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Abstract 
The traditional sequent peak algorithm (SPA) was used to assess the reservoir 
volume (VR) for comparison with deficit volume, DT, (subscript T representing 
the return period) obtained from the drought magnitude (DM) based method 
with draft level set at the mean annual flow on 15 rivers across Canada. At the 
annual scale, the SPA based estimates are larger, on an average of nearly 70%, 
compared to the DM based estimates. To ramp up the DM based estimates to 
be in parity with SPA based values, the analysis was conducted through the 
counting and the analytical procedures involving only the annual SHI (stan-
dardized hydrological index, i.e. standardized values of annual flows) se-
quences. It was found that MA2 or MA3 (moving average of 2 or 3 consecu-
tive values) of SHI sequences was required to match the counted values of DT 
to VR. Further, the inclusion of mean, as well as the variance of the drought 
intensity in the analytical procedure, with the aforesaid smoothing led DT 
comparable to VR. The distinctive point in the DM based method is that no 
assumption is necessary such as the reservoir being full at the beginning of 
the analysis—as it is the case with the SPA. 
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1. Introduction 

A considerable amount of research can be traced to the hydrologic drought 
models utilizing the river flow data that focus on the estimation of drought du-
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ration and magnitude (previously termed as severity). Two major elements of 
the hydrologic drought studies have been the truncation level approach and the 
analysis by simulation and/or analytical methods. The analytical methods are 
pursued by the use of the frequency analyses of drought events in terms of dura-
tion and deficit volumes. The noteworthy contributions in this area of frequency 
analyses are that of [1] [2] [3] [4], among others. The other route in the domain 
of analytical methods is the use of the theory of runs, which is well documented 
in [5]-[13]. Several hydrologic drought indices have been suggested such as 
standardized runoff index (SSI) [14], streamflow drought index (SDI) [15], and 
standardized hydrologic index (SHI) [12] [13]. These indices are essentially 
standardized (statistically) values of historical stream flows or in some trans-
formed version (normalization in a probabilistic sense) at the desired time scale. 
The standardized hydrological index (SHI) is the standardized value (statistical) 
of river flows with the mean 0.0 and the standard deviation equal to 1.0, unlike 
the standardized precipitation index (SPI), which is normalized after standardi-
zation [16]. On the monthly time scale, it is the month-by-month standardiza-
tion and so on at the weekly time scale. 

The major application of the SPI refers to drought monitoring which is an es-
sential element in the process of drought early warning and preparedness. Ap-
plications of SPI are amenable because of the widespread availability of precipi-
tation data. Though some attempts have been made to classify the hydrological 
drought [15] on the lines of SPI, yet such uses of hydrological drought indices 
are limited. However, there have been investigations to use the SPI to relate the 
propagation of meteorological droughts to hydrological droughts in Spanish 
catchments [17] and for the U.K. catchments [18], among others. Despite such 
limitations, hydrological drought indices have potential in the estimation of 
drought magnitude that plays an important role in the assessment of shortage of 
water in rivers and consequently in reservoirs. Even with the aforesaid studies, a 
few investigations other than Sharma and Panu [19] [20] have been made to link 
the deficit volume to reservoir volume, and also how and at what time scale of 
analysis would be aptly meaningful in this regard. 

The term drought magnitude has been variously defined in the earlier litera-
ture such as the drought severity [5] [6] and the deficit volume [2]. In this paper, 
the term deficit volume (denoted by D) represents the deficiency or the shortage 
of water below the truncation level in a river flow sequence, and the drought 
magnitude (M) refers to the deficiency in terms of the SHI (standardized flow) 
sequences. The deficit volume and drought magnitude are related by the linkage 
relationship: D = σ × M [5], in which σ is the standard deviation of the flow se-
quence. The analyses are usually conducted in the standardized domain to assess 
deficit volume, D through the above linkage relationship.  

To the best of the authors’ knowledge, no research investigations other than 
those of authors [19] [20] have been reported in the literature on the application 
of drought indices and magnitude-based analyses, and models for sizing of re-
servoirs. This paper represents one of the pioneering attempts to address and 
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bridge the above gap and demonstrate the utility of such analyses of drought 
magnitude in assessing the size of reservoirs. The standardized hydrological in-
dex (SHI) has been used in this analysis utilizing streamflow data from Canadian 
rivers. The data on annual, monthly and weekly flow sequences were analyzed 
using the draft at the mean annual flow for sizing of reservoirs. However, the 
authors’ preliminary investigations indicate that the detailed analysis related to 
the sizing of reservoirs be conducted at an annual scale in view of ease and sim-
plicity in handling annual streamflow data.  

2. Preliminaries on Methods for Sizing the Reservoirs 

The two textbook-based methods [21] [22] for sizing the reservoirs are the Rippl 
graphical procedure and the sequent peak algorithm (SPA). In the Rippl method, 
the graphical plot of cumulative inflows as well as outflows is used to derive an 
estimate of the reservoir size. In the SPA, the calculations are conducted numer-
ically using the cumulative or residual mass curve methods to obtain the esti-
mate of reservoir volume, VR. In the drought magnitude-based method, SHI se-
quences are obtained after standardization. It corresponds to truncating the an-
nual river flow sequences at the mean level or SHI value = 0. Since the drought 
lengths and corresponding drought magnitudes yield conservative values for the 
design of reservoirs, therefore SHI = 0 as a truncation level is preferred and has 
been used in the analysis. The SHIs below the truncation level are referred to as 
the deficit (dubbed as d), whereas above the level are referred to as the surplus 
(dubbed as s). In a historical record of N (=T) years, there shall emerge several 
spells of deficit and surplus, and the longest spell length of deficits (representing 
LT) is recorded. Likewise, the corresponding deficits are added to represent the 
largest magnitude (MT). These deficits are being referred to as drought intensi-
ties and represent truncated values of SHIs below the truncation level. The fore-
going approach of calculation of LT and MT is dubbed as the counting procedure in 
the ensuing sections. The largest deficit volume (DT) during the drought period is 
computed as DT = σ × MT [5]. It is noted that the unit of DT is the same as that of σ 
because MT is a dimensionless entity. It is stated that either the quantity DT ob-
tained using the DM based counting or analytical procedure is perceived equiva-
lent to VR calculated by the SPA method. In the counting procedure, the entities 
MT and DT are respectively obtained from the historical or observed data and 
hence are denoted as MT-o and DT-o, where subscript “o” stands for the observed. 

