
Journal of Software Engineering and Applications, 2024, 17, 638-663
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2024.178035 Aug. 28, 2024 638 Journal of Software Engineering and Applications

A Neuro T-Norm Fuzzy Logic Based System

Alex Tserkovny

Applied AI Services, Brookline, USA

Abstract
In this study, we are first examining well-known approach to improve fuzzy
reasoning model (FRM) by use of the genetic-based learning mechanism [1].
Later we propose our alternative way to build FRM, which has significant
precision advantages and does not require any adjustment/learning. We put
together neuro-fuzzy system (NFS) to connect the set of exemplar input fea-
ture vectors (FV) with associated output label (target), both represented by
their membership functions (MF). Next unknown FV would be classified by
getting upper value of current output MF. After that the fuzzy truths for all
MF upper values are maximized and the label of the winner is considered as
the class of the input FV. We use the knowledge in the exemplar-label pairs
directly with no training. It sets up automatically and then classifies all input
FV from the same population as the exemplar FVs. We show that our ap-
proach statistically is almost twice as accurate, as well-known genetic-based
learning mechanism FRM.

Keywords
Neuro-Fuzzy System, Neural Network, Fuzzy Logic, Modus Ponnens, Modus
Tollens, Fuzzy Conditional Inference

1. Introduction

Neural Network (NN) is regression machine that associates inputs with outputs
[2]. It may represent input/output transformations, for which no models are
known. A NN is a black box with N input values { }, 1,q

jX x j N= = , 1,q Q=
that form a feature vector (FV) X to obtain an output vector Z that designates
the class, identification, group, pattern, or associated output codeword of the
input vector X. To train NN a set of Q exemplar input FVs is mapped to a set of
output target vectors { }. , 1,qT t q Q= = , also called labels, so that each .

qx maps
more closely to .

qt , than to another target. This allows the NN to make interpo-
lations and extrapolations that map any input X to Z that best matches label T(q)

How to cite this paper: Tserkovny, A.
(2024) A Neuro T-Norm Fuzzy Logic Based
System. Journal of Software Engineering
and Applications, 17, 638-663.
https://doi.org/10.4236/jsea.2024.178035

Received: July 11, 2024
Accepted: August 25, 2024
Published: August 28, 2024

Copyright © 2024 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2024.178035
https://www.scirp.org/
https://doi.org/10.4236/jsea.2024.178035
http://creativecommons.org/licenses/by/4.0/

A. Tserkovny

DOI: 10.4236/jsea.2024.178035 639 Journal of Software Engineering and Applications

for the correct index q. When trained, a NN is a computational machine that
implements an algorithm that is specified by the input nodes,

The original backpropagation NNs (BPNNs) are trained by steepest descent
on the weights that minimize the output sum-squared error E, were

. 2

1,

q q

q Q
E z t

=

= −∑

Here zq is the computed output for the input vector xq, and tq is the target
output (label) to which xq is supposed to map. Each zq is a differentiable function
of the weights wnm, so training is done on each single weight by taking steps
along the direction of steepest descent of the E via

1i i
nm nm

nm

Ew w
w

α+  ∂
= +  ∂ 

where α is the step size parameter, also called the learning rate, and i is the itera-
tion number. The starting values of the wnm are drawn randomly, usually be-
tween −0.5 and 0.5 for a cautious start. Training usually requires thousands of
epochs, of which each is a set of steps to adjust each weight in {wnm} once (or
sometimes more than once). However, the learning of one weight tends to un-
learn the other weights, so epochs are continued until the sum-squared error is
sufficiently small. Another problem of BPNNs is that the learned set of weights
yields a local minimum, of which it has been shown that there are many [2] so
that the learning is very likely to not be optimal. BPNNs have only a single global
minimum and are thus preferable. But for most trained NNs there is also the
problem of overtraining, by which reducing the sum-squared error to a very
small value causes the noise on the input exemplars to be learned. This reduces
the accuracy when other feature vectors are put through the NN that have dif-
ferent noise values.

2. Fuzzy Neural Network (FNN)
2.1. The Structure

The FNN in this study (Figure 1) is considered to be a private case of NFS to
generate fuzzy rules and MFs. Note that the core of the system is multilayered
network-based structure [1]. Such a system would generate both fuzzy rules and
MFs. The source of exemplar input-output data would be described later.

Figure 1. Neuro-fuzzy system.

https://doi.org/10.4236/jsea.2024.178035

A. Tserkovny

DOI: 10.4236/jsea.2024.178035 640 Journal of Software Engineering and Applications

A more detailed scheme of neuro-fuzzy system is depicted in Figure 2. For
simplicity’s sake we presented only two inputs X1 and X2 and one output Z.

The first layer of neurons simply distributes inputs of the system among neu-
rons of the subsequent layer. The second layer consists of several groups of neu-
rons equivalent to the number of inputs (for our case 2).

Neurons in each group represent MFs for fuzzy labels used as values for the
input connected with this group. Output of every such neuron is value of mem-
bership of the input to the corresponding fuzzy level. This process is called
“fuzzification” and these neurons are “fuzzifiers.”

Figure 2. Detailed scheme of neuro-fuzzy system.

Neurons of the third layer represent fuzzy rules. Number of neurons in this
layer can be the same as the number of rules in the logical system IF-THEN.

Neurons of the fourth layer determine MFs of fuzzy labels. Neurons of this
layer perform the most complex operation, called Compositional Rule of Infer-
ence (CRI). Thus, the output MF is determined.

In the fifth layer the defuzzification procedure is performed. This means de-
termination of crisp value output based on inferred fuzzy value.

Figure 2 shows a detailed structure of neuro-fuzzy system, which is like one
for BPNN, mentioned in previous section, and hence allows investigation by the
similar methods, but there are some differences. In NFS each neuron is specified
not by a set of weight/threshold/universal activation function only, but also by
complex processing unit with an individual function and set of parameters. And
lastly the neurons between consecutive layers are not fully-connected unlike in
case of traditional BPNN [1].

2.2. Fuzzy Reasoning Model

As it was mentioned above, in this study we first are examining well known [1]
approach to improve FRM by using genetic-based learning mechanism. Later we
propose our alternative way to build FRM, which has significant precision ad-
vantages and does not require any adjustment/learning.

https://doi.org/10.4236/jsea.2024.178035

A. Tserkovny

DOI: 10.4236/jsea.2024.178035 641 Journal of Software Engineering and Applications

In [1] it was stated that the selection of acceptable MFs is generally a subjec-
tive decision, but change in MFs may significantly alter the performance of the
fuzzy models. It was claimed that the genetic algorithm (GA) allows to generate
an optimal set of parameters for the fuzzy model, based either on their initial
subjective selection or on a random selection.

From now on we adopt the following fuzzy conditional statements to describe
a particular knowledge-based state [1]:

IF x is A1 THEN z is B1
ALSO

IF x is A2 THEN z is B2
ALSO

…………… (2.1)
ALSO

IF x is Aq THEN z is Bq

where x and z are linguistic variables, and 1, , qA A and 1, , qB A are fuzzy
sets on X and Z, respectively. The fuzzy conditional statements (2.1) can be for-
malized in the form of the fuzzy relation (),R X Z

 () ()1 2, , , , , ,i qR X Z ALSO R R R R=   (2.2)

where ALSO represents a sentence connective which combines the iR into the
fuzzy relation, (),R X Z and iR denotes the fuzzy relation between X and Z
determined by the i-th fuzzy conditional statement, in which z = Bi corresponds
to i-th NNs label. The NN learning goal is to find pairs of fuzzy sets iA and

iB , 1,i Q= such that the mean square error e2 between the fuzzy model output
values and experimental output values would be the smallest. The mean square
error e2 is calculated by formula

()2

12
2

1

Q
i ii

Q
ii

z z
e

z

∗
=

∗
=

−
=
∑
∑

 (2.3)

where iz∗ is the experimental output value of the object for some current value
i; zi is the corresponding fuzzy model output value; Q is number of experiments.

