
Open Journal of Civil Engineering, 2020, 10, 105-116 
https://www.scirp.org/journal/ojce 

ISSN Online: 2164-3172 
ISSN Print: 2164-3164 

 
DOI: 10.4236/ojce.2020.102010  Apr. 26, 2020 105 Open Journal of Civil Engineering 
 

 
 
 

Von Misses Pure Shear in Kirchhoff’s Plate 
Buckling 

Tonye Ngoji Johnarry1, Francis Williams Ebitei2 

1Retired, Rivers-State University, Port-Harcourt, Nigeria 
2University of Nigeria, Nsukka, Nigeria 

 
 
 

Abstract 
The pure shear strength for the all-simply supported plate has not yet been 
found; what is described as pure shear in that plate, is, in fact, a pure-shear 
solution for another plate clamped on the “Y-Y” and simply supported on the 
long side, X-X. A new solution for the simply supported case is presented 
here and is found to be only 60-percent of the currently believed results. 
Comparative results are presented for the all-clamped plate which exhibits 
great accuracy. The von Misses yield relation is adopted and through incre-
mental deflection-rating the effective shear curvature is targeted in as-
pect-ratios. For a set of boundary conditions the Kirchhoff’s plate capacity is 
finite and invariant for bending, buckling in axial and pure-shear and in vi-
bration. 
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1. Introduction 

Plate-bending is expertly covered by Timoshenko and Krieger [1], 1959, includ-
ing the contributions of many other authors. Deflection-rating of plates will 
continue to rely heavily on these works. The treatise of Arthur W. Leissa [2], 
1985, Ohio State University for Wright-Patterson Air Force Base-Flight Dynam-
ics Laboratories gives a comprehensive discourse in buckling, encompassing 
shear-buckling and the Euler one-dimension case and citing the works and re-
sults of many others; no new pure shear solution was offered. Additionally an 
extensive review of shear buckling in isotropic plates by D.L. Johns [3] is availa-
ble; the important correlation between the results and von Misses shear was not 
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discussed. Mansour and Thayamballi for the Ship Structure Committee [4] in 
their 1980-document shed light on pure-shear plate-buckling in relation to the 
use of stiffeners, as in Figure 1. This present study is assuming that a stiffen-
er-line and a simple-support line behind it amounts to zero-slope boundary, 

xx-support 0θ = , in effect clamping. By the intervention of stiffeners the basic 
all-simply supported plate was interrupted.  

Timoshenko’s results for Figure 1 case were quoted [4], 

( )22 5.35 4xyN D b a = π +   

this, as the all-simply-supported plate, appears to make no adjustment for the 
absence of the stiffeners. For a square plate “ 29.35xyN D= π ”, this formula pers-
ists to date. 

Piscopo [5] addressed the pure shear solution in the fashion of Timoshenko 
where the governing equation, “ ( )( )4 22xyD w N w x y∇ = ∂ ∂ ∂ ” is enhanced as 
Equation (1) 

( )4 2 2 22xyD w N w x w x yβ∇ = ∂ ∂ + ∂ ∂ ∂                (1) 

but a direct equilibrium solution for the latter has never been found. Incidental-
ly, there appear to be some conflicts between Equation (1) and von Misses yield 
relation of Equation (2) 

( ) ( ) ( ) ( )2 2 22
1 2 2 3 3 11 2vmσ σ σ σ σ σ σ = − + − + −            (2) 

( )1 22 2
1 2 1 2vmσ σ σ σ σ= + + , in the “ 1 2σ σ− ” plane 

A degenerate form of this equation for “ compression tensionσ σ ”, is 

1vmσ βσ=  

or in terms of curvature,  

1vm β=                            (3) 

Find “ 1 effective=  ” and the pure shear problem is solved in the “von 
Misses/Kirchhoff’s” framework. So Equation (1) is consumed by Equation (3), 
leading to, 

( ) ( ){ } ( )( )4 2 2
effectivexy xy VMD w N w x Nβ∇ = ∂ ∂ =            (4) 

