
Journal of Software Engineering and Applications, 2020, 13, 77-90
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2020.135006 May 9, 2020 77 Journal of Software Engineering and Applications

Intermediate Representation Using Graph
Visualization Software

E. O. Aliyu1 , A. O. Adetunmbi2, B. A. Ojokoh3

1Department of Computer Science, Adekunle Ajasin University, Akungba-Akoko, Nigeria
2Department of Computer Science, Federal University of Technology, Akure, Nigeria
3Department of Information Systems, Federal University of Technology, Akure, Nigeria

Abstract
In this paper, a method to initiate, develop and visualize an abstract syntax
tree (AST) in C++ source code is presented. The approach is in chronological
order starting with collection of program codes as a string and split into indi-
vidual characters using regular expression. This will be followed by separating
the token grammar using best first search (BFS) algorithm to determine node
having lowest value, lastly followed by graph presentation of intermediate re-
presentation achieved with the help of graph visualization software (Graph-
Viz) while former is implemented using python programming language ver-
sion 3. The efficacy of our approach is used in analyzing C++ code and
yielded a satisfactory result.

Keywords
Recursive Descent Parser, Best First Search, Intermediate Representation,
Abstract Syntax Tree, Graph Visualization Software

1. Introduction

Intermediate representations (IR) do not exist in a vacuum. They are the step-
ping stone from what the programmer wrote to what the machine understands
[1]. Drawings of compiler data structures such as syntax trees, control flow
graphs, dependency graphs [2] are used for demonstration, debugging and do-
cumentation of compilers. For instance, [3] demonstrated using Figure 1 the
importance of intermediate representation in terms of portability and modulari-
ty.

That is, compiler for five languages and four target machines (left) without an
IR caused front-end becomes cluttered with machine specific details and

How to cite this paper: Aliyu, E.O., Ade-
tunmbi, A.O. and Ojokoh, B.A. (2020)
Intermediate Representation Using Graph
Visualization Software. Journal of Software
Engineering and Applications, 13, 77-90.
https://doi.org/10.4236/jsea.2020.135006

Received: April 2, 2020
Accepted: May 6, 2020
Published: May 9, 2020

Copyright © 2020 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2020.135006
https://www.scirp.org/
https://orcid.org/0000-0001-7278-3452
https://doi.org/10.4236/jsea.2020.135006
http://creativecommons.org/licenses/by/4.0/

E. O. Aliyu et al.

DOI: 10.4236/jsea.2020.135006 78 Journal of Software Engineering and Applications

(a) (b)

Figure 1. Compiler implementation in machine language.
Source: Walker, 2003.

back-end becomes cluttered with source language specific details (that is, need
separate compiler for each source language/target machine combination) while
(right) with an IR need just “n” front-ends and “m” back-ends (meaning that,
one can build a new front-end for an existing backend). In real-world compiler
applications, such drawings cannot be produced manually because the graphs
are automatically generated using graph layout algorithms such as JGraphX,
JGraphT, JUNG, Prefuse and GraphViz [4]. In the area of debugging, compiler
data structure has been used to overcome the problems faced by model checking
in constructing a model for the system under consideration [5]. [6] stated that
the main goal for the design of an intermediate representation is to support the
optimizations using it. Therefore, this work is aimed at developing intermediate
representation (that is, abstract syntax tree) at the level of parsing using graph
visualization software. Abstract syntax trees (AST) can be used in program anal-
ysis and program transformation systems. [7] stated that AST has been known to
provide a representation of programs suitable for flow-insensitive analysis such
as type analysis, control flow analysis and pointer analysis because they ignore
execution order of statements in a function or block. Program transformation on
the other hand, is an automatic manipulation of source program [8]. It has been
found useful in different applications including compiler construction, optimi-
zation, program synthesis, refactoring, software renovation and reverse engi-
neering. Visualization tools provide a graphical description of a program [9].
Tools such as Dot draw directed graphs in a graphics format including Graphics
Interchange Format (GIF), Portable Network Graphics (PNG), Scalable Vector
Graphic (SVG), Portable Document Format (PDF) or PostScript [10]. However,
when a program is parsed in C of Languages (CLANG), the result is either in a
dump file or PDF.