Estimation of Deficit Volumes by DM Model 

A majority of models for the estimation of drought magnitude implicitly in-
volves the use of the frequency distribution of drought events [2] [4]. It is in this 
regard that the moving average (MA) and sequent peak algorithm (SPA) form 
the important tools for analysis [2] [9]. In other approaches, the probabili-
ty-based relationships are hypothesized for estimating drought magnitude (M) 
using the relationship: drought magnitude = drought intensity × drought length 
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[23]. As mentioned above, drought intensities essentially are deficit spikes and 
are derived by truncating a SHI sequence. The deficit spikes have a negative sign 
because each spike lay on the downside (negative side) of the truncation level, 
with the lower bound as −∞ and an upper bound as truncation level such as z0, 
which is also a negative number with a maximum value of 0. It is tacitly assumed 
that the SHI sequences obey standard normal probability density function (pdf) 
which after truncating at the desired level (z0) shall result in a truncated normal 
pdf, whose mean and variance would be different from 0 and 1. One can develop 
a probabilistic relationship for MT, using the extreme number theorem [7] [24] 
that implicitly involves drought intensity and drought length (LT) as expressed 
below.  

( ) ( ) ( )( )exp 1 1T qP M Y Tq q P M Y ≤ = − − − ≤              (1) 

In which, q represents the simple probability of drought and qq represents the 
conditional probability that the present period is a drought given the past period 
was also drought and T is equivalent to return period; M stands for the drought 
magnitude which takes on non-integer values represented by Y, and P(.) represents 
the notation of cumulative probability. Since Y’s (such as Y1, Y2, Y3, Y4, …) cor-
respond to values of M, thus the largest of them will represent MT. In the above 
expression, M is construed to follow a normal pdf with mean and variance re-
lated to the mean and variance of drought intensity and a characteristic drought 
length. The characteristic drought length is related to the mean drought length 
and the extreme drought length, LT.  

At the annual level, the flow sequences in Canadian rivers have been found to 
follow the normal pdf [13], leading SHI sequences to obey standard normal pdf. 
Therefore, the assumption of deficit spikes to obey truncated normal distribu-
tion is reasonably justified. Based on the above premises, a detailed derivation 
has been tracked by Sharma and Panu [19] [20] and is not reproduced here for 
brevity. The concluding expressions for the present paper are described as fol-
lows.  

( )
( ) ( ) ( )1 1

1 -0 2
j jn

T T j T j T ej

Y Y
E M P M Y P M Y M+

+=

+
 = ≤ − ≤ = ∑     (2) 

To compute ( ) ( )1 –T j T jP M Y P M Y+
 ≤ ≤   in Equation (2), the integration 

of the normal probability function is numerically performed as described in 
Sharma and Panu [12]. Theoretically, the upper limit of summation (n1) in Equ-
ation (2) is ∞, but for numerical integration purposes, a finite value is chosen. 
For drought magnitude analysis based on annual flows, a value of n1 = 30 (with 
an increment in j = 0.05 was found to be large enough to ensure sufficient accu-
racy in the process of numerical integration. For brevity, henceforth E(MT) shall 
be written as -T eM , i.e., an estimated value of MT. It may be noted that Equation 
(2) involves both the mean and variance of drought intensity to arrive at a value 
of MT-e. Likewise, the estimated value of DT is designated as DT-e (=σ × MT-e). 

A particular version of MT-e involving the mean of drought intensity (denoted 
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as µd) only can be written as follows [12]. 

( )2
0

- 0

exp 0.5

2T e d T T

z
M L abs z L

q
µ

 −
 = ⋅ = − − ⋅
 π 

 (abs means absolute)  (3) 

where, LT is the largest drought length obtained using Markov chain based algo-
rithm, q is drought probability at the truncation level z0. For example, a standard 
normal pdf respectively can be truncated at z0 = 0.0 and z0 = −0.52 and the cor-
responding drought probability q can be found from the standard normal prob-
ability table to be 0.5 and 0.3. 

3. Data Acquisition and Calculations of Reservoir Volumes 

Fifteen rivers from prairies to Atlantic Canada (Table 1, Figure 1) were involved  
 

Table 1. Summary of statistical properties of annual flows of the rivers under consideration. 

Name, location, and the numeric identifier 
of the River in Figure 1 

Period of Record 
(Year) 

Area 
(km2) 

Mean 
(m3/s) 

cv γ ρ 

(1) Bow River at Banff, AB05BB001 
(51˚10'30"N, 115˚34'10"W) 
(2) South Saskatchewan River at Medicine Hat 
(50˚03'00"N, 110˚40'00"W), AB05JA001 
(3) English River at Umfreville, ON05QA002 
(49˚52'30"N, 91˚27'30"W) 
(4) Pic River near Marathon, ON02BB003 
(48˚46'26"N, 86˚17'49"W) 
(5) Pagwachaun River at highway#11, ON04JD005 
(49˚46'00"N, 85˚14'00"W) 
(6) Nagagami River at highway#11, ON04JC002 
(49˚46'44"N, 84˚31'48"W) 
(7) Batchwana River near Batchwana, ON02FB001 
(46˚59'36"N, 84˚31'31"W) 
(8) Goulis River near Searchmont, ON02FB002 
(46˚51'37"N, 83˚38'18"W) 
(9) North French near Mouth, ON04MF001 
(51˚05'00"N, 80˚46'00"W) 
(10) Beaurivage A. Sainte Entiene, QC02PJ007 
(46˚39'33"N, 71˚17'19"W) 
(11) Lepreau River at Lepreau, NB01AQ001 
(45˚10'11"N, 66˚28'05"W) 
(12) Bevearbank River at Kinsac, NS01DG003 
(44˚51'04"N, 63˚39'50"W) 
(13) N. Margaree at Margaree valley, NS01FB001 
(46˚22'08"N, 60˚58'31"W) 
(14) Upper Humber R. at Reidville, NF02YL001 
(49˚14'34"N, 57˚21'36"W) 
(15) Torrent River at Bristol pool, NF02YC001 
(50˚36'26"N, 57˚09'05"W) 

108 (1911-18) 
 

59 (1960-18) 
 

97 (1922-18) 
 

48 (1971-18) 
 

50 (1968-18) 
 

38 (1981-18) 
 

51 (1968-18) 
 

