
Open Journal of Applied Sciences, 2023, 13, 198-206
https://www.scirp.org/journal/ojapps

ISSN Online: 2165-3925
ISSN Print: 2165-3917

DOI: 10.4236/ojapps.2023.132016 Feb. 17, 2023 198 Open Journal of Applied Sciences

Events Sourcing and Command Query
Responsibility Segregation Based Fast
Data Architecture

Gérard Behou N’guessan1*, Odilon Yapo Achiepo1, Jérôme Diako2

1Research and Digital Expertise Unit (UREN), Virtual University of Côte d’Ivoire (UVCI), Abidjan, Ivory Coast
2Lastic, ESATIC, Abidjan, Ivory Coast

Abstract
With the advent of Big Data, the fields of Statistics and Computer Science
coexist in current information systems. In addition to this, technological ad-
vances in embedded systems, in particular Internet of Things technologies,
make it possible to develop real-time applications. These technological de-
velopments are disrupting Software Engineering because the use of large
amounts of real-time data requires advanced thinking in terms of software
architecture. The purpose of this article is to propose an architecture unifying
not only Software Engineering and Big Data activities, but also batch and
streaming architectures for the exploitation of massive data. This architecture
has the advantage of making possible the development of applications and
digital services exploiting very large volumes of data in real time; both for
management needs and for analytical purposes. This architecture was tested
on COVID-19 data as part of the development of an application for real-time
monitoring of the evolution of the pandemic in Côte d’Ivoire using Post-
greSQL, ELasticsearch, Kafka, Kafka Connect, NiFi, Spark, Node-Red and
MoleculerJS to operationalize the architecture.

Keywords
Architecture, Software Engineering, Big Data, Data Engineering, Real Time

1. Introduction

The proliferation of data has caused a lot of concern for some companies since
the advent of digital science. Those companies often need these data in the im-
plementation of a decision-making strategy. It often happens that the data, be-
cause they originate from various sources, they represent a real challenge for the

How to cite this paper: N’guessan, G.B.,
Achiepo, O.Y. and Diako, J. (2023) Events
Sourcing and Command Query Responsi-
bility Segregation Based Fast Data Archi-
tecture. Open Journal of Applied Sciences,
13, 198-206.
https://doi.org/10.4236/ojapps.2023.132016

Received: December 5, 2022
Accepted: February 14, 2023
Published: February 17, 2023

Copyright © 2023 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/ojapps
https://doi.org/10.4236/ojapps.2023.132016
https://www.scirp.org/
https://doi.org/10.4236/ojapps.2023.132016
http://creativecommons.org/licenses/by/4.0/

G. B. N’guessan et al.

DOI: 10.4236/ojapps.2023.132016 199 Open Journal of Applied Sciences

companies. In order to efficiently exploit the data with a very low latency time,
certain real-time architectures have emerged. These architectures are much
more used in the management of raw Big Data generated from various sources.
These Big Data are characterized by their volume, variety and velocity; which
means that their storage and operation require capacities that surpass those of
traditional computer systems [1].

At the origin of big data, the lambda architecture was proposed for the work
of integration and exploitation of massive data [2]. This architecture is still
widely used in Big Data industrialization activities in companies and organiza-
tions. However, real-time application requirements, particularly with the advent
of the Internet of Things, have led to the proposal of smack architectures as the
first viable industrial approach [3]. Thus, the lambda and smack architectures
are intended to be references in the development of applications exploiting Big
Data in particular, data integration applications.

However, all these proposed so-called existing architectures proposed have the
disadvantage of not taking into account application development activities as
well as the deployment of Machine Learning solutions. They are therefore in-
complete for the creation of an integrated and coherent enterprise architecture.
This is why, in this paper, we propose a so-called Payi architecture that addresses
all these limits. From a technical point of view, the Payi architecture is based on
Command Query Responsibility Segregation (CQRS) and Event Sourcing ap-
proaches, integrating Software Engineering, Data Engineering and Machine
Learning model deployment activities simultaneously.

