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Abstract 
The scattering of shear waves (SH waves) by nano-scale arbitrary shape inclu-
sion in infinite plane is studied by complex variable function theory. Firstly, 
the governing equation and the relationships between stress and displacement 
are given by classical elastic theory. Secondly, the arbitrary shape inclusion in 
the two-dimensional plane is transformed into a unit circle domain by con-
formal mapping, the incident wave field and the scattered wave field are pre-
sented. Next, the stress and displacement boundary conditions are established 
by considering surface elasticity theory, The infinite algebraic equations for 
solving the unknown coefficients of the scattered and standing waves are ob-
tained. Finally, the influence of surface effect, non-dimensional wave number, 
Shear modulus and hole curvature on the dynamic stress concentration factor 
are analyzed by some examples, the numerical results show that the surface 
effect weakens the dynamic stress concentration. With the increase of wave 
number, the dynamic stress concentration factor (DSCF) decreases. Shear 
modulus and hole curvature have significant effects on DSCF. 
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1. Introduction 

Wave propagation in different kinds of media attracts lots of attentions in many 
fields for decades. Since different media or defects (cavities, inclusions, or 
cracks), which influence the stresses in continuous media or structures, usually 
exist in practical engineering, dynamic response of complex medium with de-
fects and inclusions embedded under elastic waves should be considered se-
riously. Clebsch opened a precedent for the study of elastic wave scattering by 
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studying the scattering effect of spherical inclusions on elastic waves. Baron and 
Mattews used integral transformation and wave function expansion to study the 
pulse compression wave scattering problem caused by cylindrical holes in elastic 
media, and gave an analytical solution to the problem [1]. Reference [2] dis-
cussed the scattering of elliptical cylinders by using the wave function expansion 
method. Reference [3] investigated the problem of SH-wave scattering and dy-
namic stress concentration by bi-material structure possessing cylindrical inter-
face hole and discussed the effect of the combination of different medium para-
meters on the dynamic stress concentration. Reference [4] studied the scattering 
problem of circular holes in half space. Reference [5] researched the scattering 
and dynamic stress concentration of SH-wave by removable rigid cylindrical in-
terface inclusion by presenting the development of a suitable green’s function. 
Reference [6] studied Scattering of SH wave and ground motion in an elastic half 
space containing an elastic cylindrical inclusion and a crack located at any posi-
tion and direction by using Green’s function, complex function and multi-polar 
coordinate system. Numerical examples are used to discuss the effects of various 
parameters on the surface displacement above the inclusions. Reference [7] stu-
died the dynamic response of anisotropic elastic half-space containing cylindric-
al holes under the action of steady-state horizontal shear (SH) waves, and dis-
cussed the influence of the anisotropy of the medium on the dynamic stress near 
the hole. Reference [8] investigates scattering of elastic waves around a homo-
geneous circular inclusion buried in a radially inhomogeneous elastic medium 
by using the complex function theory.  

However, in the aforementioned studies, the effect of the interface stress was 
not taken into account. The influence of inclusions with surface energy on the 
mechanical behavior of inhomogeneous nanomaterials has been extensively stu-
died with the Gurtin-Murdoch model [9]. Reference [10] [11] analyzed the sig-
nificance of surface effect on the size-dependent behavior of nanostructured 
components. Reference [12] considered the diffraction of P-wave by a nanosized 
circular hole, the surface elasticity theory is employed to incorporate the surface 
effects, the results show that once the radius of hole reduces to nanometers, sur-
face energy significantly affects the diffraction of elastic waves. Reference [13] 
investigated the multiple diffraction of plane harmonic compressional waves by 
two nanosized circular cylindrical holes embedded in an elastic solid. The sur-
face elasticity theory is adopted to account for the effect of surface energy at na-
noscales. Reference [14] described the diffraction of elastic waves and the stress 
concentration near a cylindrical nano-inclusion with surface effect by using the 
displacement potential method. Reference [15] studied the scattering of plane 
compressional and shear waves by a single nano-sized coated fiber embedded in 
an elastic matrix using the method of eigenfunction expansion. The dynamic 
stress concentration factors along the interface between the coated fiber and the 
matrix induced by the plane elastic wave and scattering cross section are derived 
and numerically evaluated. Reference [16] investigated the multiple scattering of 
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plane compressional waves by two cylindrical fibers with interface effects. Based 
on surface elasticity theory, the wave fields in a nanoscale solid medium be ob-
tained by applying the eigenfunction expansion method and the Graf’s addition 
theorem. Reference [17] described surface effects on the scatter of SH-Wave by a 
shallow buried the elliptical hole. The surface elasticity theory is applied to ob-
tain the stress boundary conditions on the surface.  