51 (1968-18) 
 

52 (1967-18) 
 

75 (1926-00) 
 

100 (1919-18) 
 

97 (1922-18) 
 

90 (1929-18) 
 

66 (1953-18) 
 

59 (1960-18) 
 

2210 
 

56369 
 

6230 
 

4270 
 

2020 
 

2410 
 

1190 
 

1160 
 

6680 
 

709 
 

239 
 

97 
 

368 
 

2110 
 

624 
 

39.12 
 

167.08 
 

58.75 
 

50.21 
 

23.07 
 

24.59 
 

22.20 
 

18.17 
 

95.48 
 

14.19 
 

7.41 
 

3.04 
 

17.03 
 

80.05 
 

24.81 
 

0.13 
 

0.35 
 

0.32 
 

0.24 
 

0.25 
 

0.22 
 

0.20 
 

0.21 
 

0.21 
 

0.26 
 

0.22 
 

0.19 
 

0.14 
 

0.13 
 

0.15 
 

0.05 
 

0.20 
 

0.30 
 

−0.06 
 

0.18 
 

−0.14 
 

0.21 
 

0.21 
 

0.004 
 

1.15 
 

0.53 
 

0.15 
 

0.49 
 

0.42 
 

0.72 
 

0.06 
 

0.12 
 

0.21 
 

0.13 
 

0.06 
 

0.08 
 

0..03 
 

0.08 
 

−0.04 
 

0.19 
 

0.10 
 

−0.19 
 

0.17 
 

0.15 
 

0.18 
 

Note: The cv, γ, ρ respectively represent the coefficient of variation, skewness, lag-1 autocorrelation. Small values of skewness 
indicate the normal pdf of the annual flow sequences. 

https://doi.org/10.4236/jwarp.2022.141001


T. C. Sharma, U. S. Panu 
 

 

DOI: 10.4236/jwarp.2022.141001 6 Journal of Water Resource and Protection 
 

 
Figure 1. Location of the river gauging stations used in the analysis across Canada (not to 
the scale) [Source: Environment Canada]. 

 
in the analysis. The rivers encompassed drainage areas ranging from 97 to 
56,369 km2 with the data bank spanning from 38 to 108 years. The flow data for 
these 15 rivers were extracted from the Canadian hydrological database [25]. To 
increase the number of samples, some of the rivers with large data sizes such as 
the Bow, English, Lepreau, Bevearbank, and North Margaree were also analyzed 
by forming 2 - 4 subsamples with the data size of 40 years or more. This type of 
analysis created around 30 samples from 15 rivers to obtain a robust and reliable 
estimate of the performance statistics. Based on the above premises, the results 
of various analyses are described in the sections to follow. 

The first step in the analysis was to discern the role of time scale in influen-
cing the reservoir size. Therefore, reservoir volumes (VR) were assessed using the 
SPA at the demand level equivalent to the mean flows at the annual, monthly, 
and weekly scales. The procedure advanced in Linsley et al. [21] was used to 
calculate the VR. In turn, the VR values were compared with the deficit volumes, 
DT-o. The calculations were done by writing Macros in Visual Basic and coupling 
them with associated data in the Microsoft Excel framework. Therefore, flows 
were standardized at the above three time scales to obtain SHI sequences. In all 
three time scales, the values of the drought probability, q, were obtained by the 
counting procedure in which an SHI sequence was chopped at level 0 (mean lev-
el). In general, the annual flows tend to follow a normal pdf in the Canadian set-
tings and thus, at the mean level, q values cluster around 0.50 (Table 2, column 
2). In view of the gamma pdf of the flow sequences, at the monthly and weekly 
scales [13], the q values are significantly larger than 0.50 (Table 2, columns 3 
and 4).  
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Table 2. Calculations of storage volumes at the mean level of flows for varying time scales. 

River name & 
Data size 

Computations of Storage Volumes (m3) 

Sequent Peak Algorithm (SPA) Drought magnitude (DM) 