This paper discusses how the grammar rule presented in [11] has been trans-
formed into an intermediate representation (IR). Also, a parser using recursive
descent parsing technique and best first search algorithm to generate an inter-
mediate representation called abstract syntax tree (AST) with the help of graph
visualization software to visualize the output of syntax analysis will be presented.
[12] pointed out that visualization can be a useful teaching aid to examine the
generated AST and gain a greater understanding of the underlying program. The

https://doi.org/10.4236/jsea.2020.135006

E. O. Aliyu et al.

DOI: 10.4236/jsea.2020.135006 79 Journal of Software Engineering and Applications

contribution of this paper is as follows:
1) initiate a parser using recursive descent and best first search algorithm for

generating abstract syntax trees dot file based on defined grammar rules,
2) produce abstract syntax tree using graph visualization software for inter-

preting the dot file into portable network graphics format.
The next section will introduce review of related works in this field of study.

In section three, background of intermediate representation, graph visualization
software, recursive descent parser and best first search algorithm, parsing
process methodology in section four while section five highlights the conclusion
and future research work.

2. Related Works

Stalmans [12] presented visualization of abstract syntax trees for COCO/R. The
idea is to help programmers with an integrated development environment (IDE)
for COCO/R to understand the compiler generation process and visualize the
output of syntax analysis.

A tool to support compiler process via java-based compiler-compiler in an in-
teractive environment (JACCIE) was developed and presented by [13]. The idea
is to aid automatic generation of compiler components in a visual debugging en-
vironment, displaying compiler components internal states which are hidden
from users in conventional compilers.

To identify significant static analysis functionality provided in python pro-
gram analyzer, [14] developed verification of program properties that automati-
cally presents program flow and call graph using Graphviz. This visualization
provides useful information to user extracting data such as macro definitions,
variables, type definitions and function signatures from header files.

[15] introduced LLVM-based JIT compilation in genetic programming. Their
intention was to improve the computational efficiency of genetic programming
in understanding how just in time compilation (JIT) expressed in abstract syntax
tree can be accomplished using the lower level virtual machine (LLVM) library.

A tool to secure Internet of Things (IoT) app or environment via static analy-
sis system (SOTERIA) was developed and presented by [16]. The idea is to vali-
date IoT app or environment for safety, security and functional properties by
translating IoT source code into an intermediate representation using sen-
sor-computation-actuator program structures.

However, in all the paper review, known of the paper clearly shows the process
to explore the grammar structure as we have shown in this paper. The goal is to
aid understanding of the underlying program in detecting assignment-in guard
error including non-inclusion of brake and default in selective and iterative
structures C++ codes.

3. Central Concepts of Intermediate Representation

According to [17] intermediate languages (ILs) are typically used in compiler

https://doi.org/10.4236/jsea.2020.135006

E. O. Aliyu et al.

DOI: 10.4236/jsea.2020.135006 80 Journal of Software Engineering and Applications

and compiler like applications (that is, static checkers). They are usually tree-like
data types which represent some abstract syntax of a simple language. However,
ILs generation system has been implemented in a number of tools such as java
compiler compiler (JavaCC), another tool for language recognition (ANTLR),
yet another compiler compiler (YACC), visible compiler compiler (VCOCO)
respectively [12]. Although, there are several ways to generate an abstract syntax
tree directly from the grammar, this paper discusses some of the techniques used
in constructing an abstract syntax tree.