 

 
Figure 1. All-simply-supported plate (SSSS) with edge-shears, Nxy. and stiffener-lines. 
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Equation (4) is now the new standard pure-shear equation. 
The present study starts with the buckling problem but assumes a great familiarity 

in the bending-deflection cases. Deflection factors are related to the desired curva-
tures. The deflection-factors employed emanate from the capacity of the Kirchhoff’s 
plate differentials which form the basis of all analyses, analytical or numerical fi-
nite-elements; these factors, when found, are easily recognizable, confirming that 
solutions are on track. Also, a fast approximate spot-buckling-solution is necessary 
for additional checks; Mohr’s loading curvature-circles (Figure 2) are devised to 
meet this. 

The Kirchhoff’s plate capacity is constant whether in shear or axial compres-
sion, so there is no need to engage in a new extensive independent analysis in 
shear where von Misses shear solution can be invoked. The pure-shear plate 
buckling is hugely significant on account of the heavy demands on heavier and 
heavier ships and their platting.  

2. Applicable Equations 

Equation (5), is the existing uniaxial buckling equation. The biaxial case, Equa-
tion (6) ensues if “Nxy” = 0  

( ) ( )( )4 4 4 2 2 4 4 2 22 xD w x w x y w y H N w x∂ ∂ + ∂ ∂ ∂ + ∂ ∂ = = ∂ ∂        (5) 

{ }
( )

4 4 4 2 2 4 4

2 2 2 2 2

2

2x xy y

D w x w x y w y

H N w x N w x y N w y

∂ ∂ + ∂ ∂ ∂ + ∂ ∂

= = ∂ ∂ + ∂ ∂ ∂ + ∂ ∂
          (6) 

The shear loading—Equation (7) is balanced in the same way as the biaxial 
case. 

{ } ( )4 4 4 2 2 4 4 22 2xyD w x w x y w y H N w x y∂ ∂ + ∂ ∂ ∂ + ∂ ∂ = = ∂ ∂ ∂       (7) 

Under equivalent uniformly distributed transverse loading, *q , Equation (8) 
ensues  

{ }4 4 4 2 2 4 4 *2D w x w x y w y H q∂ ∂ + ∂ ∂ ∂ + ∂ ∂ = =             (8a) 

Equations (5)-(8) are summarized as, 

( )RHS loadingxx xy yyH H H H+ + = =                  (8b) 

 

 
Figure 2. Buckling curvature-loading-circles; X-compression (useful for spot-solution). 
(a) av , critical; (b) x , critical. 
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2.1. Capacity of the Kirchhoff’s Plate Differentials, “H” 

By giving finite values of the left-hand differentials, the capacity of a Kirchhoff’s 
plate ensues; this is achieved through valid deflection shape-functions, “w” 

( )
( )

( )4 4 4 4

1 xx

w x w x y
H

w x

x

y

w∂∂ ∂ ∂
= =

∂ ∂

∂∂ ∫∫
∫∫

                  (9) 

( ) ( )
( )

( )4 4 4 4

1 yy

w y w x y
H

w x

y

y

w∂∂ ∂ ∂
= =

∂ ∂

∂∂ ∫∫
∫∫

                (10) 

( ) ( )
( )

( )4 2 2 4 2 2

1
2 2

xy

ww x y x y
H

w

x

x

y

y

w∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= =

∂ ∂
∫∫

∫∫
            (11) 

( ) ( )
( )

( )2 2 2 2

1 x

w x w x y

w x y

w x∂ ∂ ∂∂ ∂
=

∂

∂
=

∂
∫∫

∫∫
                 (12) 

( ) ( )
( )

( )2 2 2 2

1 y

w y w x y

w x y

w y∂ ∂ ∂∂ ∂
=

∂

∂
=

∂
∫∫

∫∫
                 (13) 

( ) ( ){ } ( ){ }
2 22

1,2 2 2 2x y x y xy
 = + ± − +  

      ; principal curvatures; 

(14a) 

Or by reference to the Mohr’s circle, 

( )1,2 2x y R= + ±   ; R = Mohr’s circle radius        (14b) 

The average curvature, ( ) 2x y+  , is found significant as an intermediate 
loading curvature when “ x y<  ” over the range of “ y x>  ” in uni-axial 
X-loading. For the bi-axial case, ( )biaxial x y= +   . 