This paper aims to research the scattering of shear waves by nano-scale arbi-
trary shape inclusion in infinite plan. Based on the conformal mapping method, 
incident waves, scattering waves and standing waves are obtained. Considering 
different parameters, dynamic stress concentration around the arbitrary shape 
inclusion is calculated and discussed. The validity of the method is confirmed, 
and the influential factors of dynamic stress concentration factor are deter-
mined. 

2. Description of the Problem 

Scattering model of an arbitrary shape inclusion under SH wave with incident 
angle α is shown in Figure 1. The medium I and the arbitrary shape inclusion 
(medium II) are homogeneous and isotropic. The boundary of the arbitrary 
shape inclusion is S, and the origin of the polar coordinate system coincides with 
the center of the inclusion. 

Under antiplane shear wave (SH waves) model, supposing harmonic response 
and supposing that the body force equals to zero, the governing equation in 
Cartesian coordinate can be expressed as [7] 

2 2 0W k W∇ + =                          (1) 

where ( ),W W x y=  is the displacement function and k cω=  is the wave 
number. ω  is the circular frequency of the displacement W, c µ ρ=  is the 
velocity of shear wave, ρ  and µ  are the mass density and the shear modulus. 

Due to that the medium is isotropic, the constitutive relations between stresses 
and displacements can be expressed as 

 

 
Figure 1. The scattering model. 
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,xz yz
W W
x y

σ µ σ µ∂ ∂
= =

∂ ∂
                     (2) 

Based on complex function method, a pair of complex variables are introduced 
i , iz x y z x y= + = −                         (3) 

then, the Equation (1) and Equation (2) in complex coordinates are obtained  
2

21 0
4

W k W
z z
∂

+ =
∂ ∂

                         (4) 

, ixz yz
W W W W
z z z z

σ µ σ µ∂ ∂ ∂ ∂   = + = −   ∂ ∂ ∂ ∂   
               (5) 

The relations between stresses and displacements in polar coordinate can be 
written as 

i i i ie e , i e erz z
W W W W
z z z z

θ θ θ θ
θτ µ τ µ− −∂ ∂ ∂ ∂   = + = −   ∂ ∂ ∂ ∂   

       (6) 

The irregular boundary can be transformed into the unit-circle boundary in 
the mapping plane by the conformal mapping. The outer domain of the irregular 
boundary corresponds to the outer domain of the unit circle in the mapping 
plane. Introducing conformal mapping ( )ηω=z  is shown in Figure 2. 

According to the transition relation between the arbitrary shape inclusion and 
the unit circle, it yields 

( )
( )

( )
( )

i ie , eθ θηω η ηω η
ω η ω η

−′ ′
= =

′ ′
                      (7) 

Substituting conformal mapping ( )z ω η=  into Equation (4), the following 
equation in the η  plane is obtained 

( ) ( )

2
21 1 0

4
W k W

η ηω η ω η
∂

+ =
∂ ∂′ ′

                     (8) 

According to Equation (6) and Equation (7), the relations between stresses 
and displacements in the η  plane can be written as 

( ) ( )
i,rz z

W W W W
θ

µ µσ η η σ η η
η η η ηω η ω η

   ∂ ∂ ∂ ∂
= + = −   ′ ′∂ ∂ ∂ ∂   

       (9) 

Based on the derivation in the section above, the incident waves which prop-
agates with α  in medium I can be expressed as 

 

 
Figure 2. Conformal mapping process of a non-circular inclusion. 
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( ) ( ) ( )( )Inc i i1
0

i
exp e e

2
kW W α αω η ω η− = +  

              (10) 

where 0W  is the displacement amplitude of incident waves, and 1k  is the wave 
number of the medium I. 

