 0.143 0.114 0.086 0.057 0.029 0.000 

1 0.000 0.086 0.071 0.057 0.043 0.029 0.014 0.000 

2 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

3 0.000 0.086 0.071 0.057 0.043 0.029 0.014 0.000 

4 0.000 0.114 0.143 0.114 0.086 0.057 0.029 0.000 

5 0.000 0.100 0.200 0.171 0.129 0.086 0.043 0.000 

6 0.000 0.086 0.171 0.229 0.171 0.114 0.057 0.000 

7 0.000 0.071 0.143 0.214 0.214 0.143 0.071 0.000 

8 0.000 0.057 0.114 0.171 0.229 0.171 0.086 0.000 

9 0.000 0.043 0.086 0.129 0.171 0.200 0.100 0.000 

10 0.000 0.029 0.057 0.086 0.114 0.143 0.114 0.000 

 
7) Neurons of the second layer (fuzzification) for rule 4: 
μX(“0.24”) = 0.700/0 + 0.800/1 + 0.900/2 + 1.000/3 + 0.900/4 + 0.800/5 + 

0.700/6 + 0.600/7 + 0.500/8 + 0.400/9 + 0.300/10  
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μZ(“−0.205”) = 1.000/0 + 0.857/1 + 0.714/2 + 0.571/3 + 0.429/4 + 0.286/5 + 
0.143/6 + 0.000/7  

8) Neurons of the third layer (FCR) for rule 4: 
R4(A1(x), A2(z)) = μX(“smaller than medium”) → μZ(“negative large”) = 

(μX(“0.24”) → μZ(“−0.205”)) = 
 

X → Z 0 1 2 3 4 5 6 7 

0 0.000 0.100 0.200 0.171 0.129 0.086 0.043 0.000 

1 0.000 0.114 0.143 0.114 0.086 0.057 0.029 0.000 

2 0.000 0.086 0.071 0.057 0.043 0.029 0.014 0.000 

3 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

4 0.000 0.086 0.071 0.057 0.043 0.029 0.014 0.000 

5 0.000 0.114 0.143 0.114 0.086 0.057 0.029 0.000 

6 0.000 0.100 0.200 0.171 0.129 0.086 0.043 0.000 

7 0.000 0.086 0.171 0.229 0.171 0.114 0.057 0.000 

8 0.000 0.071 0.143 0.214 0.214 0.143 0.071 0.000 

9 0.000 0.057 0.114 0.171 0.229 0.171 0.086 0.000 

10 0.000 0.043 0.086 0.129 0.171 0.200 0.100 0.000 

 
9) Neurons of the second layer (fuzzification) for rule 5: 
μX(“0.27”) = 0.600/0 + 0.700/1 + 0.800/2 + 0.900/3 + 1.000/4 + 0.900/5 + 

0.800/6 + 0.700/7 + 0.600/8 + 0.500/9 + 0.400/10  
μZ(“−0.14”) = 0.857/0 + 1.000/1 + 0.857/2 + 0.714/3 + 0.571/4 + 0.429/5 + 

0.286/6 + 0.143/7  
10) Neurons of the third layer (FCR) for rule 5: 
R5(A1(x), A2(z)) = μX(“bit smaller than medium”) → μZ(“negative medium”) = 

(μX(“0.27”) → μZ(“−0.14”)) =  
 

X → Z 0 1 2 3 4 5 6 7 

0 0.086 0.000 0.086 0.171 0.229 0.171 0.114 0.057 

1 0.100 0.000 0.100 0.200 0.171 0.129 0.086 0.043 

2 0.114 0.000 0.114 0.143 0.114 0.086 0.057 0.029 

3 0.086 0.000 0.086 0.071 0.057 0.043 0.029 0.014 

4 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 

5 0.086 0.000 0.086 0.071 0.057 0.043 0.029 0.014 

6 0.114 0.000 0.114 0.143 0.114 0.086 0.057 0.029 

7 0.100 0.000 0.100 0.200 0.171 0.129 0.086 0.043 

8 0.086 0.000 0.086 0.171 0.229 0.171 0.114 0.057 

9 0.071 0.000 0.071 0.143 0.214 0.214 0.143 0.071 

10 0.057 0.000 0.057 0.114 0.171 0.229 0.171 0.086 
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11) Neurons of the second layer (fuzzification) for rule 6: 
μX(“0.3”) = 0.500/0 + 0.600/1 + 0.700/2 + 0.800/3 + 0.900/4 + 1.000/5 + 