Annual Month Week Annual Month Week 

1 2 3 4 5 6 7 

S. Saskatchewan 
1960-2011, N = 52 
S. Saskatchewan 
1970-2011, N = 42 

q = 0.50 
2.19 × 1010 

q = 0.50 
1.59 × 1010 

q = 0.58 
2.24 × 1010 

q = 0.58 
1.63 × 1010 

q = 0.59 
2.28 × 1010 

q = 0.58 
1.65 × 1010 

q = 0.50 
1.63 × 1010 

q = 0.50 
8.41 × 109 

q = 0.58 
7.91(8.52) × 109 

q = 0.58 
7.11(7.79) × 109 

q = 0.59 
6.54(7.30) × 109 

q = 0.58 
6.13(6.80) × 109 

Bow River 
1940-2011, N = 72 

Bow River 
1911-1960, N = 50 

Bow River 
1960-2003, N = 44 

q = 0.50 
1.61 × 109 

q = 0.48 
1.67 × 109 

q = 0.50 
1.21 × 109 

q = 0.54 
1.62 × 109 

q = 0.54 
1.77 × 109 

q = 0.54 
1.24 × 109 

q = 0.55 
1.68 × 109 

q = 0.55 
1.85 × 109 

q = 0.55 
1.28 × 109 

q = 0.50 
7.79 × 108 

q = 0.48 
1.08 × 109 

q = 0.50 
6.21 × 108 

q = 0.54 
5.65(4.27) × 108 

q = 0.54 
5.31(5.05) × 108 

q = 0.54 
5.55(4.14) × 108 

q = 0.55 
4.84(4.10) × 108 

q = 0.55 
3.51(3.89) × 108 

q = 0.55 
4.79(4.24) × 108 

English River 
1922-2009, N = 88 

English River 
1922-66, N = 45 
English River 

1975-2011, N = 37 

q = 0.52 
7.86 × 109 

q = 0.49 
5.60 × 109 

q = 0.50 
4.49 × 109 

q = 0.57 
7.97 × 109 

q = 0.57 
5.92 × 109 

q = 0.55 
4.51 × 109 

q = 0.58 
8.06 × 109 

q = 0.58 
6.00 × 109 

q = 0.55 
4.59 × 109 

q = 0.52 
3.73 × 109 

q = 0.49 
3.19 × 109 

q = 0.50 
2.85 × 109 

q = 0.57 
3.67(3.20) × 109 

q = 0.57 
3.41(2.88) × 109 

q = 0.55 
2.18(2.10) × 109 

q = 0.58 
3.80(3.24) × 109 

q = 0.58 
3.55(2.92) × 109 

q = 0.55 
2.27(2.17) × 109 

Beaverbank River 
1961-2000, N = 40 

q = 0.50 
8.00 × 107 

q = 0.59 
8.73 × 107 

q = 0.65 
9.10 × 107 

q = 0.50 
6.37 × 107 

q = 0.59 
4.63(4.78) × 107 

q = 0.65 
2.96(2.72) × 107 

Pic River 
1971-05, N = 35 

q = 0.51 
1.48 × 109 

q = 0.58 
1.77 × 109 

q = 0.60 
1.82 × 109 

q = 0.51 
9.68 × 108 

q = 0.58 
1.17(1.13) × 109 

q = 0.60 
9.94 (8.09) × 108 

Goulish River 
1968-10, N = 43 

q = 0.49 
1.10 × 109 

q = 0.57 
1.21 × 109 

q = 0.63 
1.25 × 109 

q = 0.49 
8.11 × 109 

q = 0.57 
3.35(2.48) × 108 

q = 0.63 
3.70(2.49) × 109 

Note: The italicized values in parentheses are calculated at the mean levels (variable means) of the respective months and weeks 
without standardization of the flow sequences. 
 

For each time scale, the drought magnitudes, MT-o were computed and accor-
dingly converted to DT-o. On the annual scale, there is only one set of µ and σ, 
whereas there are respectively 12 and 52 such sets of µ and σ at the monthly and 
weekly scales. Therefore, in the calculations of DT-o at the monthly and weekly 
scales, an averaged out (arithmetic average) value, denoted by σav was used in the 
analysis. Various versions of σ such as σmin (subscript min for minimum), σmax 
(max for maximum) and the geometric mean of 12 monthly and 52 weekly val-
ues were tested, and the arithmetic mean turned out to be the best estimator 
[12]. The DT-o values were also estimated without standardization by truncating 
the flow series at the variable mean levels corresponding to the respective 
monthly and weekly time scales. In the standardized domain, the variable means 
are homogenized with a common mean value equal to 0.0.  

The MA sequences can be formed from flows or the SHI sequence, alike. 
However, it is convenient to apply flow sequences to compute the VR using SPA, 
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whereas the DM based method explicitly requires SHI sequences. When the an-
nual SHI (or flow) sequence is used without involving any moving average oper-
ations then such a sequence is designated as moving average 1 (MA1) sequence. 
In other words, a non-averaged value of SHI (or flow) is essentially the annual 
SHI (or flow). When consecutive 2 or 3 or annual SHIs (or flows) are averaged 
out then such a running sequence is termed as MA2 or MA3 sequence. Figure 2 
displays MA1, MA2 and MA3 annual SHI sequences with the drought parame-
ters for the South Saskatchewan River. The MA1 sequence (flows) was subjected 
to analysis to compute the mean (µ), standard deviation (σ) and lag-1 autocor-
relation (ρ). The aforesaid statistics were also evaluated for the MA2 and MA3 
(flows) sequences and are shown in Table 3. Using the above values of mean and  
 

 
Figure 2. Redistribution of drought lengths and magnitudes with varying MA smoothing. 
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Table 3. Summarized VR (SPA) and DT (DM method-counting) on the MA smoothed annual SHI Sequences.  

River details MA number 
Mean 
(m3/s) 

q Ns σ (m3/s-yr.), ρ 

Computation of Reservoir Volume (m3/s-yr.) 

DM Method SPA* 

MT-o MT-e 'DT-o DT-o VR** 

1 2 3 4 5 6 7 8 9 10 11 

Bow river  
N = 108 (1911-18) 

MA1 
MA2 
MA3 

39.12 
39.10 
39.08 

0.48 
0.49 
0.51 

26 
15 
15 

5.18, 0.06 
3.79, 0.57 
3.23, 0.68 

5.84 
13.02 
14.52 

7.02 
13.22 
15.15 

30.27 
49.35 
47.48 

30.27 
67.46 
75.23 

78.11 
-- 
-- 

Bow River  
N = 62 (1955-16) 

MA1 
MA2 
MA3 

38.44 
38.48 
38.51 

0.52 
0.46 
0.53 

17 
10 
9 

5.12, 0.11 
3.84, 0.57 
3.25, 0.65 

4.98 
11.08 
12.20 

6.72 
10.52 
11.39 

25.45 
42.53 
39.65 

25.45 
56.67 
62.44 

54.73 
-- 
-- 

Saskatchewan River 
N = 59 (1960-18) 

MA1 
MA2 
MA3 

167.1 
167.5 
167.9 

0.51 
0.48 
0.54 

14 
7 
6 

58.83, 0.20 
45.95, 0.66 
40.63. 0.81 

8.86 
10.72 
13.71 

6.62 
11.09 
13.07 

521.09 
509.58 
557.04 

508.59 
630.68 
806.41 

708.07 
-- 
-- 

Saskatchewan River 
N = 42 (1970-11) 

MA1 
MA2 
MA3 

159.8 
158.4 
157.3 

0.50 
0.46 
0.43 

12 
6 
5 

60.62, 0.09 
44.40, 0.53 
37.11, 0.74 

4.40 
9.46 
10.39 

5.88 
8.41 
9.85 

266.72 
420.2 
385.37 

266.72 
573.67 
629.53 

504.28 
-- 
-- 

Note: *SPA denotes sequent peak algorithm, **VR reservoir volume (bold letter) closest to SPA based value. 
 
standard deviation, the MA1, MA2 and MA3 flow sequences were converted to 
respective SHI sequences. In the process of analysis, the number of drought 
spells (Ns) dropped from the MA1 through MA3 sequences and are presented in 
column 5 of Table 3. After a few MA smoothing, Ns attained nearly an equili-
brium state and thus suggesting no further MA smoothing were warranted. For 
example, in Table 3, Ns values for MA3 smoothing marginally deviate from 
MA2 but significantly drop from MA1. 

For a comparative analysis on VR, the counting procedure was applied to the 
MA1 sequences. The VR (Table 3, column 11 and in the subsequent text) were 
computed using SPA for comparison with DT-o. The counting for DT-o was done 
in terms of MT-o (SHI sequences, Table 3), which were truncated at the level of 0, 
then converted to DT-o (=σ × MT-o). In the MA1 smoothing, there is only one 
standard deviation, so after calculating the value of MT-o1, the value of DT-o1 was 
obtained using the above relationship by replacing σ with σ1, i.e. the standard 
deviation of the MA1 sequence. 