These integrals are the outcomes of criterion of buckling as relative-curvature/ 
deflection resonance. A typical buckling resistance integral is,  

( ) ( )
( ) ( ) ( )

4 4

4 - 41 xd xx r xd xcdC w w C
x

R
w

=
∂ ∂

=             (15) 

The ratio, “ ( )-xx r xcdw w R= ” must always be a scalar or else the function-w is 
inadmissible. The function-w is chosen as to make the ratio, ( -xx rw w ), a scalar. 
The domain compliant factor at resonance, Cxd4, is what is left to be found. Mul-
tiply both sides of Equation (16) and integrate to find it. 

( ) ( )4 44

4

4

1xd xcd

w x w x y

w
R

x y

w x
C

  ∂ ∂ ∂ ∂ ∂
 =

∂

∂
 =

∂   

∫∫
∫∫

         (16) 

2.2. Buckling Potential Limits 

Three possibilities are identified relative to X- and Y-axes in emulating the reac-
tive potentials “ 4 4w x∂ ∂ ; 4 2 22 w x y∂ ∂ ∂ ; 4 4w y∂ ∂ ”. 

1) x xσ   
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This is first in contention in uni-axial X-compression; this case easily solves 
Equation (5). 

2) y yσ   
This is out of contention when no load is applied in the Y-axis, whatever the 

value of “ y ”. 
3) x avσ   
This “average loading-curvature” situation will always happen and also in 

contention. (1) and (3) are identified in the Mohr’s diagram, Figure 2. 
In effect, two curvature-loading circles ( x , av ) are operative and the larger 

circle gives the required solution for “Nx”. This process softens the stiff con-
straint that the wave numbers “m, n”, must be whole  

2.2.1. The Curvature, “ ( )
cr

w x∂ ∂2 2 ”, in X-Compression 

The solution of Equation (5) is easy when 

( ) ( )2 2 2 2w x w y∂ ∂ ≥ ∂ ∂ ; and ( )2 2
x cr w x= = ∂ ∂   

When 

( ) ( )2 2 2 2w x w y∂ ∂ < ∂ ∂  

“ 1 ” may be interpreted as “effective principal loading curvature”. 
So, Figure 2, explains Mohr’s loading-curvature, supplying the critical curva-

tures, exact or near-exact; exact if x y≥  . with X-as major direction of com-
pression.  

2.2.2. X-Curvature, “ ( )
cr

w x∂ ∂2 2 ” from Deflection-Rating 

Relying on the deflection coefficients, 1∆ , 2∆  at two consecutive locations, “i” 
and “i + 1”, Figure 3(a), the curvature at the second location may be found from 
Equation (17) 

( )( ) ( )( )1 1 ,1 2 2 ,2x xA A∆ = ∆                   (17) 

A2/A1 = CA, stressed boundary lengths-ratio representing side areas: Figure 
3(b) and Figure 3(c). 

Aspect ratio, “s*” gap of 25-percent can be tolerated. 
This equation is similar to Equation (5) as “(Force/Area)(curvature) = Con-

stant” = Kirchhoff’s plate-capacity. 
 

   
(a)                        (b)                       (c) 

Figure 3. (a) Expected buckling stress-aspect ratio curve; (b) Biaxial loading case; (c) 
X-axis-only loading. 

https://doi.org/10.4236/ojce.2020.102010


T. N. Johnarry, F. W. Ebitei 
 

 
DOI: 10.4236/ojce.2020.102010 110 Open Journal of Civil Engineering 

 

2.3. Deflection-Factor as Part of Buckling Solution 

From Equation (5),  

( ) ( )( )4 4 4 2 2 4 4 2 2 *2 xD w x w x y w y H N w x q∂ ∂ + ∂ ∂ ∂ + ∂ ∂ = = ∂ ∂ =  

For a given plate-function the “LHS” is invariant and once computed can be 
used for bending, buckling and vibration; “ *q ” is equivalent uniform transverse 
pressure. That is, deflection,  

( )( )shape1 H w∆ =  

the primitive value is sufficient. The familiarity of “ ∆ -value” gives confidence 
the solution is on track.  