The first is to present a literature review of CQRS and Event Sourcing ap-
proaches. Then, this will then lead to the presentation of the new proposed ar-
chitecture. And finally we end with a conclusion.

2. Existing Architectures
2.1. Lambda Architecture

At the origin of the industrialization of Big Data, the lambda architecture was
proposed. Figure 1 below gives the structure of the lambda architecture:

Figure 1. Lambda architecture (Source: [4]).

https://doi.org/10.4236/ojapps.2023.132016

G. B. N’guessan et al.

DOI: 10.4236/ojapps.2023.132016 200 Open Journal of Applied Sciences

The lambda architecture is composed of four (4) parts namely the data source,
the batch layer, the streaming layer and the data presentation layer.

The data source: this notion is used as a parameter for queries and concerns
structured, unstructured and semi-structured data. It comes in various forms
and makes it possible to determine the data to which the request must relate [5].

The batch layer: This layer has the role of storing the constantly growing and
immutable basic data in a file system such as the HDFS. It also pre-calculates
batch views of distributed data using the MapReduce function of this layer.
Batch views are commonly used to respond to incoming requests with low read
latency [6] [7].

The streaming layer: its role is to route the data to the data processor. Then, it
processes them in real time and produces a result within a short time [8]. The
output of this processing is passed to the service layer where this data is dis-
played to the end user as part of a web application, dashboard, report or event
used by another system [9].

The presentation layer: it consists of frontend components as well as mi-
cro-services in order to serve the frontend. This layer is implemented in a plug-
gable manner so that the non-functional requirement of extensibility is satisfied
[10].

The specificity of this basic architecture is that it separates batch data processing
from real-time processing.

In the quest for better architecture, Miguel et al. proposed an improved ver-
sion of the Lambda architecture. Their approach is to standardize and simplify
data extraction. To do this, they propose to insert a data ingestion layer between
the data source and the batch and real-time data integration layers [2]. In this
same vision, Tarik Hachad et al. also proposed a new Big Data architecture,
based on the lambda architecture, used in the deployment of Machine Learning
models. In their architecture, the data source is replaced by the new data to be
used for predictions thanks to an already trained machine learning model. Their
proposal was used to detect the level of attention of students be it in a batch
context as well as in a real time application [3].

2.2. The SMACK Architecture

In the professional context of Fast Data, an architecture based on Scala technol-
ogies such as Spark, Mesos, Akka, Cassandra and Kafka (SMACK architecture)
has been very popular in companies. The following Figure 2 shows the SMACK
architecture:

The SMACK architecture is composed of 4 layers namely the data source, the
data propagation layer (Kafka), the processing layer (Spark) and the data storage
layer (Cassandra). These four (04) layers use two additional technologies to ac-
celerate the distribution of real-time data. These are the Akka actor-model pro-
gramming paradigm and the Mesos machine cluster management technology.

Spark: is a processing engine within the Big Data architecture. It performs

https://doi.org/10.4236/ojapps.2023.132016

G. B. N’guessan et al.

DOI: 10.4236/ojapps.2023.132016 201 Open Journal of Applied Sciences

Figure 2. SMACK architecture (Source: [11]).

analytical work on real-time data. This engine offers flexibility from a develop-
ment perspective and is available on scala, Java, R, Python and SQL. This engine
offers the infrastructure and operation of the worker in a program [12]. It can
also be used as a data science tool, capable of handling large datasets and per-
forming operations on them. It works with resilient distributed datasets (RDD),
which provides fault tolerance, efficiency, speed, and in-memory data storage
[13]. RDDs enforce immutability and have no negative effects of interfering pa-
rallel running tasks. When he this one runs on a cluster, a Spark driver program
delegates work as tasks to its subsidiary worker nodes. This allows for scalability
and is perfect for working in the cloud environment. Spark can work with dif-
ferent types of cluster managers, but in the SMACK stack.