3.1. Abstract Syntax Tree

Quantitatively, an abstract syntax tree (AST) is a condensed version of parse
trees. In the context of a compiler, the term AST is used interchangeably with
syntax tree [18]. An abstract syntax tree on the other hand, ignores a significant
amount of the syntactic information that a parse tree; which is a pictorial version
of the grammatical structure of a sentence, would contain. Figure 2 demon-
strates graphically the parse tree and AST using arithmetic expression 2 + (2 + 2)
relative to the grammar “expr = factor ((plus|minus) factor)) + while factor =
int|(expr).

Each node of the tree denotes a construct occurring in the source code. [19]
described formal notion of an abstract syntax tree (AST) as a labeled graph
(), , NN E µ over the alphabet NΣ ; is a finite and directed graph, where N is a
set of nodes, E N N⊆ × is an edge relation between the nodes, and

:N NNµ →Σ is a node labeling function. A labeled tree is a labeled graph
(), , NT N E µ= if it has a single root node root(T) for which we have the fol-

lowing: for each node l N∈ there exists exactly one path from the root to the
node, that is, exactly one sequence 0 , , nl l , such that ()0 rootl T= , nl l= and
()1,i il l E− ∈ for 1, ,i n=  .

Figure 2. Parse tree format (left) and abstract syntax tree (right).

https://doi.org/10.4236/jsea.2020.135006

E. O. Aliyu et al.

DOI: 10.4236/jsea.2020.135006 81 Journal of Software Engineering and Applications

However, the formal notion can be exemplified by the anatomy of an AST as
presented by [18].

By considering a single node within an AST, Figure 3 shows that every node
contains the terminal (that is, the token value) and pointers to its next sibling as
well as its first child node.

3.2. Graph Visualization Software

Graphviz is an acronyms for Graph Visualization Software; a collection of libra-
ries and utilities to manipulate and view graphs in a variety of output format
such as simple text format (plain or plain-text), portable document format
(PDF), jpeg, scalable vector graphic (SVG), portable network graphics (PNG)
respectively [20] [21]. It can be used in a variety of contexts, such as software
engineering, bio-informatics, internet and web structures and dynamic distri-
buted communication services. [20] [21] [22] [23] stated that the algorithms of
Graphviz concentrate on graph layout algorithm such as dot; a sugiyama-style
hierarchical layout, neato; a symmetric layout algorithm based on stress reduc-
tion, osage; a layout algorithm for clustered graphs based on user specifications
respectively, depending on the application type and the data being visualised. In
this paper, Graphviz software was employed as a library, in particular, the dot
algorithm, which produces a ranked layout of a graph, honoring the direction of
the edges [21] [23]. The steps in dot layout comprises the following: initialize;
initialization establish the data structures specific to the given algorithm, rank;
after initialization, algorithm assigns each node to a discrete rank using an in-
teger program to minimize the sum of the discrete edge lengths, mincross; rear-
ranges nodes within ranks to reduce edge crossings, position; is the assignment
of actual coordinates to the nodes, sameports is based on the edge attributes, by
which certain edges sharing a node and all connect to the node at the same
point, splines; edge representations are generated in this step while compoun-
dEdges clipped to the bounding box of the specified clusters the spline generated
in splines phase.

However, Graphviz model’s node ranking in terms of linear integer program
is given by:

()
()()

,
minimize , u v

u v E
u v y yω

∈

−∑ (1)

Figure 3. The anatomy of an AST node. Source: Joshi, 2017.

https://doi.org/10.4236/jsea.2020.135006

E. O. Aliyu et al.

DOI: 10.4236/jsea.2020.135006 82 Journal of Software Engineering and Applications

() ()Subject to , ,u vy y u v u v E− ≥ ∂ ∀ ∈ (2)

where uy denotes the rank of node u and (),u v∂ is the minimum length of
the edge. By default, ∂ is taken as 1, but the general case supports flat edges,
when the nodes are placed on the same rank (0∂ =), or the times when it is
important to enforce a greater separation (1∂ >). The weight factor (),u vω
allows one to specify the importance of having the rank separation of two nodes
be as close to minimum as possible.

