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Abstract 
Background: Acute Myeloid leukemia (AML) is the most prominent acute 
leukemia in adults. In the United States, we experience over 20,000 cases per 
year. Over the past decade, improvements in the diagnosis of subtypes of 
AML and advances in therapeutic approaches have improved the outlook for 
patients with AML. However, despite these advancements, the survival rate 
among patients who are less than 65 years of age is only 40 percent. Purpose: 
The purpose of the paper is to study if there exists any significant difference 
in the survival probabilities of male and female AML patients. Also, we want 
to investigate if there is any parametric probability distribution that best fits 
the male and female patient survival and compare the survival probabilities 
with the non-parametric Kaplan-Meier (KM) method. Methods: We used 
both parametric and non-parametric statistical methods to perform the sur-
vival analysis to assess the survival probabilities of 2015 patients diagnosed 
with AML. Results: We found evidence of a statistically significant difference 
between the mean survival time of male and female patients diagnosed with 
AML. We performed parametric survival analysis and found a Generalized 
Extreme Value (GEV) distribution best fitting the data of the survival time for 
male and female patients. We then estimated the survival probabilities and 
compared them with the frequently used non-parametric Kaplan-Meier (KM) 
survival method. Conclusion: The comparison between the survival proba-
bility estimates of the two methods revealed a better survival probability es-
timate by the parametric method than the Kaplan-Meier. We also compared 
the median survival time of male and female patients individually with de-
scriptive, parametric, and non-parametric methods of analysis. The parame-
tric survival analysis is more robust and efficient because it is based on a 
well-defined parametric probabilistic distribution, hence preferred over the 
non-parametric Kaplan-Meier estimate. This study offers therapeutic signi-
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ficance for further enhancement to treat patients with Acute Myeloid Leuke-
mia. 
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1. Introduction 

Leukemias are certain types of cancers that start in the cells that naturally de-
velop into different types of blood cells. Most commonly, leukemia starts in early 
forms of white blood cells, but there are some leukemias that grow in other 
blood cells. There are different types of leukemia that are divided primarily 
based on whether the leukemia is acute (rapidly growing) or chronic (slower 
growing), and whether it starts in myeloid cells or lymphoid cells. Acute myeloid 
leukemia (AML) develops in the bone marrow (the soft inner part of certain 
bones, where new blood cells are formed), but most often, it rapidly moves into 
the blood, as well. It can sometimes spread to other organs that include the 
lymph nodes, liver, spleen, central nervous system (brain and spinal cord), and 
testicles. Acute myeloid leukemia (AML) [1] is the most common acute leuke-
mia in adults, accounting for almost 80 percent of the cases in this group. With-
in the United States, the incidence of AML ranges from three to five cases per 
100,000 population. In 2015 alone, an estimated 20,830 new cases were diag-
nosed, and over 10,000 patients died from this disease. To realize how and why 
leukemia affects a patient, it is essential to understand how blood cells are made. 
The body manufactures blood cells in the bone marrow (the soft inner part of 
bones). The blood cells are produced in a controlled way, as the body needs 
them. Every blood cell starts as the same type of cell called a stem cell. This stem 
cell then develops into the following. 
• Myeloid stem cells, which become white blood cells called monocytes and 

neutrophils (granulocyte), red blood cells, and platelets. And, 
• Lymphoid stem cells, which become white blood cells called lymphocytes. 

Figure 1 describes the process of forming blood cells from stem cells. 
In the case of acute myeloid leukemia, the bone marrow produces a plethora 

of monocytes or granulocytes. These cells are often not fully developed and are 
not able to function regularly. Figure 2 illustrates a possible path of develop-
ment of AML from a stem cell. 

Figure 1 & Figure 2 have been obtained from [2]. 
In the United States, AML increases progressively with age, to a peak of 12.6 per 

100,000 adults 65 years of age or older [3]. Until the 1970s, the diagnosis was based 
solely on the pathological and cytologic examination of bone marrow and blood. 
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Figure 1. Steps of forming blood cells from stem cells. 
 

 
Figure 2. Development of AML from a stem cell. 

 
A five-year survival rate during this period was less than 15 percent. Over the 
past decade, improvements in the diagnosis of subtypes of AML and advances in 
therapeutic approaches have improved the outlook for patients with AML. 
However, despite these advancements, the survival rate among patients who are 
less than 65 years of age is only 40 percent. Although in most of the cases, AML 
cancer disease remains irremediable, most researches into AML concentrated on 
how to improve the survival time of patients diagnosed with AML. The Kap-
lan-Meier (KM) method has been widely used for analyzing cancer survivorship 
data in recent time due to the simplicity of its usage. It is often used to compare 
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the survival difference of several groups of patients based on the log-rank test of 
the null hypothesis that there is no significant difference among the groups. Our 
study presents a parametric and non-parametric survival analysis of the survival 
time of patients diagnosed with AML. We believe that finding the unique proba-
bility distribution that characterizes the probabilistic behavior of the survival 
time is essential so that we can proceed to obtain the survival function that is 
driven by the given data. Such an analysis is more powerful than the 
non-parametric approach. Feigl and Zelen, [4] have pointed out that assuming 
exponential distribution works well for studying the survival of cancer related 
cases [5] [6]. Assuming such a probability distribution without justification will 
lead to misleading results. Thus, it is important to identify the probability dis-
tribution of the survival time among any number of groups (for male/female or 
age < 65, age > 65). Hence, the probability distribution for a given set of survival 
time without justification will lead to an incorrect decision. In the present study, 
we identify the probability distribution that fits the survival time the best and 
proceeds to obtain the survival function. We also compare our results with the 
commonly used Kaplan-Meier (KM) method. The structure of the paper will be 
as follows: In Section 2, we provide the data discussion and perform the log-rank 
test [7] [8]. In Section 3, we discuss in detail the parametric survival analysis of 
male and female AML patients. Section 4 talks about the KM estimate and com-
pares the median survival time of male and female patients using the descriptive, 
parametric, and non-parametric methods. In Section 5, we compare the survival 
probability estimates of male and female patients using parametric GEV distri-
bution and non-parametric KM estimate. Section 6 and Section 7 provide results 
& discussion, and conclusion, respectively. 