When the DT-o based on the MA1 analysis did not match or were far less than 
the VR, and then the analysis was extended to MA2 and at times to MA3 se-
quences. For the MA2 smoothing, the value of DT-o (denoted as DT-o2) was ob-
tained using the corresponding value of the standard deviation (denoted by σ2) 
and MT-o (say MT-o2), i.e. DT-o2 = σ2 × MT-o2. For further comparison, another val-
ue of DT-o2 was also computed using σ1 (based on MA1 or the original flow se-
quence), i.e. DT-o2 = σ1 × MT-o2 (Table 3). Likewise, for the MA3 smoothing, two 
values of DT-o3 were obtained; one based on σ3 (DT-o3 = σ3 × MT-o3; σ3 being the 
standard deviation obtained after MA3 smoothing) and another value as DT-o3 = 
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σ1 × MT-o3. The aim is to choose the MA smoothing that will provide the best 
equivalence of DT-o to VR. The above sequence of computations is portrayed in a 
flow diagram (Figure 3). In the flow diagram, the symbols DT-o and MT-o are de-
noted by DT and MT for the sake of brevity and ease of writing and they can also 
represent DT-e and MT-e with the common multiplier σ1. In the flow diagram RV ′  
stands for the standardized value of VR, i.e. = VR/σ1, which corresponds to MT. 

Parallel to the counting procedure, the MT values (denoted as MT-e) were ob-
tained by using the analytical procedure (Equations (2) and (3)). The corres-
ponding values of DT-e were computed (DT-e = σ1 × MT-e). The VR values were 
compared with the values of DT-e. Two values of MT-e were computed for each 
situation, i.e. one value using the mean as well as the variance in Equation (2) 
and the other value by simply using the mean based on Equation (3), thus yield-
ing two values of DT-e. Both the values were compared with VR for arriving at an 
appropriate value of DT-e for further analysis and use.  

4. Results  
4.1. Role of the Time Scale on the Estimates of Reservoir Size  

To discern the role of the annual, monthly and weekly time scales, VR (SPA) and  
 

 
Figure 3. Flow diagram for computing deficit volumes under various options in the DM 
method. 
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DT-o (the counting procedure in the DM method) from the respective flows and 
SHI sequences were computed and are summarized for 6 rivers in Table 2. It 
was found that the values of VR at the aforesaid time scales were fairly close to 
each other with a tendency to slightly increase (0% to 20% with an average value 
of 10%) at the monthly and weekly scales compared to the annual scale. The 
monthly and weekly DT-o values tended to decrease compared to annual values of 
DT-o with an average reduction of 25% (range from 21% to 59%). The other point 
that emerged from the calculations was that the VR was greater than DT-o at 
all-time scales. For example, at the annual scale, VR values were found to be 
larger (ranging from 0% to 200%), with an average of nearly 70%. The reduction 
in the storage requirement in terms of deficit volumes makes sense because at 
monthly and weekly scales the actual drought periods are estimated more accu-
rately due to time scale effects and are usually shortened and thus requiring less 
amount of water to meet the demand. On the contrary, in the SPA based calcula-
tions for RV , the fluctuations at a shorter time scale would be larger requiring 
greater reservoir volume to damp out such fluctuations to meet the constant 
demand.  

The above numbers displaying the large discrepancies between the SPA and 
the DM based (MA1) estimates highlight that either the SPA yields excessive 
values of reservoir volume or the DM method yields too small estimates at the 
draft level of mean annual flow (MAF, 1µ). At the annual scale, however, when 
the draft was lowered to 0.90µ or less, the estimates by the SPA and the DM me-
thod converged to the same value [20]. In other words, a region with a draft level 
between 0.90µ and 1µ requires special consideration for the estimation of reser-
voir volumes by the DM method. The SPA based estimates can be construed as 
fixed with a little scope to lower them in view of the inherent algorithm imbued 
in it. But the DM based estimates can be boosted by utilizing the MA procedure 
to attain parity with SPA based estimates. The SPA has been in vogue since the 
1960s [26] and is universally accepted to design the reservoir capacity, therefore, 
the focus in this study is to arrive at a suitable MA smoothing that should yield 
DT comparable to VR at the draft level of 1µ.  

The DM based estimates (italicized, Table 2) at the monthly and weekly scales 
without standardization were found to be slightly different (mostly smaller) in 
comparison to the standardization based values (SHI sequences). On average, 
the standardization based estimates were found about 12% larger than those 
based on the non-standardized values. This discrepancy can be perceived to arise 
because of avσ , which has been taken as the representative value of the standard 
deviation to convert the magnitude in deficit volume (DT = σav × MT). Needless 
to mention that σav is an estimator representing 12 values of monthly σ’s and is 
unlikely to be the best for all situations, but is construed to be a better option 
compared to other options mentioned earlier. Since standardization is purely 
statistical in this operation, the pdf of monthly sequences is less likely to play the 
role in explaining the aforesaid discrepancy. On an annual scale, however, it 
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should be noted that the standard deviation has only one value, thus estimates 
by both routes turned out to be identical. Therefore, only one value of DT-o is 
reported in Table 2. Since these estimates (i.e. without standardization) do not 
require the use of standard deviation in the calculations and thus can be deemed 
more accurate. However, the standardization procedure is better amenable to 
statistical analysis, and estimates based on this approach are more conservative 
(i.e. higher compared to the non-standardization, Table 2). Based on the fore-
going reasoning, the route involving standardization (i.e., the use of SHI se-
quences) for the estimation of DT-o was preferred in subsequent analyses and the 
annual scale is considered as a first choice.  