In [1] the demand function ()sin 1z x x= ⋅ was used to generate the set of
output values z. Results are presented in Table 1.

Table 1. Training data.

Q Input values Experimental Output values

1 0.15 0.056

2 0.18 −0.120

3 0.21 −0.210

4 0.24 −0.205

5 0.27 −0.140

6 0.30 −0.057

https://doi.org/10.4236/jsea.2024.178035

A. Tserkovny

DOI: 10.4236/jsea.2024.178035 642 Journal of Software Engineering and Applications

Continued

7 0.33 0.037

8 0.36 0.128

9 0.39 0.213

10 0.42 0.290

11 0.45 0.358

Note that []0.15,0.45x∈ , []0.21,0.358z∈ − .
To compare our results with those from [1] we use the same linguistic de-

scriptions of the relationship between x and z to specify the characteristics of the
function:

IF x = small THEN z = zero
ALSO
IF x = bit larger than small THEN z = negative small
ALSO
IF x = larger than small THEN z = negative large
ALSO
IF x = smaller than medium THEN z = negative large
ALSO
IF x = bit smaller than medium THEN z = negative medium
ALSO
IF x = medium THEN z = negative small
ALSO (2.4)

IF x = bit larger than medium THEN z = zero
ALSO
IF x = larger than medium THEN z = positive small
ALSO
IF x = smaller than large THEN z = positive medium
ALSO
IF x = bit smaller than large THEN z = larger than medium
ALSO
IF x = large THEN z = smaller than large

All linguistic terms from (2.4) are defined in the following Table 2.

Table 2. Linguistic variables for input/output.

Value of variable , 0,10i Xx U i∈ =

, 0,7j Zz U i∈ = X Z

small (s) negative large (nl) 0

bit larger than small (bls) negative medium (nm) 1

larger than small (ls) negative small (ns) 2

smaller than medium (sm) zero 3

https://doi.org/10.4236/jsea.2024.178035

A. Tserkovny

DOI: 10.4236/jsea.2024.178035 643 Journal of Software Engineering and Applications

Continued

bit smaller than medium (bsm) positive small (ps) 4

Medium (m) positive medium (pm) 5

bit larger than medium (blm) larger than medium (lm) 6

larger than medium (lm) smaller than large (sl) 7

smaller than large (sl) 8

bit smaller than large (bsl) 9

Large (l) 10

In [1] it was assumed that to find the crisp output value corresponding to the

input value x = 0.26 one had to successively apply the fuzzification, fuzzy logic
inference mechanism and defuzzification. Experimental output value, found by
formula

()sin 1z x x= ⋅ , was ()0.26 sin 1 0.26 0.17z = ⋅ = − .

In [1] membership degrees of values for both input fuzzy set, i XA U⊂ ,
[]1,10i∀ ∈ and output one j ZB U⊂ , []1,7j∀ ∈ , were determined by (6.1)

from Appendix. From Figure 3 we see that variable x has 11 linguistic values,
whereas the variable z has 8 (see Figure 4) in Appendix. All linguistic values are
presented in Table 2. The following is simulation results from [1] by (a.1):

Figure 3. MF of fuzzy sets for input X.

Figure 4. MF of fuzzy sets for output Z.

https://doi.org/10.4236/jsea.2024.178035

A. Tserkovny

DOI: 10.4236/jsea.2024.178035 644 Journal of Software Engineering and Applications

μX(“0.26”) = 0/0 + 0/1 + 0/2 + 0.33/3 + 0.67/4 + 0/5 + 0/6 + 0/7 + 0/8 + 0/9 +
0/10

It was shown that the knowledge-based inference mechanism was applied.
The rule base (2.4), consisting of fuzzy linguistic rules, was used. Consequences
of multiple (11) rules resulted in the fuzzy output set (see Figure 5), constructed
on universe UZ and bounded by the following MF:

μz(“−0.17”) = 0.33/0 + 0.67/1 + 0/2 + 0/3 + 0/4 + 0/5 + 0/6 + 0/7.

Figure 5. Geometric interpretation of inference mechanism and center of gravity method
of defuzzification X.

Then defuzzification was applied. For this matter, the “center” of gravity de-
fuzzification method (a.2) from Appendix was used (see Figure 6).

Figure 6. GA-generated improved MFs for input X.

Output values for given input values were calculated in the same way (see Ta-
ble 3). Note that fuzzy rules and MFs were generated heuristically. In [1] it was

https://doi.org/10.4236/jsea.2024.178035

A. Tserkovny

DOI: 10.4236/jsea.2024.178035 645 Journal of Software Engineering and Applications

mentioned that these rules could not provide the model precision required. To
achieve the latter, it is necessary to tune appropriately the rules, as well as the
shape and the center of the MF. To this end GA was used.

2 30.26; 0.155; 7.7854 10x y e −= = − = ×

Table 3. Comparison of models.

Q
Input
values

Experimental
Output values

Output values of the
GA-Generated

fuzzy model

Output values
Of the fuzzy

model

Output of
presented fuzzy

model

1 0.15 0.056 0.030 0.030 0.0334

2 0.18 −0.120 −0.091 −0.060 −0.129

3 0.21 −0.210 −0.209 −0.210 −0.21

4 0.24 −0.205 −0.210 −0.210 −0.21

5 0.27 −0.140 −0.160 −0.150 −0.13

6 0.30 −0.057 −0.060 −0.060 −0.048

7 0.33 0.037 0.027 0.030 0.033

8 0.36 0.128 0.120 0.120 0.115

9 0.39 0.213 0.196 0.210 0.196

10 0.42 0.290 0.300 0.300 0.28

11 0.45 0.358 0.360 0.360 0.358

Mean Square Error 0.00624 0.01153 0.00341

2.3. Genetic-Based Learning

In [1] it was shown that 11 fuzzy sets were used in linguistic rules preconditions
(see Table 2). Consequently, it was encoded 11 × 3 − 2 = 31 points. Each point

1 1, ,3iu i = took value from a domain [],i iD a b U= ⊆ . It was supposed that if

1 0.15u = was the value from an interval []0.12,0.16 U⊆ , then 2 0.18u =
from [0.17, 0.20] etc. Then the processes of encoding and decoding were applied,
they were described in both [1] and [3]. The GA algorithm is briefly described in
Appendix.

The mean square errors for both original (2 311.53532 10e −= ×) and GA-based
(2 36.24290 10e −= ×) fuzzy models are presented in Table 3.

3. T-Norm Based Approach

In contrast with above mentioned method, we are using different knowledge
based one. It is built upon our unique way to fuzzification/defuzzification tech-
nique and use of t-norm based fuzzy logic [4] for logical inference, which, in
general does not require additional learning. But in case of “extreme” adjust-
ment necessity we propose a special procedure, which also based on the same
fuzzy logic.

https://doi.org/10.4236/jsea.2024.178035

A. Tserkovny

DOI: 10.4236/jsea.2024.178035 646 Journal of Software Engineering and Applications

3.1. Fuzzification of Input/Output

For each 1,i Q= , where Q is the number of exemplar input, we represent each
FNN input ix as a fuzzy set, forming linguistic variable, described by a triplet
of the form

{ } (), , , 1, ,i i
X xX x U X x T u i Q= ∈ = ,

where ()xT u is extended term set of the linguistic variable “Input” from Table
2, X is normal fuzzy set with correspondent MF []: 0,1x XUµ → . To normal-
ize values of *x we use

min

max min

, 1,
i

norm
x xx i Q

x x
−

= =
−

,

We will use the following mapping

(): | 1X x X normX U u Ent CardU x∂ → = − ×   ,

where

 ()
x

x x xU
X u uµ= ∫ (3.1)

On the other hand, to determine the estimates of the MF in terms of single-
tons from (3.1) in the form () []| 0,

j jx x x Xu u j CardUµ ∀ ∈ we propose the fol-
lowing procedure.