My bones: is used to manage and coordinate cluster resources. It extracts all
the computing resources (CPU, memory, storage) from the different machines.
It is not only the core of distributed systems, but it is easy to build and runs effi-
ciently on distributed systems. It is elastic and fault tolerant. Mesos orchestrates
all components and manages computational resources [14]. Mesos is based on
the principles of the Linux kernel and is the basis of three environments (Aurora
Apache, Chronos and Marathon) [15]. This tool allows you to manage and or-
ganize an infinite number of machines quickly and reliably.

Akka: a library of the SMACK architecture based on the actor model. It
represents a tool for developing distributed, fault-tolerant and message-driven
applications. Akka uses the Java Virtual Machine (JVM) as its runtime environ-
ment, which allows development in Java and Scala programming languages. This
serves as the basis for Akka in the actor model, which divides a program into
simultaneous actors who are exclusively exchanging information with each other
through messages [16].

Cassandra: a non-relational and distributed database manager. This handler is
part of NoSQL databases [17] [18] [19]. It is scalable and fault tolerant for large
amounts of data. Unlike relational databases, the database is column-oriented,
which is particularly advantageous for applications that work primarily with

https://doi.org/10.4236/ojapps.2023.132016

G. B. N’guessan et al.

DOI: 10.4236/ojapps.2023.132016 202 Open Journal of Applied Sciences

column-based queries such as aggregations of individual columns. In the SMACK
architecture, Cassandra is used to store operational data and can be used as a
data source for the presentation layer [20].

Kafka: a stream processing platform it represents the data ingestion point in
the SMACK architecture [21]. It is responsible for publishing and subscribing to
messages. Kafka takes data from applications and streams to process it inside the
stack. Kafka inspects the incoming data volume to partition it and distribute it
across nodes. It is packed with several features like Automatic Fault Tolerance,
high performance in distributed messages, partitioning and distribution between
cluster nodes. It is also independent on the data pipeline, supports a large num-
ber of users, and processes large amounts of data [22].

The SMACK architecture essentially aims to standardize the separate batch
and real-time layers in the Lambda architecture. This architecture is more of an
alternative to the lambda architecture whose role was to become a standard for
real-time or near-real-time Big Data applications.

3. CQRS and Event Sourcing

Events Sourcing and CQRS are methodological approaches that have been the
subject of several works in the field of Software Engineering in general, and in
the development of micro-services in particular. Event sourcing is a methodolo-
gy in which each action generates events which are stored in an appropriate da-
tabase called an event database. As for the data, they are separately in a dedicated
database. In this approach, all actions on the data are not done directly via the
user interface, but rather by analyzing the event matches by an event engine.

Called event header whose function is to update the database according to the
generated event [23]. Command and Query Responsibility Segregation, abbre-
viated as CQRS, is a methodology that separates write and read operations. In
this approach, the databases in which the data is written are dissociated from the
databases on which the read requests are made. For a writing database, multiple
read databases are generated based on business rules. And it is the latter that are
used for read operations [24] [25].

In practice, event sourcing and CQRS are complementary and can be used to
develop more robust micro-services capable of processing large volumes of data.
It is in this context that FANSHA et al. implemented a microservices architec-
ture based on the CQRS model, Events sourcing on OpenAPI, a pilot API and a
pilot Event. In order to evaluate the performance of the proposed architecture,
they carried out some tests according to the response time, the error rate and the
throughput. Indeed, this test proved that micro-services with CQRS and Event
Sourcing models have much faster performance than those of the pilot API, i.e.
3.7%. Moreover, it appears that the communication between the services has no
effect on the error rate and the throughput [26]. KLJUN et al. in the quest of im-
plementing a micro-service, made an in-depth analysis of the architecture of
micro-services and the CQRS model. Thus, this inspection allowed the imple-
mentation of a micro-service based on the extension of the KumuluzEE frame-