2. Method 
Data Description 

The data for our study has been extracted from the Surveillance, Epidemiology 
and End Results (SEER) database. The data contains information on patients 
diagnosed with AML from 2004 to 2015. We are concerned with the survival 
time (in months) and cause-specific death (deaths due to AML cancer) for each 
patient. The survival time of patients is one of the most crucial factors used in all 
cancer research. It is necessary to evaluate the severity of cancer, which helps to 
decide the prognosis and help identify the correct treatment methods. We con-
sidered a random sample of 2015 patients diagnosed with Acute Myeloid Leu-
kemia (AML) which accounts for almost 80% of the Acute Leukemia cases, [9]. 
A schematic diagram of the data used in this study with additional details is 
shown in Figure 3. The data for our study has been extracted from the Surveil-
lance, Epidemiology and End Results (SEER) database. The data contains infor-
mation on patients diagnosed with AML from 2004 to 2015. We are concerned 
with the survival time (in months) and cause-specific death (deaths due to AML 
cancer) for each patient. The survival time of patients is one of the most 
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Figure 3. AML patient data sorted by gender. 

 
crucial factors used in all cancer research. It is necessary to evaluate the severity 
of cancer, which helps to decide the prognosis and help identify the correct 
treatment methods. As the following schematic diagram illustrates, in our data-
set, we have information on survival time regarding 1103 male and 912 female 
patients diagnosed with AML. 

Before we proceed with performing the parametric analysis of the survival 
time of patients with AML, we need to investigate whether there is a difference 
in the survival time of gender, i.e., male and female patients. For this purpose, 
We use the Log Rank test using the following two hypotheses. 

H0: There is no significant difference between the mean survival time of male 
( Mµ ) and mean survival time of female ( Fµ ) patients. That is, M Fµ µ=   

Vs.  
H1: Difference exists between male and female survival time. That is, M Fµ µ≠ . 
The log-rank test produced a p-value of 0.011 (<0.05), implying that there is 

sufficient sample evidence to reject H0, which means the distribution of survival 
time between the Male and Female patients diagnosed with AML is significantly 
different. Figure 4 illustrates the behavior of survival curves of male and female 
patients. The male and female survival curves are highlighted in blue and yellow, 
respectively. 

As Figure 4 illustrates, the survival curve of males (blue) lies below the sur-
vival curve of females (yellow), which means males have lower survival com-
pared to females diagnosed with AML. In the following section, we describe the 
parametric analysis of survival time for both genders. 

3. Parametric Analysis of the Survival Time 
3.1. Descriptive Statistics of the Survival Time of AML Patients 

We plotted the histogram and probability density function (pdf) to investigate 
the distribution of the survival time of male and female patients, as shown in 
Figure 5 and Figure 6. We can see that the probability distribution of the sur-
vival time of AML for both males and females is right skewed. 
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Figure 4. Log-rank test for difference in survival time of gender. 
 

 
Figure 5. Histogram and probability density of male survival time of AML patients. 

 
Table 1 displays the descriptive statistics of the survival time of AML for Male 

and females. We see that the mean (average) survival time for male and female 
patients diagnosed with AML is 15.16 months and 17.61 months, respectively. It 
means that a randomly chosen patient diagnosed with AML, a Male, is expected 
to survive for 15.16 on an average. Similarly, a randomly chosen female patient 
diagnosed with AML is expected to survive for 17.61 months on average. Also, 
the median survival time for male and female patients are four months and five 
months, respectively, which implies that the probability/chance of survival of a 
male or female AML patient beyond 4 and 5 months, respectively, is approximately 
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Figure 6. Histogram and probability density of female survival time of AML patients. 
 
Table 1. Descriptive statistics of survival time (in month) of AML patients classified by gender. 

SEX Mean Median Std. Dev. Skewness Kurtosis Std. Error 

Male 15.16 4 25.22 2.2 4.21 0.76 

Female 17.61 5 27.89 1.98 2.99 0.92 

 
50%. A negative (less than zero) skewed value implies that data distribution is 
left or negatively skewed, and a positive skewed value suggests that data is right 
or positive skewed. Thus, the positive skewed value of 2.2 and 1.98, as shown in 
Table 1, for male and female patients, respectively, is further evidence to sup-
port the right-skewed behavior of the data, as shown in Figure 5 and Figure 6. 
Kurtosis supports the assessment of the extreme values of the data, and its posi-
tive value illustrates a leptokurtic behavior of the distribution. In contrast, a 
negative value shows a platykurtic behavior of the data distribution. Thus, the 
kurtosis value of 4.21 and 2.99 for males and females, respectively, in Table 1 
attests to the AML survival time data’s leptokurtic behavior. 

3.2. Generalized Extreme Value (GEV) Probability Estimation of  
the Survival Time of Patients with AML   

We perform a parametric analysis of the survival time of patients diagnosed with 
AML to identify the underlying probability distribution, which characterizes the 
probabilistic behavior of the survival time of AML patients (both genders). In 
the attempt to obtain the best-fitted probability distribution, a number of clas-

https://doi.org/10.4236/ojapps.2021.111009


A. Chakraborty, C. P. Tsokos 
 

 

DOI: 10.4236/ojapps.2021.111009 133 Open Journal of Applied Sciences 
 

sical distributions were tested to fit the subject data. The three commonly used 
goodness-of-fit tests, Kolmogorov-Smirnov test, Anderson-Darling test, and 
Chi-Square fitness test, were used to identify the best probability distribution 
function that characterizes the probabilistic behavior of the survival time of male 
and female patients. Also, we estimate the expected survival time and median 
survival time under each identified probability distribution function. The best 
fitted probability distribution that characterizes the probabilistic behavior of the 
survival time of the male and female patients accurately is the Generalized Ex-
treme Value (GEV) distribution. We choose the Kolmogorov-Smirnov test, An-
derson-Darling test, and Chi-Square fitness test to identify the best probability 
distribution function as they are very widely used and popular non-parametric 
goodness of fit (GOF) [10] [11] tests. Table 2 shows the goodness of fit (GOF) re-
sults of the GEV distribution. 