2.4. Buckling in Pure Shear 
Elementary Statics and Pure Shear—“CCCC” Plate 
Figure 4(a) for a square plate; the applied pure-shear is transformed into com-
pression/tension loading of an inner square.  

Invoke the already known solution on the inner square, Figure 4(a), relying 
on compression, that is, with Ncr.= 10.66𝜌𝜌 

2Nxycos45 = (10.66) (1/(0.707b)2); in Ref [2], “10.47” replaces “10.66” 

Nxy = 15.08; cf. {14.81ρ, [2]}; the minor difference stems from differences in 
the deflection shape. Figure 4(b) shows the shear and effective normal stress 
circles. 

For automatic values at any aspect-ratio, simply multiply “ e ” by the von 
Misses shear factor of “1 2 ” and complete Table 1 or, indeed, Table 2 or any 
tables. 
 

Table 1. “CCCC” plate and s*; Nx = DKcr.; “ ” from “ ∆ ”; ( i shw H∆ ≡ ). 

s* 

(1) 
s∗

∆  

(2) 

CA 
(3) 

∆  

(4) 
H 
(5) 

Kcr ([Ref. [4]) 
(6) 

( δ δ∆ ) = monitor 
(7) 

2 0.707xy ∆=   

(8) 

Nxy = (5)/(8) 
“Pure-shear” 

(9) 

1 0.00128  29.61 3116.8 10.66ρ, [10.4] - 20.93 15.0; ([4] = 14.8) 

1.25 0.00186 1.05 21.72 2146.2 10.01ρ, [9.9] −13, 600.0   

1.5 0.00229 1.071 19.00 1746.0 9.3ρ, [9.3] − 6, 325.6   

1.75 0.00258 1.055 18.06 1547.85 8.68ρ, [8.6] − 3, 241.4   

2.0 0.002784 1.053 17.88 1436.65 8.14ρ, [8.0] −900.0 12.64 11.5 

2.25 0.002923 1.051 17.88 1368.3 7.75ρ, [7.7] 0   

2.35 0.002967 1.019 17.88 1348.2 7.64 0   

2.45 0.003005 1.019 17.88 1331.05 7.54 0   

2.5 0.003022 1.009 17.88 1323.39 7.50ρ, [7.5] 0   

2.75 
0.00309 

(0.00302) 
1.045 18.24 (17.88) 1292.5 7.32 

+493.2, δ δ∆  = 

min, so, 0δ∆ =  
12.64 

10.3; 
([4] = 9.8) 

3 0.00302 1.0526 18.70 (17.88) 1292.5 7.32ρ, [7.35] 
“H,  ”, 

move together 
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Table 2. “SSSS” plate and s*; Nx = DKcr.; “ ” from “ ∆ ”; ( i shw H∆ ≡ ). 

s* 
(1) 

∆  
(2) 

CA 
(3) 

∆  

(4) 
H 
(5) 

Kcr; 
(Ref. [4]) 

(6) 

( δ δ∆ ) = 
monitor 

(7) 

2 0.7xy ∆=   

(8) 

Nxy 
(ref. [2]) 

“Pure-shear” 
(9) 

Mass = 

m ww w∗ = ∫∫ ∫∫  

(10) 

ω2 = 
fundamental 

m = n = 1 
(5)/(10) 

(11) 

1 0.00416 - 6.0875 240.34 4.0ρ [4ρ] - 4.3 
5.66ρ 
[9.3ρ] 