3.3. Recursive Descent Parser (RDP)

Historically, there are two types of parsing: top-down parsing and bottom-up
parsing. The former expands the non-terminals to match incoming tokens and
directly construct a derivation (i.e. they construct derivations and parse tree
from the root to the leaves) while the latter attempts to match an input with the
right-hand sides of the grammar rules, when a match occurs, the right-hand side
is replaced by, or reduced to, the nonterminal on the left. So, they construct de-
rivations and parse tree from the leaves to the root. However, this paper would
employ the use of top-down parsing techniques, to be precise, recursive-descent
parsing (RDP) method for parser generator; an older method for constructing a
parser by hand from a grammar that is very effective. By and large, it operates by
turning the non-terminals into a group of mutually recursive procedures whose
actions are based on the right-hand sides of the formal grammar while the
right-hand sides are interpreted in the procedures as tokens are matched directly
with input tokens as constructed by a lexer. This parsing technique may or may
not require back-tracking. But the grammar associated with it (if not left fac-
tored) cannot avoid back-tracking. So, a form of recursive-descent parsing that
does not require any back-tracking is known as predictive parsing which uses a
stack and a parsing table to parse the input and generate a parse tree [24].

Supposing an interpreter needs to process an arithmetic expression to evaluate
additions like 2 + (2 + 2), after tokenization, RDP can be used to construct a
parser as shown in Figure 4 using python compiler version 3 for the grammar
defined in Figure 5.

Figure 4. RDP for Figure 5.

https://doi.org/10.4236/jsea.2020.135006

E. O. Aliyu et al.

DOI: 10.4236/jsea.2020.135006 83 Journal of Software Engineering and Applications

Figure 5. Grammar rule for arithmetic expres-
sion.

3.4. Best First Search (BFS) Algorithm

In deciding branch to follow by avoiding backtracking to the beginning of the
parsing process in the parser development, BFS algorithm; a heuristic that ranks
alternatives in search algorithm at each branching step based on available infor-
mation [25] was adopted. To do this, nodes is expanded as follows:

1) Search will start at the root node of the phrase structure sP .
2) The node to be expanded next is selected on the basis of an evaluation

function ()rP n where xn L= , xL is the valuation function specified for
each syntactic domain as given in 3.

() ()1
1

lowest index_val
nT

r x r xT
T

P L P L= =∑ (3)

3) The node having lowest value of ()rP n is selected first that is; ()min rP n .
4) Lowest value of ()rP n indicates that goal is nearest from this node. That

is, the lower the value, the higher the priority as presented in 4.

()
()
()

if lowest value of

if highest value of
r s x

r s
r s x

HP P P L
P P

LP P P L

 == 
=

 (4)

where HP and LP denotes highest and lowest priority respectively.
Hence, the algorithm goes thus as shown in Figure 6.
This algorithm is implemented using priority queue created during tokeniza-

tion to develop abstract syntax tree dot file; a configuration showing how the
nodes is being visited to generate a specific abstract syntax tree in a portable
network graphics (PNG) format.

4. Parsing Process Methodology

In transforming the action, a parser would take into more efficient program, this
research establishes the following rules based on the ideas of Recursive Descent
Parser (RDP) as depicted in Table 1.

Quantitatively, Lexer and Parser are usually combined to analyze the syntax of
computer languages. This paper employed: 1) Regular Expression (RE) within
python to collect the program code shown in Figure 7, as a string and split into
individual characters. 2) Declaration of token type variables to represent the to-
ken was carried out as depicted in Figure 8. 3) Matching a RE with a character
type is obtained and presented in Table 2.

For the parsing, the use of BFS algorithm in parser development is solely de-
termined using a grammar rule presented in [11] where different methods with-
in the parser class were defined, interpreting grammar programmatically to

https://doi.org/10.4236/jsea.2020.135006

E. O. Aliyu et al.

DOI: 10.4236/jsea.2020.135006 84 Journal of Software Engineering and Applications

Figure 6. BFS algorithm.