The above results show that we fail to reject the null hypothesis that the sub-
ject data (survival time for males and females) follow a GEV distribution. In this 
section, we define the probability density function (pdf) of the Generalized Ex-
treme Value (GEV) distribution and the statistical approach to obtain approx-
imate estimates of its parameters. In the domain of probability theory and statis-
tics, the Generalized Extreme Value (GEV) distribution is a family of continuous 
probability distributions developed based on the extreme value theory, [12]. The 
distribution combines three probability distribution families, namely, Gumbel, 
Fréchet, and Weibull. They are also known as type I, II, and III extreme value 
distributions. GEV distribution was first introduced by Jenkinson, [13] however, 
in some fields of application, the generalized extreme value distribution is 
known as the Fisher-Tippett distribution [14], named after Ronald Fisher and L. 
H. C. Tippett, who recognized the three different forms of the distribution. Let T 
be a random variable following GEV distribution with location parameter ξ , 
scale parameter 0α > , and shape parameter k. That is,  

( )~ GEV , ,X kξ α  with domain :1 0tt k ξ
α

 −  − >  
  

 when 0k ≠ , and  

t−∞ < < ∞ , when 0k = . Then, the probability density function (pdf) is given 
as follows: 

( )

1 11

GEV

1 exp 1 1 , 0
; , ,

1 exp exp , 0

k kt tk k k
f t k

t t k

ξ ξ
α α α

ξ α
ξ ξ

α α α

− +  
 −   −      − − − ≠                =  

   − −     − − =           

   (1) 

 
Table 2. Goodness-of-fit test of the GEV distribution of the survival time of male and 
female. 

GOF Tests P-Value Male P-Value Female 
Kolmogorov-Smrinov 0.5156 0.3972 

Anderson-Darling 0.2214 0.1956 
Chi Squared 0.3856 0.2946 
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The corresponding cumulative distribution function (cdf) is given as follows: 

( )

1

GEV

exp 1 , 0
; , ,

exp exp , 0

ktk k
F t k

t k

ξ
α

ξ α
ξ

α

  
 −    − − ≠        =  

   −   − − =       

          (2) 

There are several methods to estimate the parameters ξ , α , and k of the 
GEV distribution. Some of these methods include Jenkinson’s (1969) method of 
sextiles and the method of maximum likelihood (Jenkinson 1969; Prescott and 
Walden 1980, 1983). Neither of these methods is completely accurate [15] [16]. 
We use the Probability-Weighted Moments (PWM) method [15], introduced by 
Greenwood et al. (1979), which is a generalization of the method of moments of 
a probability distribution to estimate the set of parameters. 

3.3. Parameter Estimation of GEV Distribution Using the Method  
of Probability Weighted Moments (PWM) 

In general, the probability-weighted moments of a random variable X with cu-
mulative distribution function ( ) ( )F x P X x= ≤  is given by, 

( ){ } ( ){ }, , 1
r sp

p r sM E X F x F x = −  
                 (3) 

where p, r, and s are real numbers. Probability-weighted moments [16] [17] are 
most useful when it is written as a function of the inverse distribution function 

( ) ( )1F x x F− =  in closed form in the following way. 

( ){ } { }
1

, ,
0

1
p sr

p r sM x F F F= −∫                    (4) 

The two special cases of , ,p r sM  which are commonly used are 

( ){ }

( ){ }
1,0,

1, ,0

1 , 0,1, 2,

, 0,1, 2,

s
r s

r
r r

M E X F x s

M E X F x r

α

β

 = = − =  
 = =  

=

�

�
             (5) 

where X inside the [ ]E ⋅  is the inverse distribution of X, denoted by ( )x F . To 
estimate the parameters of GEV distribution, we use rβ  from (5) according to 
the approach used by Hosking et al. [15]. 

Given a random sample of size n from the cdf, F, the estimate of rβ , is based 
on the ordered sample 1 2 nx x x≤ ≤ ≤� . The unbiased estimate of the statistic 

rβ  (Landwehr et al. 1979) is br which is given by: 

( )( ) ( )
( )( ) ( )1

1 21 ,
1 2

n

r j
i

j j j r
b x

n n n n r=

− − −
=

− − −∑
�
�

                 (6) 

br will be used to estimate rβ  which will lead us to achieve our goal success-
fully. 

Instead of br, one might use the estimate 
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�
, ,

1

1  ,
n

r
r j n j n j

j
p p x

n
β

=

  =  ∑                        (7) 

where ,j np  is a plotting position, that is, a distribution-free estimate of ( )jF x . 
From (2) we can solve for X to obtain the inverse cdf, ( )x F . The inverse dis-
tribution function is given by, 

( )
( )( ){ }
( )( )

1 log , if 0

log log , if 0

kF k
kx F

F k

αξ

ξ α

 + − − ≠= 
 − − =

              (8) 

Now we proceed to derive the analytical form of rβ  for the GEV distribu-
tion using expressions (4) and (7). From (5), we have 

( )( ){ }
( ) ( ){ }

( )

( ){ } ( ){ }

( ) ( ) ( )

( ) ( )( ) ( )
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0

0

0 0

1 1

1
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1 exp 1 d
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exp 1 d exp 1 d

1 1 Γ 1 , 1

Γ 1
1 1

g
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1

k r
r r

k

k

k

k

M F F F
k

u r u u
k

u F

r u u u r u u
k k

r r k k
k k

k
r r

k
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αξ

α αξ

α αξ

ξ α

∞

∞ ∞

− − −

− −

= = + − −

= + − − +

= −

 = + − + − − + 
 

 = + + − + + > − 
 

+  = + + − + 
  

∫

∫

∫ ∫
      (9) 

Thus, for 0k ≠ ; the probability-weighted moments of the GEV distribution 
is given by (9). When 1k ≤ − , it can be shown that, (the mean of the distribu-
tion, 0β ) and the rest of the , 0,1, 2,r rβ = �  do not exist. In Equation (9), 
substituting 0r = ; 1r = ; and 2r =  we can obtain explicit expressions of 