[]

() ()

0, ,
11 1

1j

X

x x X norm
X

j CardU

u j Ent CardU x
CardU

µ

∀ ∈

= − × − − ×
−

  
 (3.2)

MF for an input from (3.2) is shown in Figure 7.

Figure 7. MF of fuzzy sets for X.

The conceptual difference between our approach to define MF and the one,
traditionally used in fuzzy control systems, is that we define all values of a lin-
guistic variable over entire physical scale of input/output parameters via nor-
malization mechanism and therefore mathematically reject the notion of interval

https://doi.org/10.4236/jsea.2024.178035

A. Tserkovny

DOI: 10.4236/jsea.2024.178035 647 Journal of Software Engineering and Applications

based MFs.
Going forward for each 1,i Q= , where Q is the number of exemplar output,

we also represent each FNN output iz as a fuzzy set, forming linguistic varia-
ble, described by a triplet of the form

{ } (), , , 1, ,i i
Z zZ z U Z z T u i Q= ∈ = ,

where ()zT u is extended term set of the linguistic variable “Output “from Ta-
ble 2, Z is normal fuzzy set with correspondent MF []: 0,1z ZUµ → . We use
the same normalization procedure

min

max min

i

norm
z zz

z z
−

=
−

, 1,i Q= ,

With the following mapping (): | 1Z z Z normZ U u Ent CardU zΩ → = − ×   ,
where

 () .
Z

z z zU
Z u uµ= ∫ (3.3)

On the other hand, similarly to the previous cases, to determine the estimates
of the MF in terms of singletons from (3.3) in the form

() []| 0,
k kz z z Zu u k CardUµ ∀ ∈ we propose the following procedure.

[]

() ()

0, ,
11 1 ,

1

Z

z zk Z norm
Z

k CardU

u k Ent CardU z
CardU

µ

∀ ∈

= − × − − ×  −

 (3.4)

where MF for an output from (3.4) is shown in Figure 8.

Figure 8. MF of fuzzy sets for Z.

3.2. Defuzzification of an Output

Given the fact that “Output” linguistic variable is represented by normal MF of
the type (3.3) and for a goal of defuzzification we must find the value of index

*k , which corresponds to the following singleton value from (3.3), given (3.4)

() []
* *

* | 1, 0,
k k

z z Zk u u k CardUµ∃ == ∀ ∈ ,

https://doi.org/10.4236/jsea.2024.178035

A. Tserkovny

DOI: 10.4236/jsea.2024.178035 648 Journal of Software Engineering and Applications

and the value of Output []* max min,
k

z z z∈ would be defined as

 *
* max min

min1k
Z

z zz k z
CardU

−
= × +

−
 (3.5)

3.3. Fuzzy Inference

To convert (3.1)-(3.4) into fuzzy logic-based statement and terms from Table 2
we use a Fuzzy Conditional Inference Rule (FCIR), formulated by means of
“common sense” as a following conditional clause:

 P = “IF (X is X), THEN (Z is Z)” (3.6)

In other words, we use fuzzy conditional inference of the following type [5]:

Ant 1: If Input is X then Output is Z
Ant 2: Input is X'

-- (3.7)
Cons: Output is Z'.

where , XX X U′ ⊆ and , ZZ Z U′ ⊆ .
Note that statements (3.6) and (3.7) represent “modus-ponens” syllogism.

Given that we use the following type of implication [1]

()1 , ,
1,

x z x z
X Z

x z
 − ⋅ >→ = 

≤
 (3.8)

For practical purposes, described down below, we will use Fuzzy Conditional
Rule (FCR) of the following type

() ()() () ()

() ()() ()() ()()() ()
1 2,

1 1 ,
X Z

X Z X Z

x x z z x x z z x zU U

R A x A z X U U Z X U U Z

u u u u u uµ µ µ µ
×

= × → × ¬ × → ×¬

= → ∧ − → −∫



 (3.9)

Given (3.8) from (3.9) we are getting

() ()() () ()() ()() ()()()
()() () () ()

() ()
()() () ()

1 2, 1 1

1 , ,

1, ,

1 , () .

x x z z x x z z

x x z z x x z z

x x z z

z z x x z z x x

R A x A z u u u u

u u u u

u u

u u u u

µ µ µ µ

µ µ µ µ

µ µ

µ µ µ µ

= → ∧ − → −

 − ⋅ <
= =


− ⋅ <

(3.10)

Given a unary relationship ()()1R A x X′ ′= one can obtain the consequence
()()2R A z′ by CRI to ()()1R A x′ and () ()()1 2,R A x A z of type (3.10):

()() () ()()
() () ()() ()() ()()() ()

() () ()() ()() ()()()

2 1 2,

1 1 ,

1 1
X X Z

XZ

x x x x x z z x x z z x zU U U

x x x x z z x x z z zx UU

R A z X R A x A z

u u u u u u u u

u u u u u u

µ µ µ µ µ

µ µ µ µ µ

′ ×

′∈

′ ′=

= → ∧ − → −

 = ∧ → ∧ − → − 

∫ ∫

∫







(3.11)

Corollary 1.
If fuzzy sets XX U⊆ and ZZ U⊆ are defined as (3.1) and (3.3) respective-

ly, and are represented by unimodal and normal MFs, and also

X ZCardU CardU≠ , whereas () ()()1 2,R A x A z is defined by (3.10), then the

https://doi.org/10.4236/jsea.2024.178035

A. Tserkovny

DOI: 10.4236/jsea.2024.178035 649 Journal of Software Engineering and Applications

number of singles in matrix (3.10) is less or equal 2.
Proof:
Because of unimodality and normality of MFs from (3.1) and (3.3), given

(3.10) and the fact that

[] []

()

()

0, , 0, |
1 1

1
1 1

1

X Z X Z

X norm
X

Z norm
Z

j CardU k CardU CardU CardU

j Ent CardU x
CardU

k Ent CardU z
CardU

∀ ∈ ∀ ∈ ≠

→ × − − ×  −

≠ × − − ×  −

the following is taking place.
1) The one single in a matrix is always there, because

()1 1 0
1 X norm

X

j Ent CardU x
CardU

× − − × =  −

and

()1 1 0
1 Z norm

Z

k Ent CardU z
CardU

× − − × =  −
,

or

()* 1X normj Ent CardU x= − ×   and ()* 1Z normk Ent CardU z= − ×  

Therefore from (3.1) and (3.3)

[] ()
[] ()
() ()

* *

* *

* *

*

*

0, | ! | 1;

| 0, | ! | 1;

, , 1

j j

k k

j k

X x x x

Z z z z

R x z x z

j CardU j u u

k CardU k u u

u u u u

µ

µ

µ

∀ ∈ ∃ =

∀ ∈ ∃ =

→ =

2) The only second single in a matrix is when

()1 1 1
1 X norm

X

j Ent CardU x
CardU

× − − × =  −

and

()1 1 1
1 Z norm

Z

k Ent CardU z
CardU

× − − × =  −
,

or

() ()1 1X norm Xj Ent CardU x CardU− − × = −  

and

() ()1 1Z norm Zk Ent CardU z CardU− − × = −   ,

which means 1normx = and [] **
max1 ! 1, | i

normz i Q x x= →∃ ∈ = ,
*

max
iz z= and j

= 0, k = 0. (Q. E. D.).

3.4. Aggregation

The aggregation (2.2) of knowledge-based situation (2.1) can be formalized in

https://doi.org/10.4236/jsea.2024.178035

A. Tserkovny

DOI: 10.4236/jsea.2024.178035 650 Journal of Software Engineering and Applications

the form of the fuzzy relation (),R X Z . We interpret a sentence connective
ALSO as a fuzzy set Union

() 1 2, i qR X Z R OR R OR R OR R=    

In terms of (3.9)-(3.11) we use an aggregation of the following form

 () ()() () ()()1 2 1 21
, ,Q

aggr ii
R A x A z R A x A z

=
=


 (3.12)

3.5. Build of Neuro-Fuzzy System

We use an experimental input/output value pairs from Table 1.
Let us define the following in terms of neuro-fuzzy system. We are using 11

rules from (2.4). For input/output fuzzification we use (3.2) and (3.4) respec-
tively. For FCR we use (3.10). For FCIR we use (3.11). For output defuzzification
we use (3.5).