Figure 7. Program block 1.

Figure 8. Token extraction within the command prompt.

generate AST. For instance, to verify a given sets of tokens over a defined
grammar, the BFS require the logic (Grammar/Phrase Structure) and pattern

https://doi.org/10.4236/jsea.2020.135006

E. O. Aliyu et al.

DOI: 10.4236/jsea.2020.135006 85 Journal of Software Engineering and Applications

Table 1. Parsing rules for rapid coding.

Rule 1 Methods/Functions should be defined for all non-terminals

Rule 2 All terminals should be handled by an “eat” method

Rule 3
All “or” conditions within the grammar should be programmed using the if, else if,
else program conditional statements.

Rule 4
All “*” or “+” depicting 0 or more and 1 or more occurrence of an EBNF rule
should be handled within a while loop.

Table 2. Formalized pattern matching.

Token Type Token Value Formalization

DECLARATION INT TOKEN(DECLARATION, INT)

KEYWORD_ID MAIN TOKEN(KEYWORD_ID, MAIN)

LPAREN (TOKEN(LPAREN, ()

RPAREN) TOKEN(RPAREN,))

LBRACE { TOKEN(LBRACE, {)

IF_KEYWORD IF TOKEN(IF_KEYWOR, IF)

LPAREN (TOKEN(LPAREN, ()

ID A TOKEN(ID, a)

BOOL_OPRT == TOKEN(BOOL_OPRT, ==)

INTEGER_CONST 2 TOKEN(INTEGER_CONST, 2)

RPAREN) TOKEN(RPAREN,))

LBRACE { TOKEN(LBRACE, {)

ID C TOKEN(ID, c)

ASSIGN = TOKEN(ASSIGN, =)

ID A TOKEN(ID, a)

AE_OPRT + TOKEN(AE_OPRT, +)

ID B TOKEN(ID, b)

SEMI ; TOKEN(SEMI, ;)

RBRACE } TOKEN(RBRACE, })

RBRACE } TOKEN(RBRACE, })

(Tokens). Hence, when the tokens are passed into the grammar then, a best first
process is initiated, the token is searched for within the grammar based on the
node having lowest value, if the token is found, it returns match, then collects
the next token, and if the token is not found, it returns not match. The process
continues until all the strings has been verified and parsed. Shown in Figure 9 is
the parsing process for the program block 1in Figure 7.

Having automated the parsing process, AST class; a collection of several AST
classes with each having a reference to each method of the parser class was im-
plemented including AST visualizer parameters depicted in Table 3, while the
nodegen command line that executes the process and in return, generates the
dot file configuration and the picture format of the AST is given in Figure 10.

https://doi.org/10.4236/jsea.2020.135006

E. O. Aliyu et al.

DOI: 10.4236/jsea.2020.135006 86 Journal of Software Engineering and Applications

Figure 9. Parsing process for program block 1.

Figure 10. Nodegen command line.

The nodegen command line contains the instruction format to generate ab-

stract syntax tree model for the system. Argparser is imported into the python
environment in which the Arg is the text-file to parse which is added to the pro-
gram (i.e. the file) to execute. The extension is a dot extension as shown in Fig-
ure 11 which define the layered drawing of directed graphs while—Tpng is a flag

https://doi.org/10.4236/jsea.2020.135006

E. O. Aliyu et al.

DOI: 10.4236/jsea.2020.135006 87 Journal of Software Engineering and Applications

Table 3. AST visualizer parameters.

Specification Type Parameter Set

Node Shape Rectangle

Font Size 10px

Font Name Courier

Line Height 0.4dpx

Shape Padding 10px

Path Size 0.4px

Title AST Dependent

Figure 11. Dot File configuration program block 1.

that transform the dot file into portable network graphics (png) format (that is,
to see what format dot support), having invoked from a command shell and
presented in Figure 12.

https://doi.org/10.4236/jsea.2020.135006

E. O. Aliyu et al.

DOI: 10.4236/jsea.2020.135006 88 Journal of Software Engineering and Applications

Figure 12. Program abstraction block 1.