https://doi.org/10.4236/ojapps.2023.132016

G. B. N’guessan et al.

DOI: 10.4236/ojapps.2023.132016 203 Open Journal of Applied Sciences

work. This extension allowed the integration of the Axon framework in the
CQRS and Event Sourcing (ES) model [27]. Akre et al. have developed a CQRS
and ES system that supports both event sourcing and order sourcing. Thus, they
implemented multiple mechanisms of logarithmic reduction (pruning) and per-
sistence. This made it possible to test and measure the performance of various
CQRS+ES configurations. By doing so, they better understood the design prin-
ciples and performance of CQRS + ES systems [28]. As for Vlček, Lukas explores
the area of Enterprise Application Integration (EAI) models in combination with
the CQRS architectural model. This is to specify the prerequisites for using a
combination of CQRS and the design pattern of mediation or federated integra-
tion of EAI. The result of this work provides prerequisites in the appropriate use
of model combinations by a given company when deciding on the final form of
the EAI [29].

4. PAYI Architecture

The essential components of the Payi architecture in Figure 3 are:
• Commands: these are basically the actions of inserting, modifying, deleting

and reading data or the results of data processing;
• Bus: these are messaging brokers allowing the transport and distribution of

data and events;
• Handlers, Engines and Generators: these are the data and event processing

engines;
• Stores: these are the technologies for storing data and events;
• Platforms: these are technologies specific to the exploitation and analysis of

data.
The architecture has the advantage of taking into account all activities related to
data; from the development of data storage applications to the development of
learning machine. It can therefore be used for software engineering as well as for
data engineering, data science and machine learning engineering activities.

One of the advantages of the Payi architecture lies in the fact that it allows the
development of batch solutions and real-time or near-real-time solutions with
the same technological bricks. Indeed, the architecture unifies the development
of batch and real-time solutions both at the software engineering level and at the
data engineering level.

Another advantage of the Payi architecture is that it allows the processing of
extreme voluminous data and the development of applications using Big Data.
Indeed, event and data storage solutions can be distributed file systems (HDFS,
etc.), object storage systems (S3, MinIO, etc.) or NoSQL technologies (Elastic-
searche, MongoDB, etc.). Also, data and message buses can be distributed mes-
saging brokers (Kafka, etc.) and event processing engines can be distributed
computing engines (Spark, Flink, etc.).

The last advantage of the Payi architecture consists in simplifying Software
Engineering thanks to Data Engineering. Indeed, all the backend consisting in

https://doi.org/10.4236/ojapps.2023.132016

G. B. N’guessan et al.

DOI: 10.4236/ojapps.2023.132016 204 Open Journal of Applied Sciences

Figure 3. CQRS and events sourcing based fast data architecture.

the processing of events, they can be automated by Data Engineering technolo-
gies. Therefore, the work of Software Engineering is essentially limited to the
development of the frontend of applications

5. Conclusion

We have proposed an architecture that unifies software engineering and data
engineering. In reality, it is an architecture that integrates management applica-
tions with decision-making applications. Its strength is that it can be used both
for development for classic applications and for real-time applications such as
those of the IoT.

This architecture has the particularity of being suitable for the development of
big data and fast data applications in a software engineering context. Its flexibil-
ity makes it possible to use several different big data technologies, unlike the

https://doi.org/10.4236/ojapps.2023.132016

G. B. N’guessan et al.

DOI: 10.4236/ojapps.2023.132016 205 Open Journal of Applied Sciences

SMACK architecture which focuses on scala technology (Spark, Mesos, Akka,
Cassandra Kafka).