1) Neurons of the second layer (fuzzification) for rule 1:
μX(“small”) = μX(“0.15”) = 1.000/0 + 0.900/1 + 0.800/2 + 0.700/3 + 0.600/4 +

0.500/5 + 0.400/6 + 0.300/7 + 0.200/8 + 0.100/9 + 0.000/10
μZ(“zero”) = μZ(“0.056”) = 0.571/0 + 0.714/1 + 0.857/2 + 1.000/3 + 0.857/4 +

0.714/5 + 0.571/6 + 0.429/7
2) Neurons of the third layer (FCR) for rule 1:
R1(A1(x), A2(z)) = (μX(“small”) → μZ(“zero”)) = (μX(“0.15”) → μZ(“0.056”)) =

X → Z 0 1 2 3 4 5 6 7

0 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000

1 0.057 0.071 0.086 0.000 0.086 0.071 0.057 0.043

2 0.114 0.143 0.114 0.000 0.114 0.143 0.114 0.086

3 0.171 0.200 0.100 0.000 0.100 0.200 0.171 0.129

4 0.229 0.171 0.086 0.000 0.086 0.171 0.229 0.171

5 0.214 0.143 0.071 0.000 0.071 0.143 0.214 0.214

6 0.171 0.114 0.057 0.000 0.057 0.114 0.171 0.229

7 0.129 0.086 0.043 0.000 0.043 0.086 0.129 0.171

8 0.086 0.057 0.029 0.000 0.029 0.057 0.086 0.114

9 0.043 0.029 0.014 0.000 0.014 0.029 0.043 0.057

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3) Neurons of the second layer (fuzzification) for rule 2:
μX(“bit larger than small”) = μX(“0.18”) = 0.900/0 + 1.000/1 + 0.900/2 +

0.800/3 + 0.700/4 + 0.600/5 + 0.500/6 + 0.400/7 + 0.300/8 + 0.200/9 + 0.100/10
μZ(“negative small”) = μZ(“−0.12”) = 0.857/0 + 1.000/1 + 0.857/2 + 0.714/3 +

0.571/4 + 0.429/5 + 0.286/6 + 0.143/7
4) Neurons of the third layer (FCR) for rule 2:
R2(A1(x), A2(z)) = (μX(“bit larger than small”) → μZ(“negative small”)) =

(μX(“0.18”) → μZ(“−0.12”)) =

https://doi.org/10.4236/jsea.2024.178035

A. Tserkovny

DOI: 10.4236/jsea.2024.178035 651 Journal of Software Engineering and Applications

X → Z 0 1 2 3 4 5 6 7

0 0.086 0.000 0.086 0.071 0.057 0.043 0.029 0.014

1 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.086 0.000 0.086 0.071 0.057 0.043 0.029 0.014

3 0.114 0.000 0.114 0.143 0.114 0.086 0.057 0.029

4 0.100 0.000 0.100 0.200 0.171 0.129 0.086 0.043

5 0.086 0.000 0.086 0.171 0.229 0.171 0.114 0.057

6 0.071 0.000 0.071 0.143 0.214 0.214 0.143 0.071

7 0.057 0.000 0.057 0.114 0.171 0.229 0.171 0.086

8 0.043 0.000 0.043 0.086 0.129 0.171 0.200 0.100

9 0.029 0.000 0.029 0.057 0.086 0.114 0.143 0.114

10 0.014 0.000 0.014 0.029 0.043 0.057 0.071 0.086

5) Neurons of the second layer (fuzzification) for rule 3:
μX(“0.21”) = 0.800/0 + 0.900/1 + 1.000/2 + 0.900/3 + 0.800/4 + 0.700/5 +

0.600/6 + 0.500/7 + 0.400/8 + 0.300/9 + 0.200/10
μZ(“−0.21”) = 1.000/0 + 0.857/1 + 0.714/2 + 0.571/3 + 0.429/4 + 0.286/5 +

0.143/6 + 0.000/7
6) Neurons of the third layer (FCR) for rule 3:
R3(A1(x), A2(z)) = (μX(“larger than small”) → μZ(“negative large”)) =

(μX(“0.21”) → μZ(“−0.21”)) =

X → Z 0 1 2 3 4 5 6 7

0 0.000 0.114 0.143 0.114 0.086 0.057 0.029 0.000

1 0.000 0.086 0.071 0.057 0.043 0.029 0.014 0.000

2 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3 0.000 0.086 0.071 0.057 0.043 0.029 0.014 0.000

4 0.000 0.114 0.143 0.114 0.086 0.057 0.029 0.000

5 0.000 0.100 0.200 0.171 0.129 0.086 0.043 0.000

6 0.000 0.086 0.171 0.229 0.171 0.114 0.057 0.000

7 0.000 0.071 0.143 0.214 0.214 0.143 0.071 0.000

8 0.000 0.057 0.114 0.171 0.229 0.171 0.086 0.000

9 0.000 0.043 0.086 0.129 0.171 0.200 0.100 0.000

10 0.000 0.029 0.057 0.086 0.114 0.143 0.114 0.000

7) Neurons of the second layer (fuzzification) for rule 4:
μX(“0.24”) = 0.700/0 + 0.800/1 + 0.900/2 + 1.000/3 + 0.900/4 + 0.800/5 +

0.700/6 + 0.600/7 + 0.500/8 + 0.400/9 + 0.300/10

https://doi.org/10.4236/jsea.2024.178035

A. Tserkovny

DOI: 10.4236/jsea.2024.178035 652 Journal of Software Engineering and Applications

μZ(“−0.205”) = 1.000/0 + 0.857/1 + 0.714/2 + 0.571/3 + 0.429/4 + 0.286/5 +
0.143/6 + 0.000/7

8) Neurons of the third layer (FCR) for rule 4:
R4(A1(x), A2(z)) = μX(“smaller than medium”) → μZ(“negative large”) =

(μX(“0.24”) → μZ(“−0.205”)) =

X → Z 0 1 2 3 4 5 6 7

0 0.000 0.100 0.200 0.171 0.129 0.086 0.043 0.000

1 0.000 0.114 0.143 0.114 0.086 0.057 0.029 0.000

2 0.000 0.086 0.071 0.057 0.043 0.029 0.014 0.000

3 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4 0.000 0.086 0.071 0.057 0.043 0.029 0.014 0.000

5 0.000 0.114 0.143 0.114 0.086 0.057 0.029 0.000

6 0.000 0.100 0.200 0.171 0.129 0.086 0.043 0.000

7 0.000 0.086 0.171 0.229 0.171 0.114 0.057 0.000

8 0.000 0.071 0.143 0.214 0.214 0.143 0.071 0.000

9 0.000 0.057 0.114 0.171 0.229 0.171 0.086 0.000

10 0.000 0.043 0.086 0.129 0.171 0.200 0.100 0.000

9) Neurons of the second layer (fuzzification) for rule 5:
μX(“0.27”) = 0.600/0 + 0.700/1 + 0.800/2 + 0.900/3 + 1.000/4 + 0.900/5 +

0.800/6 + 0.700/7 + 0.600/8 + 0.500/9 + 0.400/10
μZ(“−0.14”) = 0.857/0 + 1.000/1 + 0.857/2 + 0.714/3 + 0.571/4 + 0.429/5 +

0.286/6 + 0.143/7
10) Neurons of the third layer (FCR) for rule 5:
R5(A1(x), A2(z)) = μX(“bit smaller than medium”) → μZ(“negative medium”) =