5. Conclusions and Future Work

This paper discusses an intermediate representation approach developed. A lexer
for transforming input characters into a stream of tokens, initiates a parser for
generating abstract syntax tree dot file based on defined grammar rules and
produces abstract syntax visualizer interpreting the dot file into portable net-
work graphics format.

This paper observed better result due to portable network graphics transpa-
rency instead of portable document format for document sharing. Hence, the ef-
ficacy of our approach was established for analyzing C++ code.

Although, the research goal is to develop a model checker for detecting as-
signment in-guard error including emphasis on break and default keyword in
C++ codes. Further research will employ visualization presented as a modeling
formalism to detect operator’s conformity error, non-inclusion of break and de-
fault keyword in selective and iterative structures. Second, different system per-
formance to determine the reliability, validity of programs if optimal and ma-
thematical model for calculating the schedule time for different program line of
codes will be deduced.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Click, C. and Paleczny, M. (1995) A Simple Graph-Based Intermediate Representa-

https://doi.org/10.4236/jsea.2020.135006

E. O. Aliyu et al.

DOI: 10.4236/jsea.2020.135006 89 Journal of Software Engineering and Applications

tion. ACM SIGPLAN Workshop, San Francisco, CA, 35-49.
https://doi.org/10.1145/202530.202534

[2] Sander, G. (1999) Graph Layout for Applications in Computer Construction. Theo-
retical Computer Science, Berkeley, CA, 175-214.
https://doi.org/10.1016/S0304-3975(98)00270-9

[3] Walker, D. (2003) Intermediate Representation. Princeton University, Princeton,
NJ, 1-21.

[4] Vaderna, R., Milosavljevic, G. and Dejanovic, I. (2015) Graph Layout Algorithms
and Libararies: Overview and Improvements. Faulty of Technical Sciences, Univer-
sity of Novisad, Serbia.

[5] Strunk, E.A., Aiello, M.A. and Knight, J.C. (2006) A Survey of Tools for Model
Checking and Model-Based Development. Technical Report, Department of Com-
puter Science, University of Virginia, Charlottesville, VA.

[6] Braun, M., Buchwald, S. and Zwinkau, A. (2011) FIRM: A Graph-Based Interme-
diate Representation. Workshop on Intermediate Representations. Karlsruuhe In-
stitute of Technology, Germany, 61-68.

[7] Moller, A. and Schwartzbach, M.I. (2019) Static Program Analysis. Computer
Science, Aarhus University, Denmark.

[8] Visser, E. (2004) Program Transformation with Stratego/XT: Rules, Strategies,
Tools and Systems. Technical Report, Institute of Information and Computing
Sciences Utrecht University, Netherlands.

[9] Ade-Ibijola, A., Ewert, S. and Sanders, L. (2014) Abstracting and Narrating Novice
Programs Using Regular Expressions. South Africa Institute of Computer Scientist
and Information Technologist (SAICSIT), Centurion, South Africa.
https://doi.org/10.1145/2664591.2664601

[10] Gansner, E.R., Koutsofios, E. and North, S. (2015) Drawing Graphs with Dot.
https://graphiz.gitlab.io/_pages/pdf/dotguide.pdf

[11] Aliyu, E.O., Adewale, O.S., Adetunmbi, A.O. and Ojokoh, B.A. (2019) Requirement
Formalization for Model Checking Using Extended Backus Naur Form. I-Manager’s
Journal on Software Engineering, 13, 1-6.