0β , 1β  and 2β  in terms of ξ , α , and k. That is, 

( )0 1 1 k
k
αβ ξ= + −Γ +                       (10) 

( ) ( )( )1 02 1 1 2 kk
k
αβ β −− = Γ + −                  (11) 

and 

2 0

1 0

2 1 3
2 1 2

k

k

β β
β β

−

−

− −
=

− −
                       (12) 

The PWM estimates of the parameters ( )ˆˆ ˆ, ,kξ α  can be obtained by solving 
the Equations (10), (11) and (12) for ξ , α , and k by replacing rβ  by their es-
timators br or � ,r j npβ     from (6) and (7). To estimate the shape parameter k, 
we have to solve, 

ˆ
2 0

ˆ
1 0

2 1 3
2 1 2

k

k

β β
β β

−

−

− −
=

− −
                      (13) 

The exact solution requires some iterative methods. Hosking et al. (1985) used 
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a low order polynomial approximation for k̂  which is given by, 

2 1 0

2 0

2 log 2ˆ 7.859 2.9554 , where .
3 log3

b b
k c c c

b b
−

= + = −
−

         (14) 

Once, we have obtained k̂ , the estimates of scale and location parameters, ξ̂  
and α̂  we can be estimated successively from Equations (11) and (10), that is, 

( )
( )( )

( ){ }

1 0
ˆ

0

ˆ2
ˆ ,

ˆ1 1 2

ˆ ˆˆ 1 1 ,ˆ

k

b b k

k

b k
k

α

αξ

−

−
=
Γ + −

= + Γ + −

                    (15) 

Table 3 shows the approximate parameter estimates of GEV distribution for 
male and female survival time. 

We substituted the parameter estimates of , ,kξ α  in (1) to obtain the ana-
lytical form of the probability density function (pdf) of male and female survival 
time. The analytical form of the GEV probability density function (pdf) for male 
survival time is given by: 

( )
1

0.52

Male

1 1
0.52

1 3.44exp 1 0.52
7.15 7.15

3.441 0.52 ,
7.15

tf t

t t
−

 
 −   = − −       

 −  × − −∞ < < ∞  
  

          (16) 

Similarly, the analytical form of the GEV probability distribution function 
(pdf) for female survival time is given by: 

( )
1

0.5

Female

1 1
0.5

1 4.34exp 1 0.5
8.66 8.66

4.341 0.5 ,
8.66

tf t

t t
−

 
 −   = − −       

 −  × − −∞ < < ∞  
  

          (17) 

The above probability density functions characterize the probabilistic beha-
vior of the survival time of male and female patients with AML cancer. 

We now proceed to calculate the expected survival time of male and female pa-
tients. Using estimates given in Table 3, we can find the expectation and median 
survival time for both male and female patients that follow ( )GEV 3.44,7.15,0.52  
and ( )GEV 4.34,8.66,0.5  distribution, respectively. The expectation of a random 
 
Table 3. Parameter estimates of GEV distribution of survival time of male and female 
AML patients. 

Estimates Male Female 

Location ( ξ̂ ) 3.44 4.34 

Scale ( α̂ ) 7.15 8.66 

Shape ( k̂ ) 0.5 0.52 
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variable T following ( )GEV , ,kξ α  is given by The above probability density 
functions characterize the probabilistic behavior of the survival time of male and 
female patients with AML cancer. 

We now proceed to calculate the expected survival time of male and female 
patients. Using estimates given in Table 3, we can find the expectation and median 
survival time for both male and female patients that follow ( )GEV 3.44,7.15,0.52  
and ( )GEV 4.34,8.66,0.5  distribution, respectively. The expectation of a random 
variable T following ( )GEV , ,kξ α  is given by 

( ) ( )1
ˆ ˆ ˆˆ 1 , 1, 0ˆE T g k k
k
αξ= + − < ≠                  (18) 

where ( )1 , 1,2,3,4ig ik i= Γ − =  and ( ) 1
0

Γ e d , 0.a ta t t a
∞ − −= >∫  

Using Equation (18), the expected survival time of male and female AML pa-
tients are given by, 

( ) ( ){ }Male
7.153.44 1 0.52 1 14.99
0.52

monthsE T = + Γ − − =  

and 

( ) ( ){ }Female
8.664.34 1 0.5 1 17.68
0.5

monthsE T = + Γ − − =  

The median of the survival time T of ( )GEV , ,kξ α  is given by, 

( ) ( )

( )
GEV

ln 2 1, if 0
; , ,

ln ln 2 , if 0

k k
f t k k

k

αξ
ξ α

ξ α

− + − ≠= 
 − =

            (19) 

From Equation (19), the median survival time of male and female AML pa-
tients are given by, 

( ) ( ) 0.52
Male

7.15Med 3.44 ln 2 1 6.3 month
0.52

T −= + − =  

and 

( ) ( ) 0.52
Female

8.66Med 4.34 ln 2 1 7.8 month
0.5

T −= + − =  

Once we have the analytical forms of the pdf for males and females categories 
of survival time, we can obtain the cumulative distribution functions (cdf). The 
analytical form of the GEV cdf for Male survival time is given by, 

( )
1

0.52

Male
3.34exp 1 0.52 ,

7.15
tF t t

 
 −   = − − −∞ < < ∞   

    

       (20) 

Similarly, the analytical form of the GEV cdf for female survival time is given 
as follows. 

( )
1

0.5

Female
4.34exp 1 0.5 ,

8.66
tF t t

 
 −   = − − −∞ < < ∞   

    

       (21) 
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Figure 7 and Figure 8, illustrate the cdf plots of the male and female survival 
time. 

As the figures illustrate, the CDF plots are very helpful to estimate the proba-
bilities that a certain male or female patient diagnosed with AML will survive up 
to a particular point of time. For example, from Figure 7, the probability that a 
male patient will survive up to time t = 20 months is approximately 0.8. Howev-
er, this probability is slightly lower for a randomly selected female patient, which 
is evident from Figure 8. In the next section, we will present the parametric sur-
vival analysis of the survival time of males and females AML patients, which is 
one of the most important aspects of this study. 
 