4.2. Comparison of Reservoir Sizes Using the SPA and the DM  
Based Counting Procedure  

In computing the DT-o, the first step is to choose the right value of σ at each MA 
smoothing. For example, in the MA2 smoothing, there are two DT-o: one based 
on σ2 (i.e. 'DT-02 = σ2 × MT-o2) and another based on σ1 (i.e. DT-02 = σ1 × MT-o2). For 
the MA1 smoothing, there is only one standard deviation and thus DT-o1 = 'DT-o1 
(Table 3). It is apparent from Table 3 that 'DT-o values either inconsistently de-
crease or increase in MA2 and MA3 smoothing; whereas DT-o values are consis-
tently increasing and hence σ1 is the crucial parameter to be used for matching 
to the VR to arrive at an appropriate MA smoothing. In other words, σ1 must be 
used as a multiplier with MT-o in every MA smoothing for estimation of DT-o and 
the role of σ2 and σ3 is confined to the standardization of the smoothed MA2 and 
MA3 flow sequences. It should be noted that for consistency and ease, only 1.0 
σ1 is being used as a multiplier. Other proportion of σ1 (such as 1.2, 1.1, 0.90 or 
0.80) were neither considered nor tested for their efficacy in this study.  

In assessing the efficacy of various smoothing, the values of DT-o and VR were 
compared on a 1:1 basis and the performance statistics, viz. the Nash-Sutcliffe 
efficiency (NSE), and the mean error (MER) were used [27]. To arrive at the 
above estimates of performance statistics, values of VR and DT-o were standar-
dized dividing them by σ1 (MA1). In other words, a 1:1 comparison was made 
between DT-o/σ1 = MT-o and VR/σ1 (denoted by RV ′ ). In doing so, the wild varia-
tion in these entities (i.e. DT-o and VR) from small to large rivers were homoge-
nized while rendering them non-dimensional, and thus resulting in sensible es-
timates of NSE and MER. The efficacy is being tested using NSE and MER [27] 
as these statistics have been extensively used during the past 50 years and are 
time tested measures in hydrologic investigations.  

Based on aforesaid calculations, it was found that MT-o for MA1 sequences 
turned out to be significantly less than RV ′  with a caveat that in a few cases, the 
values of MT-o were found to be equal to RV ′ . In other words, the values of the 
MT-o compared poorly with RV ′  which is also apparent from an utterly low value 
of NSE ≈ 24% and MER ≈ −39% (Table 4). In brief, the RV ′  tended to be very 
conservative (meaning larger), whereas DM based estimates, i.e. MT-o appeared to 
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Table 4. Performance statistics for comparison of SPA based VR with DM based DT. 

Type of model 
Performance  

Statistic 

Drought magnitude-based analysis 

MA1 MA2 MA3 
Average of  

MA2 and MA3 

Calculations by the counting method from observed 
flow data 

NSE (%) 
MER (%) 

24.33 
−38.83 

71.93 
−13.04 

69.36 
17.50 

86.73 
2.23 

DM model with consideration of mean of drought  
intensity only, Equation (3) 

NSE (%) 
MER (%) 

25.90 
−49.80 

49.08 
−36.30 

56.70 
−26.83 

53.60 
−31.56 

DM model with consideration of mean and variance  
of drought intensity, Equation (2) 

NSE (%) 
MER (%) 

46.23 
−23.71 

72.01 
0.75 

65.08 
13.85 

71.02 
7.30 

 
be significantly smaller. Since the discrepancies in values of MT-o and the RV ′  
were excessively large, therefore, the MA2 and MA3 smoothing were considered.  

Firstly, the MA2 based MT-o2 values were compared to the RV ′  on a 1:1 basis. 
It was discovered that with the MA2 smoothing, the matching to RV ′  signifi-
cantly improved resulting in NSE ≈ 72% and MER ≈ −13% (Table 4). In other 
words, the underestimation was ameliorated significantly as the value of MER 
ascended from −39% to −13%. Although the NSE values have improved re-
markably, there still existed a scope for improvement in the estimates of the DT-o 
because underestimation was endemic as revealed by MER of −13%. 

Thus, MA3 smoothing was undertaken (flow chart—Figure 3) and values of 
MT-o3 were obtained. The MA3 sequences resulted in the over-estimation of DT-o 
values with MER = 17.50% although the value of NSE dropped marginally to 
69.36% (Table 4). In short, the MA2 smoothing led to the under-counting whe-
reas the MA3 smoothing led to the over-counting of the DT-o values with NSE 
being nearly the same. For comparison with values of VR, therefore, it was con-
sidered reasonable to average out the DT-o values based on the MA2 and the 
MA3 smoothing. Such a comparison was made by plotting the average values of 
the MT-o2 and MT-o3 against the values of RV ′  and resulted in a remarkably im-
proved match with NSE ≈ 87% and MER ≈ 2% (Figure 4(A), Table 4). The im-
portant point to be noted is that at every smoothing, a new value of MT-o will 
emerge, which is multiplied by the MA1 smoothing based value of σ (=σ1) to ar-
rive at the new estimate of DT-o. 

In the process of moving from the MA1 smoothing to the MA2 smoothing, 
there has been a considerable reduction in the number of drought spells (column 
5, Table 3). Such a reduction suggests that there is a significant increase in the 
drought length (Figure 2) and in turn, there is also a significant increase in the 
drought magnitude. In other words, the smoothing procedure led to the amal-
gamation of smaller drought episodes with the larger ones which resulted in en-
hanced values of the DT-o (or MT-o). Such enhanced values have been found to 
compare well with VR (or RV ′ ).  
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Figure 4. Comparison of SPA based VR with (A) MT-o by counting procedure (B) MT by a hybrid procedure i.e. MT = bigger be-
tween MT-o and MT-e. 

4.3. Comparison of Reservoir Sizes Using the SPA and DM Based  
Model 

The drought magnitudes (MT-e) in the standardized domain were estimated us-
ing Equations (2) and (3). At the annual scale, the characteristic drought length 
was found equivalent to extreme drought length, LT [12], obtained from the 
Markov chain based relationship. In the first version, the MT-e was estimated by 
involving only the mean of the drought intensity i.e. Equation (3) while in the 
second version, both the mean and variance of drought intensity were consi-
dered i.e. Equation (2) to arrive at estimates of the MT-e hence estimates of the 
DT-e. The calculation for DT-e was done using σ1, i.e. DT-e = σ1 × MT-e, which is 
similar to the case of DT-o. Because of similarity, the best multiplier was σ1 for all 
MA smoothing in the estimation of DT-e. For example, there are two estimates of 
DT-e (viz. DT-e2 = σ2 × MT-e2 and DT-e2 = σ1 × MT-e2) if the MA2 smoothing was 
conducted, then the appropriate value will be DT-e2 (= σ1 × MT-e2), which, in turn, 
should be comparable to VR or the counting based DT-o2. One can advance simi-
lar arguments to the MA3 smoothing. Succinctly, σ1 is the multiplier for all MA 
smoothing chosen for estimating DT-e in the analytical approach as was the case 
for DT-o. It was found that the estimation by a simple version involving only the 
mean of the drought intensity proved too inadequate both in terms of NSE and 
MER. The calculations showed that values of MT-e are nearly 50% of VR with the 
MA1 smoothing and such an underestimation persisted even with the MA3 
smoothing leading to the value of MER = −27% (Table 4). The NSE for the MA3 
smoothing was also low with the highest value nearly equal to 57%. Similar was 
the case for the MA2 smoothing with NSE = 49% and MER = −36% (Table 4). 