0.900/6 + 0.800/7 + 0.700/8 + 0.600/9 + 0.500/10  
μZ(“−0.057”) = 0.714/0 + 0.857/1 + 1.000/2 + 0.857/3 + 0.714/4 + 0.571/5 + 

0.429/6 + 0.286/7  
12) Neurons of the third layer (FCR) for rule 6: 
R6(A1(x), A2(z)) = (μX(“medium”) → μZ(“negative small”)) = (μX(“0.3”) → 

μZ(“−0.057”)) =  
 

X → Z 0 1 2 3 4 5 6 7 

0 0.143 0.071 0.000 0.071 0.143 0.214 0.214 0.143 

1 0.171 0.086 0.000 0.086 0.171 0.229 0.171 0.114 

2 0.200 0.100 0.000 0.100 0.200 0.171 0.129 0.086 

3 0.143 0.114 0.000 0.114 0.143 0.114 0.086 0.057 

4 0.071 0.086 0.000 0.086 0.071 0.057 0.043 0.029 

5 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 

6 0.071 0.086 0.000 0.086 0.071 0.057 0.043 0.029 

7 0.143 0.114 0.000 0.114 0.143 0.114 0.086 0.057 

8 0.200 0.100 0.000 0.100 0.200 0.171 0.129 0.086 

9 0.171 0.086 0.000 0.086 0.171 0.229 0.171 0.114 

10 0.143 0.071 0.000 0.071 0.143 0.214 0.214 0.143 

 
13) Neurons of the second layer (fuzzification) for rule 7: 
μX(“0.33”) = 0.400/0 + 0.500/1 + 0.600/2 + 0.700/3 + 0.800/4 + 0.900/5 + 

1.000/6 + 0.900/7 + 0.800/8 + 0.700/9 + 0.600/10  
μZ(“0.037”) = 0.571/0 + 0.714/1 + 0.857/2 + 1.000/3 + 0.857/4 + 0.714/5 + 

0.571/6 + 0.429/7  
14) Neurons of the third layer (FCR) for rule 7:  
R7(A1(x), A2(z)) = (μX(“bit larger than medium”) → μZ(“zero”)) = (μX(“0.33”) 

→ μZ(“0.037”)) =  
 

X → Z 0 1 2 3 4 5 6 7 

0 0.171 0.114 0.057 0.000 0.057 0.114 0.171 0.229 

1 0.214 0.143 0.071 0.000 0.071 0.143 0.214 0.214 

2 0.229 0.171 0.086 0.000 0.086 0.171 0.229 0.171 

3 0.171 0.200 0.100 0.000 0.100 0.200 0.171 0.129 

4 0.114 0.143 0.114 0.000 0.114 0.143 0.114 0.086 

5 0.057 0.071 0.086 0.000 0.086 0.071 0.057 0.043 

6 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 
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Continued 

7 0.057 0.071 0.086 0.000 0.086 0.071 0.057 0.043 

8 0.114 0.143 0.114 0.000 0.114 0.143 0.114 0.086 

9 0.171 0.200 0.100 0.000 0.100 0.200 0.171 0.129 

10 0.229 0.171 0.086 0.000 0.086 0.171 0.229 0.171 

 
15) Neurons of the second layer (fuzzification) for rule 8: 
μX(“0.36”) = 0.300/0 + 0.400/1 + 0.500/2 + 0.600/3 + 0.700/4 + 0.800/5 + 

0.900/6 + 1.000/7 + 0.900/8 + 0.800/9 + 0.700/10  
μZ(“0.128”) = 0.429/0 + 0.571/1 + 0.714/2 + 0.857/3 + 1.000/4 + 0.857/5 + 