 
Figure 7. Cdf Plot for the survival time of male AML patients. 

 

 
Figure 8. Cdf plot for the survival time of female AML patients. 
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3.4. Parametric Survival Analysis 

Estimation of a parametric survival function is a process to evaluate the survival 
probabilities of male and female AML patients as a function of the survival time. 

We have determined the cdf of the survival time for male and female patients 
diagnosed with AML in Equations (20) and (21), we can proceed to estimate the 
survival function of male and female AML patients. 

Thus, the parametric survival function of male patients diagnosed with AML 
is given by, 

( ) ( )Male Male

1
0.52

ˆ ˆ; , , 1 ; , ,

3.441 exp 1 0.52 ,
7.15

S t k F t k

t t

ξ α ξ α= −

 
−   = − − − −∞ < < ∞       

           (22) 

The survival function ( ),S ⋅ ⋅  can be used to estimate the probability that a 
male patient diagnosed with AML would survive beyond time t, which is de-
noted by ( )P T t≥ . For example, we can compute the probability that a male 
patient diagnosed with AML would survive beyond 20 months. That is, for t = 
20 in Equation (22), we estimate the probability as 0.2. Thus, we can infer that a 
randomly chosen male AML patient has a 20% chance of survival beyond 20 
months. Figure 9 describes the parametric survival plot for male AML patients 
generated using GEV distribution. 

Figure 9 attests the fact that the survival probability is 0.2 for a male AML pa-
tient. As expected, it can be seen that the survival function of the survival time is 
decreasing with time and approximately zero beyond time t = 100. 

 

 
Figure 9. Parametric survival plot of male AML patients. 
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Similarly, the parametric survival function driven by the GEV distribution for 
female AML patients is given by, 

( ) ( )Female Female

1
0.5

ˆ ˆ; , , 1 ; , ,

4.341 exp 1 0.5 ,
8.66

S t k F t k

t t

ξ α ξ α= −

 
−   = − − − −∞ < < ∞       

            (23) 

From the above parametric survival function, we can compute the probability 
that a female patient diagnosed with AML would survive beyond 20 months. By 
inserting t = 20 in Equation (23), we compute the probability of approximately 
0.25, which is greater than the survival probability of a male AML patient. 
Thus, we can infer that a randomly chosen female AML patient has an ap-
proximately 25% chance of survival beyond 20 months. Figure 10 describes 
the parametric survival plot for female AML patients generated using the GEV 
distribution. 

Figure 10 attests to the fact that the survival probability is approximately 0.25 
for a female patient diagnosed with AML. Thus, a randomly chosen female AML 
patient has better survival than a male patient diagnosed with AML. In the next 
section, we discuss the non-parametric Kaplan-Meier Survival function for AML 
cancer briefly. 

4. Kaplan-Meier Estimation of Survival Probability of the  
Survival Time of Patients with AML 

The most frequently used parametric estimation methods for distributions of  
 

 
Figure 10. Parametric survival plot of female AML patients. 
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lifetimes are probably the fitting of a normal probability distribution to the ob-
servations or their logarithms by calculating the mean and variance and fitting 
an exponential distribution by estimating the mean alone. Such assumptions 
about the form of the distribution are naturally advantageous insofar as they are 
correct; the estimates are simple and relatively efficient, and a complete distribu-
tion is obtained even though the observations may be restricted in range. How-
ever, non-parametric estimates have the important functions of suggesting or 
confirming such assumptions and of supplying the estimate itself in case suitable 
parametric assumptions are not known. The Kaplan-Meier (KM) estimator [18] 
[19] also known as the product-limit estimator, is a non-parametric statistic used 
to estimate the survival function from data related to survival time. In health 
science, it is generally used to measure the fraction of patients living for a certain 
amount of time after treatment. It was developed by Edward L. Kaplan and Paul 
Meier (1958). It is defined as the product over the failure time of the conditional 
probabilities of surviving to the next failure time. Formally, it is given by, 

( ) �( )
�

ˆ 1 1
i i

i
i

t t t t i

d
S t q

n≤ ≤

 
= − = −  

 
∏ ∏                   (24) 

where in  is the number of patients at risk at time it , and id  is the number of 
individual patients who fail(die) at that time. 

Figure 11 demonstrates the survival curves with a risk table for both male and 
female patients diagnosed with AML. 

 

 
Figure 11. KM survival plot with risk table for both gender diagnosed with AML. 
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The figure provides information about how many people are at risk at a spe-
cific time, t for both male and female patients diagnosed with AML. For exam-
ple, at time t = 0, the number of male and female patients at risk are 1103 and 
912, respectively, which is the total number of male and female patients in our 
data set whom we started our initial analysis with. At the time t = 60 (months), 
the male and female patients that are at risk are respectively 102 and 92. It is 
important to note that with the passage of time, the number of people at risk 
gradually decreases for both categories, which is also evident from Figure 11, as 
the KP survival estimate ( )Ŝ t , is a function of the number of patients at risk 
( in ). 