In view of the abysmal values of the performance statistics by Equation (3), 
Equation (2) was used to estimate MT-e and its corresponding DT-e. The perfor-
mance statistics turned out to be encouraging. Although, there was a significant 
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underestimation (≈−24%) for the MA1 smoothing, however, the underestima-
tion improved remarkably (MER = 0.75%) with the corresponding NSE = 72% 
for the MA2 smoothing. A consideration of MA3 smoothing resulted in a signif-
icant overestimation of nearly 14% and a slight reduction of NSE to 65%, which 
suggested that the MA3 smoothing is less meaningful. However, the estimates of 
MT-e, based on the MA2 smoothing and the MA3 smoothing were averaged out 
and the resultant performance statistics improved compared to those of the MA2 
smoothing with an acceptable overestimation (7.30%). Likewise, the NSE of 71% 
was almost equal to 72% that was obtained for the MA2 smoothing. In nutshell, 
the analytical (model) approach also yielded estimates of MT-e (or DT-e) which are 
in agreement with those of the counting method. However, the estimation pro-
cedure proved a bit rigorous as it involved the numerical integration of relevant 
equations as is reported by Sharma and Panu [12] and the resultant output from 
which, in turn, became input into Equation (2). 

It was observed that the MA2 smoothing resulted in similar values of NSE for 
both the counted DT-o as well as the estimated DT-e (Equation (2)). The counted 
values of DT-o were ameliorated by averaging the values obtained from the MA2 
and the MA3 smoothing. Such an averaging by the analytical estimates involving 
the MA2 and MA3 smoothing resulted in little improvement over the counted 
values. At this point, it was mooted that the MA2 smoothing be preserved and 
the larger value between DT-o (MT-o) and DT-e (MT-e) (Table 5) be used as the final 
estimate of the reservoir volume. For an evaluation of the performance statistics,  

 
Table 5. Summary of the RV ′ , MT-o and MT-e based on the hybrid procedure on MA2 smoothed annual SHI sequences for the se-
lected rivers.  

River name and 
Flow data size 

ρ 
σ1 

(m3/s-yr) 
MT-o = DT-o/σ1 

(counting method) 
MT-e = DT-e/σ1  
(Equation (3)) 

MT-e = DT-e/σ1 
(Equation (2)) 

Best MT VR (m3/s-yr) RV ′  

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Bow River 
(1911-18) N = 108 
Bow River 
(1955-18) N = 64 
S. Saskatchewan R. 
(1960-18) N = 59 
S. Saskatchewan R. 
(1970-11)N = 42 
English River 
(1922-18) N = 97 
English River 
(1965-16) N = 52 
Pagwachaun River 
(1968-18) N = 51 
Bevearbank River 
(1922-1997) N = 76 

0.57 
 

0.57 
 

0.66 
 

0.53 
 

0.58 
 

0.51 
 

0.40 
 

0.30 
 

5.18 
 

5.05 
 

58.83 
 

60.62 
 

19.06 
 

18.73 
 

5.79 
 

0.56 
 

13.02 
 

11.29 
 

10.72 
 

9.46 
 

9.00 
 

11.55 
 

4.61 
 

4.17 
 

7.55 
 

6.37 
 

6.73 
 

5.30 
 

7.39 
 

5.64 
 

5.17 
 

5.45 
 

13.22 
 

10.66 
 

11.25 
 

8.41 
 

12.87 
 

9.19 
 

8.33 
 

8.95 
 

13.22 
 

10.66 
 

11.25 
 

9.46 
 

12.87 
 

11.55 
 

5.17* 
 

5.45* 
 

78.11 
 

56.73 
 

708.07 
 

257.52 
 

254.72 
 

30.44 
 

2.69 
 

2.63 
 

15.08 
 

11.23 
 

12.04 
 

8.32 
 

13.36 
 

10.64 
 

5.26 
 

4.69 
 

Note: *(asterisk) means the value is based on comparing MT-o and MT-e (Equation (3)) because of ρ being < 0.42. 
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viz. NSE and MER, the RV ′  and MT (larger between MT-e and MT-o) were com-
pared on a 1:1 basis (Table 5, Figure 4(B)).  

The foregoing selection criteria of the larger estimate between the MT-e and the 
MT-o (named as hybrid procedure) resulted in the value of NSE about 85% with 
an acceptable level of overestimation (MER = 4.7%). The criteria performed well 
in a majority of rivers except in cases where ρ was found to be less than 0.42 for 
the MA2 sequences. In such cases, the value of the MT-e based on Equation (3) 
was compared with the estimate of the MT-o and the bigger value was chosen to 
represent the reservoir volume. In nutshell, the MA2 smoothing is satisfactory 
for the evaluation of reservoir volumes at the annual scale and conversely, a little 
gain is achieved by invoking higher MA smoothing, with the caveat that the big-
ger one between DT-e (=σ1 × MT-e) and DT-o (=σ1 × MT-o) should be chosen as the 
estimator of deficit volume to correspond with reservoir volume.  

5. Discussion 

From the foregoing analysis, it was observed, that the discrepancy between the 
VR (SPA) and DT (DM) is significant at the draft level of mean annual flow when 
only MA1 smoothing is applied on SHI sequences. The large discrepancies be-
tween the SPA and DM based (MA1) estimates are an eye-opener in that either 
the SPA yields too large values of reservoir volume or the DM method yields too 
small estimates. No such estimates can be considered to be absolute as each me-
thod has its own logistics and limitations. In the case of SPA, the difference be-
tween the full reservoir level (reservoir is assumed to be full at the beginning) 
and the lowest level reached during the sampling period, is taken as the reservoir 
volume. During this intervening period, several droughts including the longest 
one may occur and the recovery in the water levels in the reservoir may succeed. 
Conversely in the DM based method, no such assumption is invoked and thus 
the total shortfall of water below the long term mean flow in a river during the 
longest drought period is regarded as the required reservoir volume. The reser-
voir should be designed to store the above volume of water during the period of 
excess flow in the river.  