[12] Stalmans, E.R. (2010) Visualisation of Abstract Syntax Trees for Coco/R. Computer
Science of Rhodes University Grahamstowm, South Africa.
https://pdfs.semanticscholar.org

[13] Kreb, N. and Schmitz, L. (2012) JACCIE: A Java-Based Compiler-Compiler for Ge-
nerating, Visualizing and Debugging Compiler Components. Elsevier Science of
Computer Programming, 79, 101-115. https://doi.org/10.1016/j.scico.2012.03.001

[14] Kulkarni, A.A. (2013) Verification of Program Properties with Graphviz. Master
Dissertation, College of Engineering, Shivajinagar, Pune.

[15] Gregor, M. and Spalek, J. (2017) Using LLVM-Based JIT Compilation in Genetic
Programming. Department of Control and Information Systems, Faculty of Elec-
trical Engineering, University of Zilina, Zilina, Slovak Republic.
https://doi.org/10.1109/ELEKTRO.2016.7512108

[16] Celik, Z.B., McDaniel, Z.P. and Tan, G. (2018) SOTERIA: Automated IoT Safety
and Security Analysis. USENIX Annual Technical Conference, 1-19

[17] Mount, S. (2013) A Language-Independent Static Checking System for Coding
Conventions. Ph.D. Thesis, University of Wolverhampton, England.

[18] Joshi, V. (2017) Leveling up one’s Parsing Game with ASTs.
https://medium.com/basecs/leveling-up-onesparsing-game-with-asts-d7a6fc2400ff

https://doi.org/10.4236/jsea.2020.135006
https://doi.org/10.1145/202530.202534
https://doi.org/10.1016/S0304-3975(98)00270-9
https://doi.org/10.1145/2664591.2664601
https://graphiz.gitlab.io/_pages/pdf/dotguide.pdf
https://pdfs.semanticscholar.org/
https://doi.org/10.1016/j.scico.2012.03.001
https://doi.org/10.1109/ELEKTRO.2016.7512108
https://medium.com/basecs/leveling-up-onesparsing-game-with-asts-d7a6fc2400ff

E. O. Aliyu et al.

DOI: 10.4236/jsea.2020.135006 90 Journal of Software Engineering and Applications

[19] Fehnker, A., Brauer, J., Huuck, R. and Seefried, S. (2008) Goanna: Syntactic Soft-
ware Model Checking. 1-6.

[20] Namratha, N. (2010) Visualization of Dataflow Models. A Dissertation in Eindho-
ven University of Technology, United Arab Emirates.

[21] Gansner, E.R. (2014) Using Graphviz as a Library (Cgraph Version). Graphviz Li-
brary Manual.

[22] Dogrosoz, U., Feng, Q., Madden, B., Doorly, M. and Frick, A. (2002) Graph Visua-
lization Toolkits. IEEE Computer Graphics and Application, 22, 30-37.
https://doi.org/10.1109/38.974516

[23] Ellson, J., Gansner, E.R., Koutsofios, E., North, S.C. and Woodhull, G. (2003)
GraphViz and Dynagraph-Static and Dynamic Graph Drawing Tools. Graph
Drawing Software, AT and T Lab-Research, 127-148.
https://doi.org/10.1007/978-3-642-18638-7_6

[24] Louden, K.C. (1993) Compiler Construction (Principles and Practice).

[25] Aliyu, E.O. (2019) Development of Model Checking Technique for Operators Con-
formity Error in Selective and Iterative Structures. PhD Thesis, Department of
Computer Science, Federal University of Technology Akure, Ondo State, Nigeria.

https://doi.org/10.4236/jsea.2020.135006
https://doi.org/10.1109/38.974516
https://doi.org/10.1007/978-3-642-18638-7_6

	Intermediate Representation Using Graph Visualization Software
	Abstract
	Keywords
	1. Introduction
	2. Related Works
	3. Central Concepts of Intermediate Representation
	3.1. Abstract Syntax Tree
	3.2. Graph Visualization Software
	3.3. Recursive Descent Parser (RDP)
	3.4. Best First Search (BFS) Algorithm

	4. Parsing Process Methodology
	5. Conclusions and Future Work
	Conflicts of Interest
	References