Median Survival and a Confidence Interval for the Median Using  
KM Estimate 

Median survival time is a statistic that indicates how long a group of patients will 
survive with an illness in general or after a specific treatment has been applied. It 
is usually expressed in months or years. Median survival time is when half the 
patients exposed to a certain disease are anticipated to be alive. It signifies that 
the probability of surviving beyond that time is 50 percent. It gives an approx-
imate indication of survival and the prognosis of a group of patients with cancer. 
Median survival is frequently reported in almost every cancer treatment studies. 
Generally, the median survival time [20] is defined as, � ( ){ }ˆinf : 0.5medt t S t= ≤ . 
It means that it is the smallest t such that the estimated survival function ( )Ŝ t  
is less than or equal to 0.5. To compute a ( )100 1 %α−  confidence interval for 
the median, we consider the following inequality: 

( ){ } ( )

( ){ }2 2

ˆ 0.5

ˆVar

g S t g
z z

g S t
α α

−
− ≤ ≤

 
 

                    (25) 

where ( ) ( )log logg u u= −    and ( ){ }ˆVar S t 
   is given by the following equ-

ations: 

( ){ } ( ) ( )

( )( )( ){ }
( ) ( )

2

2

ˆ ˆVar

1ˆVar log log
ˆlog

i

i

i
t t

i i i

i
t t

i i i

d
S t S t

n n d
d

S t
n n dS t

≤

≤

 ≈   −

− ≈
− 

 

∑

∑
          (26) 

The confidence interval computed by the first variance formula in (26) might 
extend below zero or beyond 1. A more realistic approach to compute the va-
riance formula, using the log-log transformation of ( )Ŝ t  in the second formula 
of (26). In order to compute a 95% confidence interval of the non-parametric 
survival function ( )Ŝ t , we look for the smallest value of t, such that the middle 
portion of the expression (21) is at least −1.96 ( the lower limit) and the maxi-
mum value of t such that the middle expression does not go beyond 1.96 ( the 
upper limit). The median survival time, computed using non-parametric KM es-
timator, for male and female patients diagnosed with AML, is given as four 

https://doi.org/10.4236/ojapps.2021.111009


A. Chakraborty, C. P. Tsokos 
 

 

DOI: 10.4236/ojapps.2021.111009 143 Open Journal of Applied Sciences 
 

months and six months, respectively. The corresponding 95% confidence inter-
val for the median survival time is given as [4, 5] and [5, 8]. It is very interesting 
to note that the median survival time we obtained by the descriptive method 
(Table 1) are very close to what we obtained by non-parametric methods. How-
ever, the median survival time we obtained using the parametric method (im-
plementing the GEV distribution) is slightly greater than the descriptive and 
non-parametric methods. Table 4 compares the median survival time for both 
male and female patients diagnosed with AML, computed using the three me-
thods. 

5. Comparison of GEV Distribution with the Kaplan-Meier  
Estimation of the Survival Function 

In the parametric analysis (Section 3.3), we found that patients’ survival time 
(both male and female) with acute myeloid leukemia follows a Generalized Ex-
treme Value (GEV) distribution. In Section 3.4, we performed a non-parametric 
analysis using the Kaplan-Meier to estimate the AML patients’ survival probabil-
ity. We compare the survival probability estimates of the GEV distribution with 
the Kaplan-Meier survival estimates of the survival time of the AML patients. 
The importance of the survival function of the two methods is to estimate the 
survival probability of a patient diagnosed with AML beyond a given time. The 
survival probabilities corresponding to a specific time (in months) are shown in 
Table 5 for comparison purposes. We see that the probability estimates com-
puted by the GEV survival function are higher than that of Kaplan-Meier in 
most cases. However, there are times in which the KM estimates higher survival 
probabilities than the GEV survival function. Since parametric methods are 
more powerful, robust, and efficient than non-parametric methods, we must ac-
cept the parametric estimates of the probabilities as the most accurate. 

In Table 5, ( )ˆ
PMS t  is the parametric survival probability estimated for male 

AML patients using GEV distribution. ( )ˆ
KMMS t  is the non-parametric survival 

probability estimated for male AML patients using KM estimate. ( )ˆ
PFS t  is the 

parametric survival probability estimated for Female AML patients using GEV 
distribution. ( )ˆ

KMFS t  is the non-parametric survival probability estimated for 
Female AML patients using KM estimate. 

6. Results and Discussions 

Given the risk posed by AML cancer in the past few years, it is imperative to  
 
Table 4. Table of comparison of the median survival time of male and female AML pa-
tients. 

Methods Male Female 

Descriptive 4 5 

Parametric 6.3 7.8 

Non-Parametric 4 6 
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Table 5. Table of comparison of estimated survival probabilities of male and female AML 
Patients computed using parametric and non-parametric procedures. 

it  ( )ˆ
PMS t  ( )ˆ

KMMS t  ( )ˆ
PFS t  ( )ˆ

KMFS t  

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

0.82 

0.77 

0.71 

0.65 

0.61 

0.56 

0.51 

0.47 

0.44 

0.41 

0.38 

0.35 

0.68 

0.62 

0.56 

0.53 

0.49 

0.46 

0.45 

0.42 

0.4 

0.37 

0.36 

0.35 

0.83 

0.78 

0.74 

0.7 

0.65 

0.6 

0.56 

0.53 

0.5 

0.46 

0.43 

0.41 

0.72 

0.65 

0.61 

0.58 

0.55 

0.52 

0.5 

0.47 

0.45 

0.42 

0.41 

0.4 

 
investigate the prognosis and enhance the therapeutic/treatment strategy of 
AML. The primary treatment for most types of AML is chemotherapy, some-
times, along with a targeted therapy drug. A stem cell transplant might follow 
this. Surgery and radiation therapy do not fall under crucial treatments for AML, 
but they might be used in exceptional circumstances. Also, the treatment ap-
proach for children with AML can be slightly different from that used for adults. 
Different research approaches and methodologies have been developed to treat 
AML patients to boost their survival time. In our present study, 
• We have shown that there is a significant difference between the survival 

time of male and female patients diagnosed with AML. 
• We identified a well-defined probability distribution that characterizes the 

survival time of a total of 2015 patients (1103 male and 912 female) diag-
nosed with AML and used it to estimate the survival function. 

• We calculated the survival probabilities utilizing the frequently used 
non-parametric Kaplan-Meier (KM) cancer survivorship analysis method. 

• We compared the median survival time of male and female AML patients 
using descriptive, parametric, and non-parametric methods. 

• We compared the estimated survival probabilities of male and female pa-
tients diagnosed with AML by parametric method (driven by GEV probabil-
ity distribution) and non-parametric method (driven by KM estimate) 
beyond a given survival time. 