According to Equation (8), the scattering waves excited by the arbitrary shape 
inclusion obeys 

( ) ( ) ( )( ) ( )
( )

Sca 1
1

n

n n
n

W A H k
ω η

ω η
ω η

+∞

=−∞

 
=   

 
∑                (11) 

where nA  are undetermined coefficients and ( ) ( )1
nH ⋅  is the first kind Hankel 

function of the nth order. 
The standing waves in medium II can be expressed as 

( ) ( )( ) ( )
( )

Sta
2

n

n n
n

W B J k
ω η

ω η
ω η

+∞

=−∞

 
=   

 
∑                 (12) 

where nB  are undetermined coefficients, ( )nJ ⋅  is the Bessel function of the 
nth order, and 2k  is the wave number corresponding to medium II. 

Substituting different displacement fields into Equation (9), respectively, the 
detailed stress components can be obtained. 

( ) ( ) ( ) ( )
( )

( )
( )

Inc i i i i1 1 1i i
exp e e e e

2 2rz
k k α α α αηω η ηω ηµ

σ ω η ω η
ω η ω η

− −
 ′ ′  = + +    ′ ′    

 (13) 

( ) ( ) ( ) ( )
( )

( )
( )

Inc i i i i1 1 1i
exp e e e e

2 2z
k k α α α α

θ

ηω η ηω ηµ
σ ω η ω η

ω η ω η
− −

 ′ ′  = − + −    ′ ′    
 (14) 

( ) ( ) ( ) ( )
( )

( )
( )

( ) ( ) ( )
( )

( )
( )

1

Sca 11 1
1 1

1

1
1 1

2

n

rz n n
n

n

n

k A H k

H k

ω η ηω ηµ
σ ω η

ω η ω η

ω η ηω η
ω η

ω η ω η

−
+∞

−
=−∞

+

+

   ′  =     ′   
  ′  −     ′    

∑
         (15)  

( ) ( ) ( ) ( )
( )

( )
( )

( ) ( ) ( )
( )

( )
( )

1

Sca 11 1
1 1

1

1
1 1

i
2

n

z n n
n

n

n

k A H k

H k

θ

ω η ηω ηµ
σ ω η

ω η ω η

ω η ηω η
ω η

ω η ω η

−
+∞

−
=−∞

+

+

   ′  =     ′   
  ′  +     ′    

∑
         (16)  

( ) ( ) ( )
( )

( )
( )

( ) ( )
( )

( )
( )

1

Sta 2 2
1 2

1

1 2

2

n

rz n n
n

n

n

k B J k

J k

ω η ηω ηµ
σ ω η

ω η ω η

ω η ηω η
ω η

ω η ω η

−
+∞

−
=−∞

+

+

   ′  =     ′   
  ′  −     ′    

∑
         (17) 
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( ) ( ) ( )
( )

( )
( )

( ) ( )
( )

( )
( )

1

Sta 2 2
1 2

1

1 2

i
2

n

z n n
n

n

n

k B J k

J k

θ

ω η ηω ηµ
σ ω η

ω η ω η

ω η ηω η
ω η

ω η ω η

−
+∞

−
=−∞

+

+

   ′  =     ′   
  ′  +     ′    

∑
         (18) 

where 1k  is the wave number of the medium I, 2k  is the wave number cor-
responding to medium II. 1µ  and 2µ  are the equivalent shear modulus of the 
medium I and medium II, respectively. 

At the interface of the arbitrary shape inclusion, the boundary condition is the 
continuity condition of the wave fields and the radial shear stresses 

I IIW W=                             (19) 

,I ,IIrz rzσ σ=                            (20) 

where ( ) ( )Inc Sca
IW W W= + , ( )Sta

IIW W= , ( ) ( )Inc Sca
,Irz rz rzσ σ σ= + , ( )Sta

,IIrz rzσ σ= . 