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Sawadogo, P. and Darmont, J. (2021) On Data Lake Architectures and Metadata

management. Journal of Intelligent Information Systems, 56, 97-120.
https://doi.org/10.1007/s10844-020-00608-7

[2] Sindjoung, M.L.F., Bomgni, A.B., Fute, E.T. and Chendjou, J. (2018) An Improved
version of Lambda Architecture. CARI 2018, Stellenbosch, 14-16 October 2018.

[3] Hachad, T., Sadiq, A. and Ghanimi, F. (2020) A New Big Data Architecture for
Real-Time Student Attention Detection and Analysis. International Journal of Ad-
vanced Computer Science and Applications, 11, 2421-247.
https://doi.org/10.14569/IJACSA.2020.0110831

[4] Big Data Architecture—Detailed Explanation.
https://www.interviewbit.com/blog/big-data-architecture/

[5] Valentin, O., Jouanot, F., d’Orazio, L., et al. (2006) Gedeon, a Data Grid Middle-
ware. Data Grid. RenPar’17: 17th Francophone Meetings of Parallelism. Canet en
Roussillon, Oct. 2006.

[6] Saputra, F.A., Salman, M., Hasim, J.A.N., Nadhori, I.U. and Ramli, K. (2022) The
Next-Generation NIDS Platform: Cloud-Based Snort NIDS Using Containers and
Big Data. Big Data and Cognitive Computing, 6, Article No. 19.
https://doi.org/10.3390/bdcc6010019

[7] Khujamatov, H., Ahmad, K., Usmanova, N., et al. (2022) Fog Computing Capabili-
ties for Big Data Provisioning: Visualization Scenario. Sustainability, 14, Article No.
8070. https://doi.org/10.3390/su14138070

[8] Gu, W.Y. (2020) Improving the Performance of Stream Processing Pipeline for Ve-
hicle Data. KTH Royal Institute of Technology, School of Electrical Engineering and
Computer Science (EECS), Department of Computer Science SE-100 44, Stockholm.

[9] Rosandic, J. (2022) Real-Time Streaming Data Management, Processing, Analysis
and Visualisation. University of Zagreb, Faculty of Organization and Informatics,
Varaždin. https://repozitorij.foi.unizg.hr/view

[10] Batyuk, A. and Voityshyn, V. (2018) Software Architecture Design of the Informa-
tion Technology for Real-Time Business Process Monitoring. Econtechmod: An In-
ternational Quarterly Journal on Economics of Technology and Modeling Processes,
7, 13-22.

[11] SMACK Technologies.
https://subscription.packtpub.com/book/big-data-and-business-intelligence/978178
6467201/1/ch01lvl1sec9/smack-technologies

[12] Zoun, R. (2020) Analytic Cloud Platform for Near Real-Time Mass Spectrometry
Processing on the Fast Data Architecture. University of Magdeburg, Magdeburg.
http://dx.doi.org/10.25673/34165

[13] Atanasov, A. (2019) Cassiopeia-Andromeda-Based Protein Identification on Fast
Data Architecture. University of Magdeburg, Magdeburg.

https://doi.org/10.4236/ojapps.2023.132016
https://doi.org/10.1007/s10844-020-00608-7
https://doi.org/10.14569/IJACSA.2020.0110831
https://www.interviewbit.com/blog/big-data-architecture/
https://doi.org/10.3390/bdcc6010019
https://doi.org/10.3390/su14138070
https://repozitorij.foi.unizg.hr/islandora/object/foi:7124/datastream/PDF/view
https://subscription.packtpub.com/book/big-data-and-business-intelligence/9781786467201/1/ch01lvl1sec9/smack-technologies
https://subscription.packtpub.com/book/big-data-and-business-intelligence/9781786467201/1/ch01lvl1sec9/smack-technologies
http://dx.doi.org/10.25673/34165

G. B. N’guessan et al.

DOI: 10.4236/ojapps.2023.132016 206 Open Journal of Applied Sciences

[14] Omar, A. (2021) Fast Data Application Design Architectures. Dept. Software Engi-
neering (of Aff.), Birzeit University, Ramallah.
http://doi.org/10.13140/RG.2.2.11579.54563

[15] PLASMATIC (2017) Técnicas y tecnologías Big Data para el Aprendizaje Automa-
tico no supervisado. Entregable E3.1. Technological Institute of Informatics, Cami-
no de Vera, Valencia.