At the first stage of our analysis, we tried to investigate if there is any statisti-
cally significant difference between the survival time of male and female AML 
patients using the Log-Rank test. We found that there exists a significant differ-
ence between the survival time of both males and females diagnosed with AML. 
So, we start performing our data analysis using the separate analysis of the males 
and females AML patients. We found that a GEV distribution best characterizes 
the survival time’s probabilistic behavior for both male and female AML pa-
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tients, separately. We believe that finding the most accurate probability distribu-
tion that represents the probabilistic behavior of the survival time for a given 
cancer patient can lead to estimating the survival probability with much more 
accuracy and efficiency. The fact that we determined a unique probability dis-
tribution for our study of the survival time of patients diagnosed with AML con-
tradicts the proposition of the assumption of exponential distribution (Feigl and 
Zelen ([1965] p. 835) and other authors) or using the non-parametric Kap-
lan-Meier for the majority of cancer survivorship studies. We found that the 
GEV distribution most often estimates higher survival probabilities compared to 
the KM survival function, given by Table 5. We know that KM estimates are 
very frequently and commonly used tool to analyze the cancer survivorship data, 
but they are not the best estimates. Statistically, the parametric technique is con-
sidered to be more robust and efficient than the non-parametric counterpart. 

Therefore, our finding of the parametric GEV probability distribution gives 
better results in estimating the survival probability of the patients diagnosed 
with AML than the Kaplan-Meier. The KM technique is most frequently used to 
compare the difference between the estimated survival probabilities of the sur-
vival time of two or more entities or categories, typically based on the log-rank 
test. However, by obtaining the best parametric probability distribution that 
characterizes the survival time, we can find the survival function and estimate 
the survival rate and compare the results of two or more entities with a high de-
gree of accuracy. One of the most useful results that we have obtained from our 
data analysis is that the survival probabilities for female AML patients are signif-
icantly higher than the survival probabilities for male AML patients by both pa-
rametric and non-parametric methods, which is evident from Table 5 and also 
Figure 11. 

7. Conclusions 

We have determined the survival probability of patients diagnosed with Acute 
Myeloid Leukemia (AML) using two different statistical methods: the parametric 
Generalized Extreme Value (GEV) distribution and the non-parametric Kap-
lan-Meier (KM) estimation. We found the parametric method to give often 
higher estimates of the survival probabilities than the non-parametric KM me-
thod. Despite the fact that there are instances when some of the non-parametric 
survival probability estimates are the same or higher; all-important arguments 
favor the parametric approach. The parametric survival analysis’s difficulty is the 
fundamental inherent assumption that the population’s survival time under 
study follows a specific probability distribution. 

But if we can overcome such restriction, we can obtain a more robust and effi-
cient result from the parametric analysis, which has greater statistical power. We 
can also evaluate the hazard function, which determines the rate at which pa-
tients die with AML, after finding the right parametric distribution. Depending 
on the two different methods utilized for estimating the probability of survival of 
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patients diagnosed with AML, we convey the following important recommenda-
tions. 
• Given the information regarding male and female cancer patients’ survival 

time, it is customary to investigate first if there exists any statistically signifi-
cant difference between male and female patients’ survival time. If the dif-
ference is significant, we must perform a separate analysis for each of the two 
groups. In the present study, we found that there is a significant difference 
between the survival time of male and female patients diagnosed with AML. 

• If the only information provided about the patient is the survival time, then 
estimating the survival probability using the parametric technique will yield more 
accurate, robust, and efficient results than the commonly used non-parametric 
Kaplan-Meier survival estimate. 

• However, if no unique or well-defined parametric probability distribution 
can be estimated, we still propose using the Kaplan-Meier (KM) technique to 
estimate the survival probabilities. 

Although the use of non-parametric Kaplan-Meier survival analysis may, in 
certain circumstances, result in a similar or higher probability estimate of the 
survival rate (such as in our case), the parametric analysis remains more power-
ful, robust, and efficient. Hence, the parametric analysis must be considered the 
first stage of data analysis of any given cancer survivorship data. This study pro-
vides a more effective and plausible method for estimating the survival probabil-
ity and analysis of cancer survivorship data to further enhance the therapeu-
tic/treatment process of AML cancer. 

Acknowledgements 

The authors are thankful to the National Cancer Institute (NIH) for making the 
Surveillance, Epidemiology and End Results (SEER) database available publicly. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

Funding 

Not Applicable. 

Availability of Data and Materials 

The data for our study has been extracted from SEER cancer registry  
(https://seer.cancer.gov/) which is available publicly for cancer research and in-
novation purpose. 

References 
[1] De Kouchkovsky, I. and Abdul-Hay, M. (2016) Acute Myeloid Leukemia: A Com-

prehensive Review and 2016 Update. Blood Cancer Journal, 6, e441.  

https://doi.org/10.4236/ojapps.2021.111009
https://seer.cancer.gov/


A. Chakraborty, C. P. Tsokos 
 

 

DOI: 10.4236/ojapps.2021.111009 147 Open Journal of Applied Sciences 
 

https://doi.org/10.1038/bcj.2016.50 

[2] Cancer Research UK, 05-29-2020.  
https://www.cancerresearchuk.org/about-cancer/acute-myeloid-leukaemia-aml/abo
ut-acute-myeloid-leukaemia  

[3] Löwenberg, B., Downing, J.R. and Burnett, A. (1999) Acute Myeloid Leukemia. The 
New England Journal of Medicine, 341, 1051-1062.  
https://doi.org/10.1056/NEJM199909303411407 

[4] Feigl, P. and Zelen, M. (1965) Estimation of Exponential Survival Possibilities with 
Concomitant Information. Biometrics, 21, 826-838.  
https://doi.org/10.2307/2528247 

[5] Xu, Y. and Tsokos, C.P. (2012) Probabilistic Survival Analysis Methods Using Si-
mulation and Cancer Data. Problems of Nonlinear Analysis in Engineering Systems, 
English/Russian, 18, 47-59. 