0.714/6 + 0.571/7  
16) Neurons of the third layer (FCR) for rule 8: 
R8(A1(x), A2(z)) = (μX(“larger than medium”) → μZ(“positive small”)) = 

(μX(“0.36”) → μZ(“0.128”)) =  
 

X → Z 0 1 2 3 4 5 6 7 

0 0.171 0.129 0.086 0.043 0.000 0.043 0.086 0.129 

1 0.229 0.171 0.114 0.057 0.000 0.057 0.114 0.171 

2 0.214 0.214 0.143 0.071 0.000 0.071 0.143 0.214 

3 0.171 0.229 0.171 0.086 0.000 0.086 0.171 0.229 

4 0.129 0.171 0.200 0.100 0.000 0.100 0.200 0.171 

5 0.086 0.114 0.143 0.114 0.000 0.114 0.143 0.114 

6 0.043 0.057 0.071 0.086 0.000 0.086 0.071 0.057 

7 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 

8 0.043 0.057 0.071 0.086 0.000 0.086 0.071 0.057 

9 0.086 0.114 0.143 0.114 0.000 0.114 0.143 0.114 

10 0.129 0.171 0.200 0.100 0.000 0.100 0.200 0.171 

 
17) Neurons of the second layer (fuzzification) for rule 9: 
μX(“0.39”) = 0.200/0 + 0.300/1 + 0.400/2 + 0.500/3 + 0.600/4 + 0.700/5 + 

0.800/6 + 0.900/7 + 1.000/8 + 0.900/9 + 0.800/10  
μZ(“0.213”) = 0.286/0 + 0.429/1 + 0.571/2 + 0.714/3 + 0.857/4 + 1.000/5 + 

0.857/6 + 0.714/7  
18) Neurons of the third layer (FCR) for rule 9: 
R9(A1(x), A2(z)) = (μX(“smaller than large”) → μZ(“positive medium”)) = 

(μX(“0.39”) → μZ(“0.213”)) =  
 

X → Z 0 1 2 3 4 5 6 7 

0 0.143 0.114 0.086 0.057 0.029 0.000 0.029 0.057 

https://doi.org/10.4236/jsea.2024.178035


A. Tserkovny 
 

 

DOI: 10.4236/jsea.2024.178035 655 Journal of Software Engineering and Applications 
 

Continued 

1 0.200 0.171 0.129 0.086 0.043 0.000 0.043 0.086 

2 0.171 0.229 0.171 0.114 0.057 0.000 0.057 0.114 

3 0.143 0.214 0.214 0.143 0.071 0.000 0.071 0.143 

4 0.114 0.171 0.229 0.171 0.086 0.000 0.086 0.171 

5 0.086 0.129 0.171 0.200 0.100 0.000 0.100 0.200 

6 0.057 0.086 0.114 0.143 0.114 0.000 0.114 0.143 

7 0.029 0.043 0.057 0.071 0.086 0.000 0.086 0.071 

8 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 

9 0.029 0.043 0.057 0.071 0.086 0.000 0.086 0.071 

10 0.057 0.086 0.114 0.143 0.114 0.000 0.114 0.143 

 
19) Neurons of the second layer (fuzzification) for rule 10: 
μX(“0.42”) = 0.100/0 + 0.200/1 + 0.300/2 + 0.400/3 + 0.500/4 + 0.600/5 + 

0.700/6 + 0.800/7 + 0.900/8 + 1.000/9 + 0.900/10  
μZ(“0.29”) = 0.143/0 + 0.286/1 + 0.429/2 + 0.571/3 + 0.714/4 + 0.857/5 + 

1.000/6 + 0.857/7  
20) Neurons of the third layer (FCR) for rule 10: 
R10(A1(x), A2(z)) = (μX(“bit smaller than large”) → μZ(“larger than medium”)) 