[16] Latreider, H. (2019) Konzeption und Entwicklung einer Plattform zur Echtzeitana-
lyse temporaler Graphen. Hochschule für angewandte Wissenschaften Hamburg,
Hamburg.

[17] Boubiche, S. (2022) Big Data Support in the Data Aggregation Process in Heteroge-
neous RCSF. University of Batna 2, Batna.

[18] Ryma, B. and Sonia, K. (2019) Design and Realization of a NoSQL Database under
Hadoop as Part of a Smart City (Context: Flood). The Mouloud Mammeri Univer-
sity of Tizi Ouzou, Tizi Ouzou.

[19] Tossou, O.N.N.F. (2021) Fact Checking by Data Partitioning. African Institute for
Mathematical Sciences (AIMS), Sénégal.

[20] Sánchez Piccardi,, M.L. and Palomo, L.E. (2021) Del big data al fast data: Enfoques
modernos de streaming de datos para el procesamiento de datos masivos en tiempo
real. Difusiones, 21 38-58.

[21] Klingler, M. (2022) Confidentiality and Traceability in Publish/Subscribe Systems
for Health Applications. Cryptography and Security, University of Limoges, France.

[22] Oumarou, M. (2022) Mahamadou Nouridine. Calculation of the Exact Position of a
Device from Raw Data. University of Quebec at Chicoutimi, Chicoutimi.

[23] Ramón Jiménez, H. (2016) Platform for Massive Multiplayer Programming Games.
Universitat Politècnica de Catalunya, Barcelona.

[24] WIPO (2018) Committee on WIPO Standards (CWS). Sixth Session. New WIPO
Standard on Web Application Programming Interfaces, Geneva.
https://www.wipo.int/edocs/mdocs/classifications/fr/cws_6/cws_6_6_corr.pdf

[25] Lovisetto, G. (219) A Foundation for Extensible and Decentralized Social Networks.
Master’s Thesis, Catholic University of Louvain, Riviere, Etienne.
https://dial.uclouvain.be/memoire/ucl/object/thesis:19458

[26] Al Fansha, D., Setyawan, M.Y.H. and Fauzan, M.N. (2021) Load Test pada Micro-
service yang menerapkan CQRS dan Event Sourcing. Journal Buana Informatika,
12, 126-134. https://doi.org/10.24002/jbi.v12i2.4749

[27] Kljun, M. (2020) Arhitekturni Model Implementacije Vzorca CQRS v Okolju Mi-
krostoritev. https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=slv&id=122409

[28] Akre, M.B. (2020) Event Log Pruning in CQRS Systems. Institutt for datateknologi
og informatikk, Trondheim.

[29] Vlček, L. (2018) CQRS and EAI Integration Design Patterns—Assumptions of Mu-
tual Combination. Prague University of Economics, Prague.

https://doi.org/10.4236/ojapps.2023.132016
http://doi.org/10.13140/RG.2.2.11579.54563
https://www.wipo.int/edocs/mdocs/classifications/fr/cws_6/cws_6_6_corr.pdf
https://dial.uclouvain.be/memoire/ucl/object/thesis:19458
https://doi.org/10.24002/jbi.v12i2.4749
https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=slv&id=122409

	Events Sourcing and Command Query Responsibility Segregation Based Fast Data Architecture
	Abstract
	Keywords
	1. Introduction
	2. Existing Architectures
	2.1. Lambda Architecture
	2.2. The SMACK Architecture

	3. CQRS and Event Sourcing
	4. PAYI Architecture
	5. Conclusion
	Conflicts of Interest
	References