[6] Xu, Y., Keper, J. and Tsokos, C.P. (2011) Identify Attributable Variables and Inte-
ractions in Breast Cancer. Journal of Applied Sciences, 11, 1033-1038.  
https://doi.org/10.3923/jas.2011.1033.1038 

[7] O’brien, P.C. (1988) Comparing Two Samples: Extensions of the t, Rank-Sum, and 
Log-Rank Tests. Journal of the American Statistical Association, 83, 52-61.  
https://doi.org/10.1080/01621459.1988.10478564 

[8] Kleinbaum, D.G. and Klein, M. (2012) Kaplan-Meier Survival Curves and the 
Log-Rank Test. In: Survival Analysis. Statistics for Biology and Health, Springer, 
New York, 55-96. https://doi.org/10.1007/978-1-4419-6646-9_2 

[9] Yamamoto, J.F. and Goodman, M.T. (2008) Patterns of Leukemia Incidence in the 
United States by Subtype and Demographic Characteristics, 1997-2002. Cancer 
Causes Control, 19, 379-390. https://doi.org/10.1007/s10552-007-9097-2 

[10] Massey Jr., F.J. (1951) The Kolmogorov-Smirnov Test for Goodness of Fit. Journal 
of the American Statistical Association, 46, 68-78.  
https://doi.org/10.1080/01621459.1951.10500769 

[11] Anderson, T.W. and Darling, D.A. (1954) A Test of Goodness-of-Fit. Journal of the 
American Statistical Association, 49, 765-769.  
https://doi.org/10.1080/01621459.1954.10501232 

[12] Haan, L. and Ferreira, A. (2006) Extreme Value Theory: An Introduction. 

[13] Jenkinson, A.F. (1955) The Frequency Distribution of the Annual Maximum (or 
Minimum) Values of Meteorological Elements. Quarterly Journal of the Royal Me-
teorological Society, 81, 158-171. https://doi.org/10.1002/qj.49708134804 

[14] Fisher, R.A. and Tippett, L.H.C. (1928) Limiting Forms of the Frequency Distribu-
tion of the Largest or Smallest Member of a Sample. Mathematical Proceedings of 
the Cambridge Philosophical Society, 24, 180.  
https://doi.org/10.1017/S0305004100015681 

[15] Hosking, J.R.M., Wallis, J.R. and Wood, E.F. (1985) Estimation of the Generalized 
Extreme-Value Distribution by the Method of Probability-Weighted Moments. 
Technometrics, 27, 251-261. https://doi.org/10.1080/00401706.1985.10488049 

[16] Park, H.W. and Sohn, H. (2006) Parameter Estimation of the Generalized Extreme 
Value Distribution for Structural Health Monitoring. Probabilistic Engineering 
Mechanics, 21, 366-376. https://doi.org/10.1016/j.probengmech.2005.11.009 

[17] Greenwood, J.A., Landwehr, J.M., Matalas, N.C. and Wallis, J.R. (1979) Probability 
Weighted Moments: Definition and Relation to Parameters of Several Distributions 
Express Able in Inverse Form. Water Resources Research, 15, 1049-1054.  

https://doi.org/10.4236/ojapps.2021.111009
https://doi.org/10.1038/bcj.2016.50
https://www.cancerresearchuk.org/about-cancer/acute-myeloid-leukaemia-aml/about-acute-myeloid-leukaemia
https://www.cancerresearchuk.org/about-cancer/acute-myeloid-leukaemia-aml/about-acute-myeloid-leukaemia
https://doi.org/10.1056/NEJM199909303411407
https://doi.org/10.2307/2528247
https://doi.org/10.3923/jas.2011.1033.1038
https://doi.org/10.1080/01621459.1988.10478564
https://doi.org/10.1007/978-1-4419-6646-9_2
https://doi.org/10.1007/s10552-007-9097-2
https://doi.org/10.1080/01621459.1951.10500769
https://doi.org/10.1080/01621459.1954.10501232
https://doi.org/10.1002/qj.49708134804
https://doi.org/10.1017/S0305004100015681
https://doi.org/10.1080/00401706.1985.10488049
https://doi.org/10.1016/j.probengmech.2005.11.009


A. Chakraborty, C. P. Tsokos 
 

 

DOI: 10.4236/ojapps.2021.111009 148 Open Journal of Applied Sciences 
 

https://doi.org/10.1029/WR015i005p01049 

[18] Kaplan, E.L. and Meier, P. (1958) Nonparametric Estimation from Incomplete Ob-
servations. Journal of the American Statistical Association, 53, 457-481.  
https://doi.org/10.1080/01621459.1958.10501452 

[19] Moore, D.F. (2016) Applied Survival Analysis Using R. Use R. Springer, Berlin.  
https://doi.org/10.1007/978-3-319-31245-3 

[20] Stel, V.S., Dekker, F.W., Tripepi, G., Zoccali, C. and Jager, K.J. (2011) Survival 
Analysis. I: The Kaplan-Meier Method. Nephron Clinical Practice, 119, c83-c88.  
https://doi.org/10.1159/000324758 

 
 

https://doi.org/10.4236/ojapps.2021.111009
https://doi.org/10.1029/WR015i005p01049
https://doi.org/10.1080/01621459.1958.10501452
https://doi.org/10.1007/978-3-319-31245-3
https://doi.org/10.1159/000324758

	Parametric and Non-Parametric Survival Analysis of Patients with Acute Myeloid Leukemia (AML)
	Abstract
	Keywords
	1. Introduction
	2. Method
	Data Description

	3. Parametric Analysis of the Survival Time
	3.1. Descriptive Statistics of the Survival Time of AML Patients
	3.2. Generalized Extreme Value (GEV) Probability Estimation of the Survival Time of Patients with AML  
	3.3. Parameter Estimation of GEV Distribution Using the Method of Probability Weighted Moments (PWM)
	3.4. Parametric Survival Analysis

	4. Kaplan-Meier Estimation of Survival Probability of the Survival Time of Patients with AML
	Median Survival and a Confidence Interval for the Median Using KM Estimate

	5. Comparison of GEV Distribution with the Kaplan-Meier Estimation of the Survival Function
	6. Results and Discussions
	7. Conclusions
	Acknowledgements
	Conflicts of Interest
	Funding
	Availability of Data and Materials
	References