(μX(“0.27”) → μZ(“−0.14”)) =

X → Z 0 1 2 3 4 5 6 7

0 0.086 0.000 0.086 0.171 0.229 0.171 0.114 0.057

1 0.100 0.000 0.100 0.200 0.171 0.129 0.086 0.043

2 0.114 0.000 0.114 0.143 0.114 0.086 0.057 0.029

3 0.086 0.000 0.086 0.071 0.057 0.043 0.029 0.014

4 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

5 0.086 0.000 0.086 0.071 0.057 0.043 0.029 0.014

6 0.114 0.000 0.114 0.143 0.114 0.086 0.057 0.029

7 0.100 0.000 0.100 0.200 0.171 0.129 0.086 0.043

8 0.086 0.000 0.086 0.171 0.229 0.171 0.114 0.057

9 0.071 0.000 0.071 0.143 0.214 0.214 0.143 0.071

10 0.057 0.000 0.057 0.114 0.171 0.229 0.171 0.086

https://doi.org/10.4236/jsea.2024.178035

A. Tserkovny

DOI: 10.4236/jsea.2024.178035 653 Journal of Software Engineering and Applications

11) Neurons of the second layer (fuzzification) for rule 6:
μX(“0.3”) = 0.500/0 + 0.600/1 + 0.700/2 + 0.800/3 + 0.900/4 + 1.000/5 +

0.900/6 + 0.800/7 + 0.700/8 + 0.600/9 + 0.500/10
μZ(“−0.057”) = 0.714/0 + 0.857/1 + 1.000/2 + 0.857/3 + 0.714/4 + 0.571/5 +

0.429/6 + 0.286/7
12) Neurons of the third layer (FCR) for rule 6:
R6(A1(x), A2(z)) = (μX(“medium”) → μZ(“negative small”)) = (μX(“0.3”) →

μZ(“−0.057”)) =

X → Z 0 1 2 3 4 5 6 7

0 0.143 0.071 0.000 0.071 0.143 0.214 0.214 0.143

1 0.171 0.086 0.000 0.086 0.171 0.229 0.171 0.114

2 0.200 0.100 0.000 0.100 0.200 0.171 0.129 0.086

3 0.143 0.114 0.000 0.114 0.143 0.114 0.086 0.057

4 0.071 0.086 0.000 0.086 0.071 0.057 0.043 0.029

5 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

6 0.071 0.086 0.000 0.086 0.071 0.057 0.043 0.029

7 0.143 0.114 0.000 0.114 0.143 0.114 0.086 0.057

8 0.200 0.100 0.000 0.100 0.200 0.171 0.129 0.086

9 0.171 0.086 0.000 0.086 0.171 0.229 0.171 0.114

10 0.143 0.071 0.000 0.071 0.143 0.214 0.214 0.143

13) Neurons of the second layer (fuzzification) for rule 7:
μX(“0.33”) = 0.400/0 + 0.500/1 + 0.600/2 + 0.700/3 + 0.800/4 + 0.900/5 +

1.000/6 + 0.900/7 + 0.800/8 + 0.700/9 + 0.600/10
μZ(“0.037”) = 0.571/0 + 0.714/1 + 0.857/2 + 1.000/3 + 0.857/4 + 0.714/5 +

0.571/6 + 0.429/7
14) Neurons of the third layer (FCR) for rule 7:
R7(A1(x), A2(z)) = (μX(“bit larger than medium”) → μZ(“zero”)) = (μX(“0.33”)

→ μZ(“0.037”)) =

X → Z 0 1 2 3 4 5 6 7

0 0.171 0.114 0.057 0.000 0.057 0.114 0.171 0.229

1 0.214 0.143 0.071 0.000 0.071 0.143 0.214 0.214

2 0.229 0.171 0.086 0.000 0.086 0.171 0.229 0.171

3 0.171 0.200 0.100 0.000 0.100 0.200 0.171 0.129

4 0.114 0.143 0.114 0.000 0.114 0.143 0.114 0.086

5 0.057 0.071 0.086 0.000 0.086 0.071 0.057 0.043

6 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000

https://doi.org/10.4236/jsea.2024.178035

A. Tserkovny

DOI: 10.4236/jsea.2024.178035 654 Journal of Software Engineering and Applications

Continued

7 0.057 0.071 0.086 0.000 0.086 0.071 0.057 0.043

8 0.114 0.143 0.114 0.000 0.114 0.143 0.114 0.086

9 0.171 0.200 0.100 0.000 0.100 0.200 0.171 0.129

10 0.229 0.171 0.086 0.000 0.086 0.171 0.229 0.171

15) Neurons of the second layer (fuzzification) for rule 8:
μX(“0.36”) = 0.300/0 + 0.400/1 + 0.500/2 + 0.600/3 + 0.700/4 + 0.800/5 +

0.900/6 + 1.000/7 + 0.900/8 + 0.800/9 + 0.700/10
μZ(“0.128”) = 0.429/0 + 0.571/1 + 0.714/2 + 0.857/3 + 1.000/4 + 0.857/5 +

0.714/6 + 0.571/7
16) Neurons of the third layer (FCR) for rule 8:
R8(A1(x), A2(z)) = (μX(“larger than medium”) → μZ(“positive small”)) =

(μX(“0.36”) → μZ(“0.128”)) =

X → Z 0 1 2 3 4 5 6 7

0 0.171 0.129 0.086 0.043 0.000 0.043 0.086 0.129

1 0.229 0.171 0.114 0.057 0.000 0.057 0.114 0.171

2 0.214 0.214 0.143 0.071 0.000 0.071 0.143 0.214

3 0.171 0.229 0.171 0.086 0.000 0.086 0.171 0.229

4 0.129 0.171 0.200 0.100 0.000 0.100 0.200 0.171

5 0.086 0.114 0.143 0.114 0.000 0.114 0.143 0.114

6 0.043 0.057 0.071 0.086 0.000 0.086 0.071 0.057

7 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000

8 0.043 0.057 0.071 0.086 0.000 0.086 0.071 0.057

9 0.086 0.114 0.143 0.114 0.000 0.114 0.143 0.114

10 0.129 0.171 0.200 0.100 0.000 0.100 0.200 0.171

17) Neurons of the second layer (fuzzification) for rule 9:
μX(“0.39”) = 0.200/0 + 0.300/1 + 0.400/2 + 0.500/3 + 0.600/4 + 0.700/5 +

0.800/6 + 0.900/7 + 1.000/8 + 0.900/9 + 0.800/10
μZ(“0.213”) = 0.286/0 + 0.429/1 + 0.571/2 + 0.714/3 + 0.857/4 + 1.000/5 +

0.857/6 + 0.714/7
18) Neurons of the third layer (FCR) for rule 9:
R9(A1(x), A2(z)) = (μX(“smaller than large”) → μZ(“positive medium”)) =

(μX(“0.39”) → μZ(“0.213”)) =

X → Z 0 1 2 3 4 5 6 7

0 0.143 0.114 0.086 0.057 0.029 0.000 0.029 0.057

https://doi.org/10.4236/jsea.2024.178035

A. Tserkovny

DOI: 10.4236/jsea.2024.178035 655 Journal of Software Engineering and Applications

Continued

1 0.200 0.171 0.129 0.086 0.043 0.000 0.043 0.086

2 0.171 0.229 0.171 0.114 0.057 0.000 0.057 0.114

3 0.143 0.214 0.214 0.143 0.071 0.000 0.071 0.143

4 0.114 0.171 0.229 0.171 0.086 0.000 0.086 0.171

5 0.086 0.129 0.171 0.200 0.100 0.000 0.100 0.200

6 0.057 0.086 0.114 0.143 0.114 0.000 0.114 0.143

7 0.029 0.043 0.057 0.071 0.086 0.000 0.086 0.071

8 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000

9 0.029 0.043 0.057 0.071 0.086 0.000 0.086 0.071

10 0.057 0.086 0.114 0.143 0.114 0.000 0.114 0.143

19) Neurons of the second layer (fuzzification) for rule 10:
μX(“0.42”) = 0.100/0 + 0.200/1 + 0.300/2 + 0.400/3 + 0.500/4 + 0.600/5 +