= (μX(“0.42”) → μZ(“0.29”)) =  
 

X → Z 0 1 2 3 4 5 6 7 

0 0.086 0.071 0.057 0.043 0.029 0.014 0.000 0.014 

1 0.114 0.143 0.114 0.086 0.057 0.029 0.000 0.029 

2 0.100 0.200 0.171 0.129 0.086 0.043 0.000 0.043 

3 0.086 0.171 0.229 0.171 0.114 0.057 0.000 0.057 

4 0.071 0.143 0.214 0.214 0.143 0.071 0.000 0.071 

5 0.057 0.114 0.171 0.229 0.171 0.086 0.000 0.086 

6 0.043 0.086 0.129 0.171 0.200 0.100 0.000 0.100 

7 0.029 0.057 0.086 0.114 0.143 0.114 0.000 0.114 

8 0.014 0.029 0.043 0.057 0.071 0.086 0.000 0.086 

9 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 

10 0.014 0.029 0.043 0.057 0.071 0.086 0.000 0.086 

 
21) Neurons of the second layer (fuzzification) for rule 11: 
μX(“0.45”) = 0.000/0 + 0.100/1 + 0.200/2 + 0.300/3 + 0.400/4 + 0.500/5 + 

0.600/6 + 0.700/7 + 0.800/8 + 0.900/9 + 1.000/10  
μZ(“0.358”) = 0.000/0 + 0.143/1 + 0.286/2 + 0.429/3 + 0.571/4 + 0.714/5 + 

0.857/6 + 1.000/7 
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22) Neurons of the third layer (FCR) for rule 11: 
R11(A1(x), A2(z)) = (μX(“large”) → μZ(“smaller than large”)) = (μX(“0.45”) → 

μZ(“0.358”)) =  
 

X → Z 0 1 2 3 4 5 6 7 

0 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1 0.000 0.086 0.071 0.057 0.043 0.029 0.014 0.000 

2 0.000 0.114 0.143 0.114 0.086 0.057 0.029 0.000 

3 0.000 0.100 0.200 0.171 0.129 0.086 0.043 0.000 

4 0.000 0.086 0.171 0.229 0.171 0.114 0.057 0.000 

5 0.000 0.071 0.143 0.214 0.214 0.143 0.071 0.000 

6 0.000 0.057 0.114 0.171 0.229 0.171 0.086 0.000 

7 0.000 0.043 0.086 0.129 0.171 0.200 0.100 0.000 

8 0.000 0.029 0.057 0.086 0.114 0.143 0.114 0.000 

9 0.000 0.014 0.029 0.043 0.057 0.071 0.086 0.000 

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 

 
23) Neurons of the third layer (FCR) aggregation: 

( ) ( )( ) ( ) ( )( )11
1 2 1 21

, ,aggr kk
R A x A z R A x A z

=
= =


 

 
X → Z 0 1 2 3 4 5 6 7 

0 1.000 0.129 0.200 1.000 0.229 0.214 0.214 0.229 

1 0.229 1.000 0.143 0.200 0.171 0.229 0.214 0.214 

2 1.000 0.229 0.171 0.143 0.200 0.171 0.229 0.214 

3 1.000 0.229 0.229 0.171 0.143 0.200 0.171 0.229 

4 0.229 1.000 0.229 0.229 0.171 0.171 0.229 0.171 

5 0.214 0.143 1.000 0.229 0.229 0.171 0.214 0.214 

6 0.171 0.114 0.200 1.000 0.229 0.214 0.171 0.229 

7 0.143 0.114 0.171 0.229 1.000 0.229 0.171 0.171 

8 0.200 0.143 0.143 0.214 0.229 1.000 0.200 0.114 

9 0.171 0.200 0.143 0.171 0.229 0.229 1.000 0.129 

10 0.229 0.171 0.200 0.143 0.171 0.229 0.229 1.000 

 
24) Neurons of the fourth layer (FCIR) composition for rule 1: 
μZ'(“zero”) = μX'(“small”) ∘ Raggr(A1(x), A2(z)) = 1.000/0 + 0.900/1 + 0.500/2 + 