It turned out that at the demand level equivalent to the long term mean of the 
river flow, the VR values are fairly constant no matter what time scale is chosen. 
In contrast, the drought magnitude-based methodology resulted in significant 
discrepancy among these estimates with the annual time scale yielding much 
higher values compared to those at the monthly and weekly time scales. In such 
a scenario, one can even be tempted to limit the analysis with the annual flow 
sequences only as it is trivial and the annual flow data can easily be synthesized 
or generated. The MA1 based estimates were found to be significantly smaller 
than the SPA based values but adequately catered for deficiencies arising in the 
wake of severe droughts over a return period of T years. One may infer that un-
der such a scenario, the SPA based values of VR are excessive and are not war-
ranted to fulfil the water shortages. Such a reservoir would require a large in-
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vestment for construction and maintenance with less tangible benefits otherwise 
called for. Despite the wide divergence between these two estimates of VR, no 
value can be said to be absolutely perfect. At this point, there is also a need to 
examine other methods of estimating the reservoir capacity and compare them 
with the DM based estimates. These values can be treated as different estimates, 
which can further be fine-tuned by conducting the analyses at the monthly time 
scales. For example, in the case of South Saskatchewan River (Table 3), there are 
4 estimates of VR, i.e. 708.07 (SPA); 718.55 (average of DT-o using MA2 and MA3 
with DM method), 630.68 (larger between DT-o and DT-e for MA2 using DM me-
thod), 533.31(average of DT-e using MA2 and MA3 with the DM method), and 
one may consider taking an average value of these 4 estimates resulting into 
647.60 as a value for design considerations. Here only 4 estimates are considered 
and a final design value can be fine-tuned by evaluating other methods such as 
Behavior analysis, the Hardison Gamma method, the Alexander method, the 
Dincer method, the Gould Gamma method, and Gould probability method as 
documented in McMahon and Adeloye [22]. Finally, all the estimates may be 
averaged out to arrive at the final design value of the reservoir capacity.  

In a bid to attain the same DT values as VR using the DM based method, the 
drought lengths and in turn, the magnitudes were amplified by a moving average 
procedure that resulted in the MA2 and MA3 sequences. The DT values based on 
the MA2 sequences tend to undercount whereas those based on the MA3 se-
quences tend to over count compared to the VR. On an annual basis, either MA2 
or MA3 smoothing can only be conducted because there is no smoothing opera-
tion between these two, i.e. there is no integer number between MA2 and MA3 
smoothing. Therefore, any further refinement of results stresses that the analysis 
should be conducted at a shorter time scale (i.e. the monthly scale). There exists 
an opportunity for a suitable match between the VR and DT values, provided MA 
smoothing such as 3-, 4-, 5-, 6- or higher monthly SHI sequences are utilized 
[28]. This is an area for further research justifying the use of monthly based 
analysis in the design of reservoirs.  

In the present analysis, a draft at the level of mean annual flow was chosen, 
with the sole objective of demonstrating the application of the drought magni-
tude-based methodology for estimating the storage capacity of reservoirs both 
under independent and dependent (Markovian) river flow conditions. In prac-
tice, the majority of rivers worldwide are designed, based on the draft of 75% of 
the mean annual flow [22], under such a situation the above-described metho-
dology can be applied. Using the above methodology, Sharma and Panu [19] 
noted that at such a draft level, the DM method with no moving averaging 
(MA1) of SHI sequences turn out to be equal to SPA based estimates meaning 
that no higher-order averaging i.e. MA2 or MA3 is required for evolving storage 
estimates. This is an important observation, which speaks the worth of the DM 
based methodology as a viable method in tandem with SPA. The method can be 
extended to monthly SHI sequences, which yields more accurate estimates of re-
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servoir capacity [19] while considering the higher level of dependence (autocor-
relation) and skewness (gamma probability distribution) in monthly flows.  

6. Conclusions 

The analysis was carried out to compare the VR and DT respectively, using the 
SPA and the DM based method (the counting and the estimation procedures) on 
the flow data from 15 rivers across Canada. The estimates of VR at the annual, 
monthly and weekly scales with the draft set at the mean annual flow level were 
observed close to each other with a slight tendency to increase at the monthly 
and weekly scales. On the contrary, estimates of DT at monthly and weekly scales 
tended to decrease compared to the annual scale. At all three time scales, the DT 
estimates turned out to be smaller than VR. To ameliorate the DT to the level of 
VR, the counting and estimation (analytical) procedures (in the DM based Me-
thod) were applied to flow and SHI sequences on an annual scale. In the estima-
tion procedure, the relationships were built on the extreme number theorem, the 
truncated normal probability distribution of the drought intensity, the normal 
distribution of the drought magnitude and a Markov chain based value of ex-
treme drought length. In the counting procedure, the MA2 and MA3 smoothing 
of SHI sequences found the best parity with the averaged out values of DT-o that 
were obtained. Likewise, the analytical procedure yielded similar results (in 
terms of DT-e) when applied on SHI sequences resulting from the MA2 and MA3 
smoothing.  

The estimation of DT-e was found inadequate when only the mean of the 
drought intensity was used. The consideration of the mean and the variance of 
the drought intensity in the estimation procedure turned out to be satisfactory 
and corroborated the results obtained from the counting procedure. Another 
finding of the study was that the MA2 smoothing of SHI sequences sufficiently 
provided the larger value between DT-o and DT-e is taken as a counterpart value of 
the reservoir volume for design purposes. The novel feature of the DM method 
lies in its ability to assess the reservoir volume without assuming the reservoir 
being full at the beginning of the analysis as it is the case with SPA. Further, the 
DM based method is capable of considering the return period and associated 
risk in the design process of reservoirs. However, the DM method requires flow 
sequences to be stationary unlike the SPA, which applies to stationary and non-
stationary flow sequences alike. It is recommended that the study be extended to 
the annual and monthly scales at varying draft levels such as 80%, 75%, 70%, 
60%, 50% etc. of the mean annual flow, which are largely used where environ-
mental concerns are the overriding factors in the design of reservoirs across the 
globe. 
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