0.700/6 + 0.800/7 + 0.900/8 + 1.000/9 + 0.900/10
μZ(“0.29”) = 0.143/0 + 0.286/1 + 0.429/2 + 0.571/3 + 0.714/4 + 0.857/5 +

1.000/6 + 0.857/7
20) Neurons of the third layer (FCR) for rule 10:
R10(A1(x), A2(z)) = (μX(“bit smaller than large”) → μZ(“larger than medium”))

= (μX(“0.42”) → μZ(“0.29”)) =

X → Z 0 1 2 3 4 5 6 7

0 0.086 0.071 0.057 0.043 0.029 0.014 0.000 0.014

1 0.114 0.143 0.114 0.086 0.057 0.029 0.000 0.029

2 0.100 0.200 0.171 0.129 0.086 0.043 0.000 0.043

3 0.086 0.171 0.229 0.171 0.114 0.057 0.000 0.057

4 0.071 0.143 0.214 0.214 0.143 0.071 0.000 0.071

5 0.057 0.114 0.171 0.229 0.171 0.086 0.000 0.086

6 0.043 0.086 0.129 0.171 0.200 0.100 0.000 0.100

7 0.029 0.057 0.086 0.114 0.143 0.114 0.000 0.114

8 0.014 0.029 0.043 0.057 0.071 0.086 0.000 0.086

9 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000

10 0.014 0.029 0.043 0.057 0.071 0.086 0.000 0.086

21) Neurons of the second layer (fuzzification) for rule 11:
μX(“0.45”) = 0.000/0 + 0.100/1 + 0.200/2 + 0.300/3 + 0.400/4 + 0.500/5 +

0.600/6 + 0.700/7 + 0.800/8 + 0.900/9 + 1.000/10
μZ(“0.358”) = 0.000/0 + 0.143/1 + 0.286/2 + 0.429/3 + 0.571/4 + 0.714/5 +

0.857/6 + 1.000/7

https://doi.org/10.4236/jsea.2024.178035

A. Tserkovny

DOI: 10.4236/jsea.2024.178035 656 Journal of Software Engineering and Applications

22) Neurons of the third layer (FCR) for rule 11:
R11(A1(x), A2(z)) = (μX(“large”) → μZ(“smaller than large”)) = (μX(“0.45”) →

μZ(“0.358”)) =

X → Z 0 1 2 3 4 5 6 7

0 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

1 0.000 0.086 0.071 0.057 0.043 0.029 0.014 0.000

2 0.000 0.114 0.143 0.114 0.086 0.057 0.029 0.000

3 0.000 0.100 0.200 0.171 0.129 0.086 0.043 0.000

4 0.000 0.086 0.171 0.229 0.171 0.114 0.057 0.000

5 0.000 0.071 0.143 0.214 0.214 0.143 0.071 0.000

6 0.000 0.057 0.114 0.171 0.229 0.171 0.086 0.000

7 0.000 0.043 0.086 0.129 0.171 0.200 0.100 0.000

8 0.000 0.029 0.057 0.086 0.114 0.143 0.114 0.000

9 0.000 0.014 0.029 0.043 0.057 0.071 0.086 0.000

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

23) Neurons of the third layer (FCR) aggregation:

() ()() () ()()11
1 2 1 21

, ,aggr kk
R A x A z R A x A z

=
= =


X → Z 0 1 2 3 4 5 6 7

0 1.000 0.129 0.200 1.000 0.229 0.214 0.214 0.229

1 0.229 1.000 0.143 0.200 0.171 0.229 0.214 0.214

2 1.000 0.229 0.171 0.143 0.200 0.171 0.229 0.214

3 1.000 0.229 0.229 0.171 0.143 0.200 0.171 0.229

4 0.229 1.000 0.229 0.229 0.171 0.171 0.229 0.171

5 0.214 0.143 1.000 0.229 0.229 0.171 0.214 0.214

6 0.171 0.114 0.200 1.000 0.229 0.214 0.171 0.229

7 0.143 0.114 0.171 0.229 1.000 0.229 0.171 0.171

8 0.200 0.143 0.143 0.214 0.229 1.000 0.200 0.114

9 0.171 0.200 0.143 0.171 0.229 0.229 1.000 0.129

10 0.229 0.171 0.200 0.143 0.171 0.229 0.229 1.000

24) Neurons of the fourth layer (FCIR) composition for rule 1:
μZ'(“zero”) = μX'(“small”) ∘ Raggr(A1(x), A2(z)) = 1.000/0 + 0.900/1 + 0.500/2 +

1.000/3 + 0.300/4 + 0.229/5 + 0.229/6 + 0.229/7
25) Neurons of the fifth layer (Defuzzification) for output of rule 1:
Defuzzification of μZ'(“zero”) ⇒ 0.03342857142857139

https://doi.org/10.4236/jsea.2024.178035

A. Tserkovny

DOI: 10.4236/jsea.2024.178035 657 Journal of Software Engineering and Applications

26) Neurons of the fourth layer (FCIR) composition for rule 2:
μZ'(“negative medium”) = μX'(“bit larger than small”) ∘ Raggr(A1(x), A2(z)) =

0.900/0 + 1.000/1 + 0.600/2 + 0.900/3 + 0.400/4 + 0.300/5 + 0.229/6 + 0.229/7
27) Neurons of the fifth layer (Defuzzification) for output of rule 2:
Defuzzification of μZ'(“negative medium”) ⇒ −0.12885714285714284
28) Neurons of the fourth layer (FCIR) composition for rule 3:
μZ'(“negative large”) = μX'(“larger than small”) ∘ Raggr(A1(x), A2(z)) = 1.000/0 +

0.900/1 + 0.700/2 + 0.800/3 + 0.500/4 + 0.400/5 + 0.300/6 + 0.229/7
29) Neurons of the fifth layer (Defuzzification) for output of rule 3:
Defuzzification of μZ'(“negative large”) ⇒ −0.21
30) Neurons of the fourth layer (FCIR) composition for rule 4:
μZ'(“negative large”) = μX'(“smaller than medium”) ∘ Raggr(A1(x), A2(z)) =

1.000/0 + 0.900/1 + 0.800/2 + 0.700/3 + 0.600/4 + 0.500/5 + 0.400/6 + 0.300/7
31) Neurons of the fifth layer (Defuzzification) for output of rule 4:
Defuzzification of μZ'(“negative large”) ⇒ −0.21
32) Neurons of the fourth layer (FCIR) composition for rule 5:
μZ'(“negative medium”) = μX'(“bit smaller than medium”) ∘ R(A1(x), A2(z)) =

0.900/0 + 1.000/1 + 0.900/2 + 0.800/3 + 0.700/4 + 0.600/5 + 0.500/6 + 0.400/7
33) Neurons of the fifth layer (Defuzzification) for output of rule 5:
Defuzzification of μZ'(“negative medium”) ⇒ −0.12885714285714284
34) Neurons of the fourth layer (FCIR) composition for rule 6:
μZ'(“negative small”) = μX'(“medium”) ∘ Raggr(A1(x), A2(z)) = 0.800/0 + 0.900/1

+ 1.000/2 + 0.900/3 + 0.800/4 + 0.700/5 + 0.600/6 + 0.500/7
35) Neurons of the fifth layer (Defuzzification) for output of rule 6:
Defuzzification of μZ'(“negative small”) ⇒ −0.04771428571428571
36) Neurons of the fourth layer (FCIR) composition for rule 7:
μZ'(“zero”) = μX'(“bit larger than medium”) ∘ Raggr(A1(x), A2(z)) = 0.700/0 +

0.800/1 + 0.900/2 + 1.000/3 + 0.900/4 + 0.800/5 + 0.700/6 + 0.600/7
37) Neurons of the fifth layer (Defuzzification) for output of rule 7:
Defuzzification of μZ'(“zero”) ⇒ 0.03342857142857139
38) Neurons of the fourth layer (FCIR) composition for rule 8:
μZ'(“positive small”) = μX'(“larger than medium”) ∘ Raggr(A1(x), A2(z)) =