1.000/3 + 0.300/4 + 0.229/5 + 0.229/6 + 0.229/7  
25) Neurons of the fifth layer (Defuzzification) for output of rule 1: 
Defuzzification of μZ'(“zero”) ⇒ 0.03342857142857139 
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26) Neurons of the fourth layer (FCIR) composition for rule 2: 
μZ'(“negative medium”) = μX'(“bit larger than small”) ∘ Raggr(A1(x), A2(z)) = 

0.900/0 + 1.000/1 + 0.600/2 + 0.900/3 + 0.400/4 + 0.300/5 + 0.229/6 + 0.229/7  
27) Neurons of the fifth layer (Defuzzification) for output of rule 2: 
Defuzzification of μZ'(“negative medium”) ⇒ −0.12885714285714284 
28) Neurons of the fourth layer (FCIR) composition for rule 3: 
μZ'(“negative large”) = μX'(“larger than small”) ∘ Raggr(A1(x), A2(z)) = 1.000/0 + 

0.900/1 + 0.700/2 + 0.800/3 + 0.500/4 + 0.400/5 + 0.300/6 + 0.229/7  
29) Neurons of the fifth layer (Defuzzification) for output of rule 3: 
Defuzzification of μZ'(“negative large”) ⇒ −0.21 
30) Neurons of the fourth layer (FCIR) composition for rule 4: 
μZ'(“negative large”) = μX'(“smaller than medium”) ∘ Raggr(A1(x), A2(z)) = 

1.000/0 + 0.900/1 + 0.800/2 + 0.700/3 + 0.600/4 + 0.500/5 + 0.400/6 + 0.300/7  
31) Neurons of the fifth layer (Defuzzification) for output of rule 4: 
Defuzzification of μZ'(“negative large”) ⇒ −0.21 
32) Neurons of the fourth layer (FCIR) composition for rule 5: 
μZ'(“negative medium”) = μX'(“bit smaller than medium”) ∘ R(A1(x), A2(z)) = 

0.900/0 + 1.000/1 + 0.900/2 + 0.800/3 + 0.700/4 + 0.600/5 + 0.500/6 + 0.400/7  
33) Neurons of the fifth layer (Defuzzification) for output of rule 5: 
Defuzzification of μZ'(“negative medium”) ⇒ −0.12885714285714284 
34) Neurons of the fourth layer (FCIR) composition for rule 6: 
μZ'(“negative small”) = μX'(“medium”) ∘ Raggr(A1(x), A2(z)) = 0.800/0 + 0.900/1 

+ 1.000/2 + 0.900/3 + 0.800/4 + 0.700/5 + 0.600/6 + 0.500/7  
35) Neurons of the fifth layer (Defuzzification) for output of rule 6: 
Defuzzification of μZ'(“negative small”) ⇒ −0.04771428571428571 
36) Neurons of the fourth layer (FCIR) composition for rule 7: 
μZ'(“zero”) = μX'(“bit larger than medium”) ∘ Raggr(A1(x), A2(z)) = 0.700/0 + 

0.800/1 + 0.900/2 + 1.000/3 + 0.900/4 + 0.800/5 + 0.700/6 + 0.600/7  
37) Neurons of the fifth layer (Defuzzification) for output of rule 7: 
Defuzzification of μZ'(“zero”) ⇒ 0.03342857142857139 
38) Neurons of the fourth layer (FCIR) composition for rule 8: 
μZ'(“positive small”) = μX'(“larger than medium”) ∘ Raggr(A1(x), A2(z)) = 

0.600/0 + 0.700/1 + 0.800/2 + 0.900/3 + 1.000/4 + 0.900/5 + 0.800/6 + 0.700/7  
39) Neurons of the fifth layer (Defuzzification) for output of rule 8: 
Defuzzification of μZ'(“positive small “) ⇒ 0.11457142857142857 
40) Neurons of the fourth layer (FCIR) composition for rule 9: 
μZ'(“positive medium”) = μX'(“smaller than large”) ∘ Raggr(A1(x), A2(z)) = 