3. Surface Elasticity and the Resulting Boundary Conditions 

To incorporate the surface/interface effect into this study, the Gurtin-Murdoch 
surface elastic model was used in this paper. The interface is regarded as negligi-
bly thin membranes that adhere to the bulk without slipping and it has material 
constants different from those of the bulk. The equilibrium equations on the in-
terface can be expressed as [12] 

( )1 s
sτ τ τ− = −∇ ⋅n                       (21) 

where τ , 1τ  and sτ  are stresses of the medium I, medium II and interface re-
spectively. n  is the normal vector of the surface. s

s τ∇ ⋅  is the divergence of 
the surface. 

The constitutive equation of the surface can be written as 

( ) ( )0 0 02s s s
αβ αβ αγ γβ γγ αβσ τ δ µ τ δ ε λ τ ε δ= + − + +           (22) 

where 0τ  denotes the residual tension of the surface. sµ  and sλ  are the 
surface parameters. s

αβτ  denotes the stress of the surface. αβδ  is the Kronecker 
delta. 

According to Equation (22), the stress of the surface s
zθτ  is obtained 

2s s
z zθ θτ µ ε=                           (23) 

According to the equilibrium equation in the medium I, the total stress zθτ  
can be expressed as 

2z zθ θτ µε=                           (24) 

Substituting Equation (24) to Equation (23), the stress of the surface s
zθτ  can 

be written as 
s

s
z zθ θ

µτ τ
µ

=                           (25) 

For a circular hole with radius r a= , according to Equation (21), we find 
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1 s
z

rz a
θττ
θ

∂
= −

∂
                         (26) 

Substituting Equation (25) to Equation (26), the stress boundary conditions 
around the circular hole can be obtained 

z
rz s θττ

θ
∂

= −
∂

                         (27) 

where ss aµ µ=  is a dimensionless parameter that reflects the effect of the 
surface/interface on the nanoscale. It decreases with the increase of radius, 
which objectively reflects the fact that the surface effect not be considered for 
macroscopic objects, but the size of the object is very small, the surface effect is 
too significant to ignore. 

According to the Equation (19), Equation (20) and Equation (27), the boun-
dary conditions of the arbitrary shape inclusion can be obtained 

I II

,I
,I ,II

z
rz rz

W W

s θσσ σ
θ

=


∂
− = − ∂

                    (28) 

where ( ) ( )Inc Sca
,Iz z zθ θ θσ σ σ= + . Hence, the boundary condition can be expressed as 

( )

( )

n n n n
n

n n n n
n

A B

A B

ε δ ε

ξ ζ ξ

+∞

=−∞

+∞

=−∞

 + =

 + =


∑

∑
                    (29) 

where 

( ) ( )( ) ( )
( )

( )( ) ( )
( )

( ) ( )

1
1 2

i i1

, ,

i
exp e e

2

n n

n n n nH k J k

k α α

ω η ω η
ε ω η δ ω η

ω η ω η

ε ω η ω η−

   
= = −   

      
  = − +   

  (30) 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

i i1 1 1

i i1 1 1

2 i i1
1 1

i i1
1 1

i i
exp e e

2 2
i i

exp e e
2 2

i
exp e e

2
i

i exp e e
2

k s k

k s k

ksk f

kk g

α α

α α

α α

α α

µ
ξ ω η ω η φ η

µ
ω η ω η ψ η

µ ω η ω η η

µ ω η ω η η

−

−

−

−

  = +   
  + +   
  + +   
  − +   

        (31) 

( ) ( )
( )

( )
( )

( ) ( )
( )

( )
( )

1

2 2
1 2

1

1 2

2

n

n n

n

n

k J k

J k

ω η ηω ηµ
ζ ω η

ω η ω η

ω η ηω η
ω η

ω η ω η

−

−

+

+

   ′  =     ′   
  ′  +     ′    

           (32) 
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( ) ( ) ( )
( )

( )
( )

( ) ( ) ( )
( )

( )
( )

( )

( ) ( ) ( )
( )

( )
( )

( )

( ) ( ) ( )
( )

( ) ( )