0.600/0 + 0.700/1 + 0.800/2 + 0.900/3 + 1.000/4 + 0.900/5 + 0.800/6 + 0.700/7
39) Neurons of the fifth layer (Defuzzification) for output of rule 8:
Defuzzification of μZ'(“positive small “) ⇒ 0.11457142857142857
40) Neurons of the fourth layer (FCIR) composition for rule 9:
μZ'(“positive medium”) = μX'(“smaller than large”) ∘ Raggr(A1(x), A2(z)) =

0.500/0 + 0.600/1 + 0.700/2 + 0.800/3 + 0.900/4 + 1.000/5 + 0.900/6 + 0.800/7
41) Neurons of the fifth layer (Defuzzification) for output of rule 9:
Defuzzification of μZ'(“positive medium”) ⇒ 0.1957142857142857
42) Neurons of the fourth layer (FCIR) composition for rule 10:
μZ'(“larger than medium”) = μX'(“bit smaller than large”) ∘ Raggr(A1(x), A2(z)) =

0.400/0 + 0.500/1 + 0.600/2 + 0.700/3 + 0.800/4 + 0.900/5 + 1.000/6 + 0.900/7
43) Neurons of the fifth layer (Defuzzification) for output of rule 10:

https://doi.org/10.4236/jsea.2024.178035

A. Tserkovny

DOI: 10.4236/jsea.2024.178035 658 Journal of Software Engineering and Applications

Defuzzification of μZ'(“larger than medium”) ⇒ 0.2768571428571428
44) Neurons of the fourth layer (FCIR) composition for rule 11:
μZ'(“smaller than large”) = μX'(“large”) ∘ Raggr(A1(x), A2(z)) = 0.300/0 + 0.400/1

+ 0.500/2 + 0.600/3 + 0.700/4 + 0.800/5 + 0.900/6 + 1.000/7
45) Neurons of the fifth layer (Defuzzification) for output of rule 11:
Defuzzification of μZ'(“smaller than large”) ⇒ 0.358.
The mean square error for fuzzy model based on our t-norm approach

2 33.41322 10e −= × is shown in Table 3. This result statistically is almost twice
as accurate, as GA-Generated fuzzy model.

3.6. Binary Rules Adjustment by New Label

In real world of NN based systems a value of their input/output pairs might be
significantly changed in accordance with a set of a new requirements/capabilities.
It could be a situation of a new label/class introduction. The latter means that
aggregated FCR matrix of a system () ()()1 2,aggrR A x A z must be modified,
based on an additional label, never used originally. We presume that the value of
a new label could situate outside of the scale of normalized output values

[]norm max min,z z z∈ , used initially. At this case one must do the following.
1) Expand original scale or re-scale both labels/potential input pairs like that

 []norm max min,z z z z z′ ∈ + ∆ − ∆ , []norm max min,x x x x x′ ∈ + ∆ − ∆ , (3.13)

where

 label max max label

min label label min

,

,

z z z z
z

z z z z

 − <∆ = 
− <

 (3.14)

On practice the value of z z ε∆ = ∆ + , when ε is defined empirically. In general
terms could be the following linear function ()f zε = ∆ .

2) Find the input value, which corresponds to the new label/class.
For this matter we would use Generalized Modus Tollens [6] mechanism, the

scheme of which is the following

Ant 1: IF x is A THEN z is B
Ant 2: z is B'

--- (3.15)
Cons: x is A'.

The most important thing to mention is that in (3.15) Ant 1, is represented by
aggregated FCR matrix of a system () ()()1 2,aggrR A x A z .

In terms of FCR, given a unary relationship ()()2R A z B′ ′= one can obtain
the consequence ()()1R A x′ by CRI by applying it to ()()2R A z′ and

() ()()1 2,aggrR A x A z of type (3.10):

()() ()() () ()()
() () ()() ()() ()()() ()

() () ()() ()() ()()()

1 2 1 2,

1 1 ,

1 1
Z X Z

ZX

aggr

z z z x x z z x x z z x zU U U

z z x x z z x x z z xz UU

R A x R A z R A x A z

u u u u u u u u

u u u u u u

µ µ µ µ µ

µ µ µ µ µ

′ ×

′∈

′ ′=

= → ∧ − → −

 = ∧ → ∧ − → − 

∫ ∫

∫







(3.16)

https://doi.org/10.4236/jsea.2024.178035

A. Tserkovny

DOI: 10.4236/jsea.2024.178035 659 Journal of Software Engineering and Applications

3) Based on CRI (3.16) add neuron of the third layer (FCR) for new rule:

() ()() () ()

() ()() ()() ()()() ()
1 2,

1 1 ,
X Z

new X Z X Z

x x z z x x z z x zU U

R A x A z X U U Z X U U Z

u u u u u uµ µ µ µ′ ′ ′ ′×

′ ′ ′ ′= × → × ¬ × → ×¬

= → ∧ − → −∫



(3.17)

4) Repeat an aggregation of neurons of the third layer (FCR) by using (3.17)
and by previously aggregated FCR matrix of a system () ()()1 2,aggrR A x A z .

 () ()() () ()() () ()()1 2 1 2 1 2, , ,aggr new aggrR A x A z R A x A z R A x A z′ =  (3.18)

This way we incorporated new knowledge into our system.

3.7. The Instance of Binary Rules Adjustment

1) Suppose we have the new label 0.37z′ = and let 0.05x∆ = , 0.02z∆ = .
Therefore expand (re-scale) both labels/potential input pairs like that []0.1,0.5x′∈ ,

[]0.23,0.378z′∈ − .
2) The fuzzified value for 0.37z′ = from (3.13) and (3.4) is []0, Zk CardU∀ ∈ ,

() ()11 1
1kz z Z norm

Z

u k Ent CardU bz
CardU

µ ′ ′= − × − − ×  −
, i.e.

μz'(“0.37”) = 0.000/0 + 0.143/1 + 0.286/2 + 0.429/3 + 0.571/4 + 0.714/5 +
0.857/6 + 1.000/7

3) After application of Generalized Modus Tollens (3.15) and (3.16), i.e.

()() ()() () ()()
() () ()()

()() ()()() ()

1 2 1 2,

1 1 ,
Z X Z

aggr

z z z x x z zU U U

x x z z x z

R A x Rb A z R A x A z

u u u u

u u u u

µ µ µ

µ µ

′ ×

′ ′=

= →

∧ − → −

∫ ∫





we are getting
μx'(“large”) = 0.429/0 + 0.229/1 + 0.229/2 + 0.229/3 + 0.229/4 + 0.286/5 +

0.429/6 + 0.571/7 + 0.714/8 + 0.857/9 + 1.000/10
4) Defuzzification of μx'(“large”) ⇒ 0.5.
5) From (3.17) we build binary matrix for the new rule

() ()() () ()1 2,new X Z X ZR A x A z X U U Z X U U Z′ ′ ′ ′= × → × ¬ × → ×¬ =

0.000 0.082 0.163 1.000 0.184 0.122 0.061 0.000

0.000 0.110 0.163 0.131 0.098 0.065 0.033 0.000

0.000 0.110 0.163 0.131 0.098 0.065 0.033 0.000

0.000 0.110 0.163 0.131 0.098 0.065 0.033 0.000

0.000 0.110 0.163 0.131 0.098 0.065 0.033 0.000

0.000 0.102 1.000 0.163 0.122 0.082 0.041 0.000

0.000 0.082 0.163 1.000 0.184 0.122 0.061 0.000

0.000 0.061 0.122 0.184 1.000 0.163 0.082 0.000

0.000 0.041 0.082 0.122 0.163 1.000 0.102 0.000

0.000 0.020 0.041 0.061 0.082 0.102 1.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

https://doi.org/10.4236/jsea.2024.178035

A. Tserkovny

DOI: 10.4236/jsea.2024.178035 660 Journal of Software Engineering and Applications