0.500/0 + 0.600/1 + 0.700/2 + 0.800/3 + 0.900/4 + 1.000/5 + 0.900/6 + 0.800/7  
41) Neurons of the fifth layer (Defuzzification) for output of rule 9: 
Defuzzification of μZ'(“positive medium”) ⇒ 0.1957142857142857  
42) Neurons of the fourth layer (FCIR) composition for rule 10: 
μZ'(“larger than medium”) = μX'(“bit smaller than large”) ∘ Raggr(A1(x), A2(z)) = 

0.400/0 + 0.500/1 + 0.600/2 + 0.700/3 + 0.800/4 + 0.900/5 + 1.000/6 + 0.900/7  
43) Neurons of the fifth layer (Defuzzification) for output of rule 10: 
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Defuzzification of μZ'(“larger than medium”) ⇒ 0.2768571428571428 
44) Neurons of the fourth layer (FCIR) composition for rule 11: 
μZ'(“smaller than large”) = μX'(“large”) ∘ Raggr(A1(x), A2(z)) = 0.300/0 + 0.400/1 

+ 0.500/2 + 0.600/3 + 0.700/4 + 0.800/5 + 0.900/6 + 1.000/7  
45) Neurons of the fifth layer (Defuzzification) for output of rule 11: 
Defuzzification of μZ'(“smaller than large”) ⇒ 0.358. 
The mean square error for fuzzy model based on our t-norm approach 

2 33.41322 10e −= ×  is shown in Table 3. This result statistically is almost twice 
as accurate, as GA-Generated fuzzy model. 

3.6. Binary Rules Adjustment by New Label 

In real world of NN based systems a value of their input/output pairs might be 
significantly changed in accordance with a set of a new requirements/capabilities. 
It could be a situation of a new label/class introduction. The latter means that 
aggregated FCR matrix of a system ( ) ( )( )1 2,aggrR A x A z  must be modified, 
based on an additional label, never used originally. We presume that the value of 
a new label could situate outside of the scale of normalized output values 

[ ]norm max min,z z z∈ , used initially. At this case one must do the following. 
1) Expand original scale or re-scale both labels/potential input pairs like that 

 [ ]norm max min,z z z z z′ ∈ + ∆ − ∆ , [ ]norm max min,x x x x x′ ∈ + ∆ − ∆ , (3.13) 

where 

 label max max label

min label label min

,

,

z z z z
z

z z z z

 − <∆ = 
− <

 (3.14) 

On practice the value of z z ε∆ = ∆ + , when ε is defined empirically. In general 
terms could be the following linear function ( )f zε = ∆ . 

2) Find the input value, which corresponds to the new label/class. 
For this matter we would use Generalized Modus Tollens [6] mechanism, the 

scheme of which is the following 

Ant 1: IF x is A THEN z is B 
Ant 2: z is B' 

-------------------------------------------            (3.15) 
Cons: x is A'. 

The most important thing to mention is that in (3.15) Ant 1, is represented by 
aggregated FCR matrix of a system ( ) ( )( )1 2,aggrR A x A z .  

In terms of FCR, given a unary relationship ( )( )2R A z B′ ′=  one can obtain 
the consequence ( )( )1R A x′  by CRI by applying it to ( )( )2R A z′  and  

( ) ( )( )1 2,aggrR A x A z  of type (3.10): 

( )( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( ) ( )( )( ) ( )

( ) ( ) ( )( ) ( )( ) ( )( )( )

1 2 1 2,

1 1 ,

1 1
Z X Z

ZX

aggr

z z z x x z z x x z z x zU U U

z z x x z z x x z z xz UU

R A x R A z R A x A z

u u u u u u u u

u u u u u u

µ µ µ µ µ

µ µ µ µ µ

′ ×

′∈

′ ′=

= → ∧ − → −

 = ∧ → ∧ − → − 

∫ ∫

∫







 

(3.16) 
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3) Based on CRI (3.16) add neuron of the third layer (FCR) for new rule: 

 
( ) ( )( ) ( ) ( )

( ) ( )( ) ( )( ) ( )( )( ) ( )
1 2,

1 1 ,
X Z

new X Z X Z

x x z z x x z z x zU U

R A x A z X U U Z X U U Z

u u u u u uµ µ µ µ′ ′ ′ ′×

′ ′ ′ ′= × → × ¬ × → ×¬

= → ∧ − → −∫



(3.17) 

4) Repeat an aggregation of neurons of the third layer (FCR) by using (3.17) 
and by previously aggregated FCR matrix of a system ( ) ( )( )1 2,aggrR A x A z .  

 ( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 2 1 2 1 2, , ,aggr new aggrR A x A z R A x A z R A x A z′ =   (3.18) 

This way we incorporated new knowledge into our system. 

3.7. The Instance of Binary Rules Adjustment 

1) Suppose we have the new label 0.37z′ =  and let 0.05x∆ = , 0.02z∆ = . 
Therefore expand (re-scale) both labels/potential input pairs like that [ ]0.1,0.5x′∈ , 

[ ]0.23,0.378z′∈ − . 
2) The fuzzified value for 0.37z′ =  from (3.13) and (3.4) is [ ]0, Zk CardU∀ ∈ , 

( ) ( )11 1
1kz z Z norm

Z

u k Ent CardU bz
CardU

µ ′ ′= − × − − ×  −
, i.e. 

μz'(“0.37”) = 0.000/0 + 0.143/1 + 0.286/2 + 0.429/3 + 0.571/4 + 0.714/5 + 
0.857/6 + 1.000/7 

3) After application of Generalized Modus Tollens (3.15) and (3.16), i.e.  

( )( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( )

( )( ) ( )( )( ) ( )

1 2 1 2,

1 1 ,
Z X Z

aggr

z z z x x z zU U U

x x z z x z

R A x Rb A z R A x A z

u u u u

u u u u

µ µ µ

µ µ

′ ×

′ ′=

= →

∧ − → −

∫ ∫



   

we are getting 
μx'(“large”) = 0.429/0 + 0.229/1 + 0.229/2 + 0.229/3 + 0.229/4 + 0.286/5 + 

0.429/6 + 0.571/7 + 0.714/8 + 0.857/9 + 1.000/10 
4) Defuzzification of μx'(“large”) ⇒ 0.5. 
5) From (3.17) we build binary matrix for the new rule 

( ) ( )( ) ( ) ( )1 2,new X Z X ZR A x A z X U U Z X U U Z′ ′ ′ ′= × → × ¬ × → ×¬ =  

 
0.000 0.082 0.163 1.000 0.184 0.122 0.061 0.000 

0.000 0.110 0.163 0.131 0.098 0.065 0.033 0.000 

0.000 0.110 0.163 0.131 0.098 0.065 0.033 0.000 

0.000 0.110 0.163 0.131 0.098 0.065 0.033 0.000 

0.000 0.110 0.163 0.131 0.098 0.065 0.033 0.000 

0.000 0.102 1.000 0.163 0.122 0.082 0.041 0.000 

0.000 0.082 0.163 1.000 0.184 0.122 0.061 0.000 

0.000 0.061 0.122 0.184 1.000 0.163 0.082 0.000 

0.000 0.041 0.082 0.122 0.163 1.000 0.102 0.000 

0.000 0.020 0.041 0.061 0.082 0.102 1.000 0.000 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
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6) Repeat an aggregation of neurons of the third layer by using (3.18) 

( ) ( )( )1 2,aggrR A x A z′ =  

 
1.000 0.129 0.200 1.000 0.229 0.214 0.214 0.229 

0.229 1.000 0.163 0.200 0.171 0.229 0.214 0.214 

1.000 0.229 0.171 0.143 0.200 0.171 0.229 0.214 

1.000 0.229 0.229 0.171 0.143 0.200 0.171 0.229 

0.229 1.000 0.229 0.229 0.171 0.171 0.229 0.171 

0.214 0.143 1.000 0.229 0.229 0.171 0.214 0.214 

0.171 0.114 0.200 1.000 0.229 0.214 0.171 0.229 

0.143 0.114 0.171 0.229 1.000 0.229 0.171 0.171 

0.200 0.143 0.143 0.214 0.229 1.000 0.200 0.114 

0.171 0.200 0.143 0.171 0.229 0.229 1.000 0.129 

0.229 0.171 0.200 0.143 0.171 0.229 0.229 1.000 

 
7) Unit test ( ) ( )( )1 2,aggrR A x A z′  by using μx(“0.5”). For this matter apply 

fuzzification (3.2) and get 
R(A1(x)) = μx(“0.5”) = 0.000/0 + 0.100/1 + 0.200/2 + 0.300/3 + 0.400/4 + 