2 222
11 1

2 1

22 2
1

2 1

1

11 1
1 1

1

1
1 1

4

2

n

n n

n

n

n

n

n

n

sk H k

H k h

k H k s

H k s

η ω ηω ηµ
ξ ω η

ω η ω η

η ω ηω η
ω η η

ω η ω η

ω η ηω ηµ
ω η ϕ η

ω η ω η

ω η ηω η
ω η ψ η

ω η

−

−

−

−

−

−

+

+

       = −     ′   
     + +    ′    

    ′  + −      ′       

  ′
 + −      ( )ω η

  ′  

      (33) 

where 

( ) ( ) ( ) ( )
( )

( ) ( )
( ){ }
( )

( )
( )
( )

2i
1

1

i

Im e
2 ,

Re e

n

nh H k f

g

α

α

ω η ηω η
η ω η ω η η

ω η ω η

ω η η
η

ω η

−

−

 ′     ′= =   ′  
 ′ =

′

 (34) 

( ) ( ) ( )
( )

( ) ( ) ( )

( )

2

3

Re

2

ηω η ω η ηω ηηω η η ω η
ϕ η

ω η ω η

 ′ ′′ ′′ ′′+  = −
′ ′

       (35) 

( ) ( ) ( )
( )

( ) ( ) ( )

( )

2

3

Re

2

ηω η ω η ηω ηηω η η ω η
ψ η

ω η ω η

 ′ ′′ ′′ ′′+  = +
′ ′

      (36) 

Multiplying ie mθ−  with both sides of Equation (29) and integrating on the 
interval ( ),−π π  yields 

0, 1, 2
0, 1, 2

mn mn n m

n mn mn n m

A m
B n

ε δ ε
ξ ζ ξ

+∞

=−∞

= ± ± ⋅⋅⋅      
=       = ± ± ⋅⋅⋅     

∑           (37) 

hence, a set of infinite algebraic equation for unknown constants nA  will be 
obtained from Equation (37). 

4. Numerical Results and Discussion 

Based on the definition of dynamic stress concentration factor (DSCF), the ex-
pression of DSCF can be expressed as 

,I
DSCF

0

zθσσ
σ

=                         (38) 

where 0 1 1 0
1
2

k Wσ µ=  is the stress amplitude of incident wave. 

In order to validate the present approach, a degenerated result is considered to 
compare with published result. In Figure 3, we set 2 0k = , 2 0µ = ,  

( )z aω η η= =  to simulate the condition of plane SH wave propagating in me-
dium with a circular cavity. The numerical results coincide with the results by 
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Pao and Mow perfectly [2]. 
Introducing conformal mapping ( )z R mη η= + , where ( ) 2R a b= + ,  
( ) ( )m a b a b= − + . We set the wave number ratio 1 2k k k∗ = , shear modulus 

ratio 1 2µ µ µ∗ =  and the ratio of long semi-axis and short semi-axis *m b a= . 
Figure 4 shows the distribution of DSCF at surface parameter 0,0.1,0.5,1s =  
when , ,k mµ∗ ∗ ∗  equal 0.1, 0.25 and 1.2 respectively, the incident angle α  is 
supposed to be zero, the dimensionless wave number in the medium I is 

1 0.1k a =  (low frequency waves). The results show the DSCF continuously de-
creases around 0 5 6θ< < π  and 7 26 θπ < < π  with the increasing of s, but 
the DSCF increases around 5 6 67θ< <π π  with the increasing of s. The 
DSCF is symmetric about the angle 0θ = .  

Figure 5 shows the distribution of DSCF at surface parameter 0,0.1,0.5,1s =  
when , ,k mµ∗ ∗ ∗  equal 2, 0.25 and 1.2 respectively, the incident angle 0α = , 
The dimensionless wave number in the medium I is 1 2k a =  (high frequency 
waves). The results show the DSCF continuously decreases around  

6 65θπ < < π  and 7 6 35θ< <π π  with the increasing of s, but the DSCF 
increases around 6 6θ−π < < π  and 5 6 67θ< <π π  with the increasing of 
s. The DSCF is symmetric about the angle 0θ = .  

 

 
Figure 3. The verification of the present method. 

 

 

Figure 4. Distribution of DSCF with s ( 1 0.1k a = , 0.1k ∗ = , 0.25µ∗ = , 1.2m∗ = , 0α = ). 
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Figure 5. Distribution of DSCF with s ( 1 2k a = , 2k ∗ = , 0.25µ∗ = , 1.2m∗ = , 0α = ). 