6) Repeat an aggregation of neurons of the third layer by using (3.18)

() ()()1 2,aggrR A x A z′ =

1.000 0.129 0.200 1.000 0.229 0.214 0.214 0.229

0.229 1.000 0.163 0.200 0.171 0.229 0.214 0.214

1.000 0.229 0.171 0.143 0.200 0.171 0.229 0.214

1.000 0.229 0.229 0.171 0.143 0.200 0.171 0.229

0.229 1.000 0.229 0.229 0.171 0.171 0.229 0.171

0.214 0.143 1.000 0.229 0.229 0.171 0.214 0.214

0.171 0.114 0.200 1.000 0.229 0.214 0.171 0.229

0.143 0.114 0.171 0.229 1.000 0.229 0.171 0.171

0.200 0.143 0.143 0.214 0.229 1.000 0.200 0.114

0.171 0.200 0.143 0.171 0.229 0.229 1.000 0.129

0.229 0.171 0.200 0.143 0.171 0.229 0.229 1.000

7) Unit test () ()()1 2,aggrR A x A z′ by using μx(“0.5”). For this matter apply

fuzzification (3.2) and get
R(A1(x)) = μx(“0.5”) = 0.000/0 + 0.100/1 + 0.200/2 + 0.300/3 + 0.400/4 +

0.500/5 + 0.600/6 + 0.700/7 + 0.800/8 + 0.900/9 + 1.000/10.
Obtain the consequence ()()2R A z by CRI to ()()1R A x and

() ()()1 2,aggrR A x A z′ of type (3.10):

()() ()() () ()()22 1 1 2,
age gr

R A z R A x R A x A z′= 

and get μz(“smaller than large”) = 0.300/0 + 0.400/1 + 0.500/2 + 0.600/3 +
0.700/4 + 0.800/5 + 0.900/6 + 1.000/7.

Defuzzification of μz(“smaller than large”) ⇒ 0.378. The mean square error
for the case 2 44.675 10e −= × , which is extremely precise result, confirming the
legitimacy of the approach.

4. Conclusion

In this study, we first examined well-known [1] FRM with genetic-based learn-
ing mechanism. We proposed an alternative way to build FRM, which does not
require any adjustment/learning. We have shown that our approach is statisti-
cally almost twice as accurate, as the well-known FRM, which uses a genet-
ic-based learning mechanism. We have introduced the label-driven binary rela-
tionship matrix adjustment technique.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this pa-
per.

https://doi.org/10.4236/jsea.2024.178035

A. Tserkovny

DOI: 10.4236/jsea.2024.178035 661 Journal of Software Engineering and Applications

References
[1] Aliev, R.A., Fazlollahi, B. and Aliev, R.R. (2004) Soft Computing and Its Application

in Business and Economics. Physica-Verlag, Springer.
https://doi.org/10.1007/978-3-540-44429-9

[2] Looney, C.G. and Dascalu, S. (2007) A Simple Fuzzy Neural Network.
https://www.cse.unr.edu/~looney/cs773b/fuzzyNNbk.pdf

[3] Aliev, R.A., Fazlollahi, B. and Vahidov, R.M. (2001) Genetic Algorithm-Based
Learning of Fuzzy Neural Networks. Part 1: Feed-Forward Fuzzy Neural Networks.
Fuzzy Sets and Systems, 118, 351-358.
https://doi.org/10.1016/s0165-0114(98)00461-8

[4] Tserkovny, A. (2017) A T-Norm Fuzzy Logic for Approximate Reasoning. Journal
of Software Engineering and Applications, 10, 639-662.
https://doi.org/10.4236/jsea.2017.107035

[5] Fukami, S., Mizumoto, M. and Tanaka, K. (1980) Some Considerations on Fuzzy
Conditional Inference. Fuzzy Sets and Systems, 4, 243-273.
https://doi.org/10.1016/0165-0114(80)90014-7

[6] Tserkovny, A. (2017) A Fuzzy Logic Based Resolution Principal for Approximate
Reasoning. Journal of Software Engineering and Applications, 10, 793-823.
https://doi.org/10.4236/jsea.2017.1010045

https://doi.org/10.4236/jsea.2024.178035
https://doi.org/10.1007/978-3-540-44429-9
https://www.cse.unr.edu/%7Elooney/cs773b/fuzzyNNbk.pdf
https://doi.org/10.1016/s0165-0114(98)00461-8
https://doi.org/10.4236/jsea.2017.107035
https://doi.org/10.1016/0165-0114(80)90014-7
https://doi.org/10.4236/jsea.2017.1010045

A. Tserkovny

DOI: 10.4236/jsea.2024.178035 662 Journal of Software Engineering and Applications

Appendix

The interval based MF, used in [1]

 ()

1

1
1 2

2 1
1 2 3

3
2 3

3 2

3

0, if

, if
, , ,

, if

0, if

i

i
i i

i i
i i i

i
i i

i i

i

x a
x a a x a

a a
x a a a

a x a x a
a a

x a

µ


 −
 −=  −
 −





 

 



 (a.1)

where 1 2 3, ,i i ia a a are tuning parameters for i-th fuzzy subset

()1 1 ,n
i i i ia a δ τ= + −

()2 2 ,n
i i ia a δ= +

()3 3 ,n
i i i ia a δ τ= + +

where ,i iδ τ are some tuning coefficients. The parameter iδ shifts MF to the
left or to the right. The parameter iτ allows changing the shape of MF.

0.39

0.24
0.39

0.24

d
0.155

d

z
c

z

z z
z

z

µ

µ
−

−

⋅
= = −∫
∫

 (a.2)

The summary of the referenced fuzzy model, proposed in [1] is the following.
1) Define fussy sets for input i XA U⊆ , []1,i l∀ ∈ and output one j ZB U⊆ ,

[]1,j p∀ ∈
2) Determine linguistic (fuzzy) rules.
3) Implement the justification process. During the fuzzification the values of

input variable are transformed by using stored MFs to produce fuzzy input val-
ues.

4) Activate knowledge-based fuzzy logic inference mechanism. Generate fuzzy
output value.

5) Execute defuzzification process. It results in crisp value of the output fuzzy
value.

6) Calculate by Formula (2.3) the mean square error e2 for each input value.
7) If e is less than the given precision, go to step 17.
8) Start the GA work t = 1.
9) Create the initial population.
10) Evaluate G(t). This step also consists of fuzzification, inference, defuzzifi-

cation, which precede calculation of the mean square error for each chromo-
some ic , 1,i ps= . Besides, minimum square error is stored in memory.

11) If some termination conditions are met, go to step 15.
12) Produce new generation G(t + 1) from G(t). Then crossover and mutation

are applied.
13) Evaluate G(t + 1).
14) Return to step 11.
15) Terminate GA’s work.

https://doi.org/10.4236/jsea.2024.178035

A. Tserkovny

DOI: 10.4236/jsea.2024.178035 663 Journal of Software Engineering and Applications

16) Find the smallest one among all minimum errors stored in memory. Select
the fuzzy set iA , 1,i n= and crisp output value, by which the smallest mean
square error obtained.

17) End.

https://doi.org/10.4236/jsea.2024.178035

	A Neuro T-Norm Fuzzy Logic Based System
	Abstract
	Keywords
	1. Introduction
	2. Fuzzy Neural Network (FNN)
	2.1. The Structure
	2.2. Fuzzy Reasoning Model
	2.3. Genetic-Based Learning

	3. T-Norm Based Approach
	3.1. Fuzzification of Input/Output
	3.2. Defuzzification of an Output
	3.3. Fuzzy Inference
	3.4. Aggregation
	3.5. Build of Neuro-Fuzzy System
	3.6. Binary Rules Adjustment by New Label
	3.7. The Instance of Binary Rules Adjustment

	4. Conclusion
	Conflicts of Interest
	References
	Appendix