0.500/5 + 0.600/6 + 0.700/7 + 0.800/8 + 0.900/9 + 1.000/10.  
Obtain the consequence ( )( )2R A z  by CRI to ( )( )1R A x  and  

( ) ( )( )1 2,aggrR A x A z′  of type (3.10): 

( )( ) ( )( ) ( ) ( )( )22 1 1 2,
age gr

R A z R A x R A x A z′=   

and get μz(“smaller than large”) = 0.300/0 + 0.400/1 + 0.500/2 + 0.600/3 + 
0.700/4 + 0.800/5 + 0.900/6 + 1.000/7.  

Defuzzification of μz(“smaller than large”) ⇒ 0.378. The mean square error 
for the case 2 44.675 10e −= × , which is extremely precise result, confirming the 
legitimacy of the approach.  

4. Conclusion 

In this study, we first examined well-known [1] FRM with genetic-based learn-
ing mechanism. We proposed an alternative way to build FRM, which does not 
require any adjustment/learning. We have shown that our approach is statisti-
cally almost twice as accurate, as the well-known FRM, which uses a genet-
ic-based learning mechanism. We have introduced the label-driven binary rela-
tionship matrix adjustment technique.  
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Appendix 

The interval based MF, used in [1] 

 ( )

1

1
1 2

2 1
1 2 3

3
2 3

3 2

3

0, if

, if
, , ,

, if

0, if

i

i
i i

i i
i i i

i
i i

i i

i

x a
x a a x a

a a
x a a a

a x a x a
a a

x a

µ


 −
 −=  −
 −





 

 



 (a.1) 

where 1 2 3, ,i i ia a a  are tuning parameters for i-th fuzzy subset 

( )1 1 ,n
i i i ia a δ τ= + −  

( )2 2 ,n
i i ia a δ= +  

( )3 3 ,n
i i i ia a δ τ= + +  

where ,i iδ τ  are some tuning coefficients. The parameter iδ  shifts MF to the 
left or to the right. The parameter iτ  allows changing the shape of MF. 

 
0.39

0.24
0.39

0.24

d
0.155

d

z
c

z

z z
z

z

µ

µ
−

−

⋅
= = −∫
∫

 (a.2) 

The summary of the referenced fuzzy model, proposed in [1] is the following. 
1) Define fussy sets for input i XA U⊆ , [ ]1,i l∀ ∈  and output one j ZB U⊆ , 

[ ]1,j p∀ ∈  
2) Determine linguistic (fuzzy) rules. 
3) Implement the justification process. During the fuzzification the values of 

input variable are transformed by using stored MFs to produce fuzzy input val-
ues. 

4) Activate knowledge-based fuzzy logic inference mechanism. Generate fuzzy 
output value. 

5) Execute defuzzification process. It results in crisp value of the output fuzzy 
value. 

6) Calculate by Formula (2.3) the mean square error e2 for each input value.  
7) If e is less than the given precision, go to step 17. 
8) Start the GA work t = 1. 
9) Create the initial population. 
10) Evaluate G(t). This step also consists of fuzzification, inference, defuzzifi-

cation, which precede calculation of the mean square error for each chromo-
some ic , 1,i ps= . Besides, minimum square error is stored in memory. 

11) If some termination conditions are met, go to step 15. 
12) Produce new generation G(t + 1) from G(t). Then crossover and mutation 

are applied. 
13) Evaluate G(t + 1). 
14) Return to step 11.  
15) Terminate GA’s work. 
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16) Find the smallest one among all minimum errors stored in memory. Select 
the fuzzy set iA , 1,i n=  and crisp output value, by which the smallest mean 
square error obtained. 

17) End.  
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