 
Figure 6 shows the distribution of DSCF at surface parameter 0,0.1,0.5,1s =  

when , ,k mµ∗ ∗ ∗  equal 0.1, 4 and 1.2 respectively, the incident angle 0α = , The 
dimensionless wave number in the medium I is 1 0.1k a =  (low frequency 
waves). The results show the DSCF continuously decreases with the increasing 
of s. The DSCF is symmetric about the angle 0θ = . When the medium I is sof-
ter than the inclusion (Figure 4), the DSCF is small, but when the medium I is 
harder than the inclusion (Figure 6), the DSCF turns bigger.  

Figure 7 shows the distribution of DSCF at surface parameter 0,0.1,0.5,1s =  
when , ,k mµ∗ ∗ ∗  equal 0.1, 0.25 and 0.8 respectively, the incident angle 0α = , 
The dimensionless wave number in the medium I is 1 0.1k a =  (low frequency 
waves). The results show the DSCF continuously decreases with the increasing 
of s. The DSCF is symmetric about the angle 0θ = . Due to 0.8 1m∗ = < , the 
Figure 7 is more regular Compared with Figure 4.  

Figure 8 shows the distribution of DSCF at surface parameter 0,0.1,0.5,1s =  
when , ,k mµ∗ ∗ ∗  equal 0.1, 0.25 and 0.8 respectively, the incident angle 2α = π , 
The dimensionless wave number in the medium I is 1 0.1k a =  (low frequency 
waves). The results show the DSCF continuously decreases around  

3 3θ− <π <5 π  and 2 3 34θ< <π π  with the increasing of s, but the DSCF 
increases around 3 32θπ < < π  and 4 3 35θ< <π π  with the increasing of s. 
The DSCF is symmetric about the angle 2θ = π .  

Figure 9 demonstrates the influence of shear modulus ratio µ∗  on distribu-
tion of DSCF, the surface parameter 0.5s = , the value of DSCF decreases with 
the µ∗  increasing. The DSCF are symmetric distributed in the results. 

Figure 10 presents the DSCF around the inclusion with different the incident 
angle α  when the dimensionless incident wave number equals to 1 0.1k a =  
(low frequency waves). It can be found that the distributions of DSCF are very 
complex. These phenomena indicate that the distributions of DSCF are effected 
by the shape of the inclusion obviously.  
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Figure 6. Distribution of DSCF with s ( 1 0.1k a = , 0.1k ∗ = , 4µ∗ = , 1.2m∗ = , 0α = ). 

 

 

Figure 7. Distribution of DSCF with s ( 1 0.1k a = , 0.1k ∗ = , 0.25µ∗ = , 0.25µ∗ = , 
0α = ). 

 

 

Figure 8. Distribution of DSCF with s ( 1 0.1k a = , 0.1k ∗ = , 0.25µ∗ = , 0.8m∗ = , 
2α = π ). 
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Figure 9. Distribution of DSCF with µ∗  ( 1 0.1k a = , 0.1k ∗ = , 0.5s = , 0.8m∗ = , 
0α = ). 

 

 

Figure 10. Distribution of DSCF with α  ( 1 0.1k a = , 0.1k ∗ = , 0.5s = , 0.8m∗ = , 

0µ∗ = ). 

5. Conclusions 

Based on the methods of complex function, conformal mapping, dynamic re-
sponse of a nanoscale arbitrary Shape Inclusion embedded an infinite plane is 
analyzed. Typical results are calculated to demonstrate influences on the distri-
bution of DSCF by principal parameters as follows: 

1) As the surface parameter increases, the distribution of DSCF around the in-
clusion decreases.  

2) The distribution of DSCF around the inclusion becomes complicated, espe-
cially under vertically incident wave.  

3) The value of DSCF fluctuates with the increasing of the incident wave 
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number. 
4) The distribution of DSCF around the inclusion increases with shear mod-

ulus ratio µ∗  increases. 
These results are helpful in understanding the dynamic mechanical properties 

of nanocomposites. 
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