0.617 389 

1.25 0.00619 1.06 4.337 161.60 3.78 [>4ρ] −862     

1.50 0.00798 1.06 3.566 125.36 3.56 [>4ρ] −431     

1.75 0.00948 1.055 3.174 105.73 3.375 [>4ρ] −265     

2.0 0.0106 1.051 2.977 93.73 3.195 [4ρ] −173   0.617 152 

2.25 0.0116 1.051 2.859 86.11 3.05 [>4ρ] −118     

2.50 0.01236 1.0048 2.812 80.85 2.91ρ −61.8     

2.75 0.0130 1.046 2.797 77.02 2.79ρ −23.4     

3.00 0.0135 1.043 2.797 74.18 2.69 [4ρ] −0.0     

3.25 
0.0139 

(0.0135) 
1.04 

2.83 
(2.797) 

72.0 2.60ρ 
+82.5, 

( δ δ∆  = min, 

so, δ∆  = 0) 
2.0 

3.65ρ 
[5.3ρ] 

0.617 117 

3.50 0.0135    2.60 
(“H,  ” 

move together) 
    

 

    
(a)                                 (b) 

Figure 4. (a) “CCCC” plate in pure-shear; (b) Shear/effective stress circles. 
 

The “SSSS” case for “s* = 1” in Table 2 show results much smaller than those 
of Timoshenko, 5.66ρ here to 9.35ρ of Ref. [2]. 

3. Illustration: Axial Compression 
3.1. The “SSCS” Plate, Figure 5 

1) ( )( )sin sinW Gx a Ax a n y b= + π ; 1,2,3,n = 
; G = 4.5; A = 0.977. 

2) 0.482w x y∂ ∂ =∫∫ 。 

3) 
( )4

4
4

40.225 .
1

w w x
G

x y
a

∂ ∂ ∂ ∂
=∫∫  

4) 
( )4

4
4

4 4

1
0.384 .

w w y
n b

x y∂ ∂ ∂ ∂
π=∫∫  
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Figure 5. “SSCS-Plate”; a/b = 1. 

 

5) 
( ) 2 4 2 2

4 2 2

0.45 .
2

1

w w x
n

y x y
G a b

∂ ∂ ∂ ∂ ∂
=∫∫  

6) 
( )2

2
2

20.225 .
1

w w x
G

x y
a

∂ ∂ ∂ ∂
=∫∫  

7) 
( )2

2
2

2 2

1
0.384 .

w w y
n b

x y∂ ∂ ∂ ∂
π=∫∫  

191.42 186.6 77.6 455.6xx xy yyH H H H= + + = + + = ;  
{ }* 4

fund 0.00278shw H q b D∆ = = ; 9.45x = ; 7.687y = ; , 9.45x cr = ; so:  
( )( ), 455.6 9.45 48.2 4.88x crN ρ ρ= = = . 

Confirm that “ fund∆ ” is correct, cf., (0.0028) [1]; this is important.  
Since, also, “ x y>  ” the result found must be exact or near-exact. Ref. [2] 

includes the result of “(4.85ρ)” from another source. 
Check Pure Shear, ( )2xy xyN H=   
Find “ 2 xy ” by von Misses as 

( )( )-effective2 1 2 0.707 9.45 6.681xy x= = × =   

455.6 6.681 6.91xyN ρ= =  

for “SSCS at a/b = 1”. 

3.2. The “CCCC”: ∆ -Method 

( )( )1 cos 1 cosW m x a n y b= − π − π ; , 2,4,6,m n = 
 

1a b = ; 

1) Uniaxial compression; Hxx = 1168.8; Hxy = 779.2; 29.61x y cr= = =   ; 
Hyy = 1168.8; H = 3116.8; * 1

31168.8 29.61 10.66
s

N ρ
=
= = ; 0.00128c∆ = ; cf, 

(0.00126) [1]; the nearness of the primitive- ∆  to the final- ∆ , (0.00128 to 
0.00126), confirms “H” on which “Nx” depends. Further, the exactness of the 
w-function is verified. 

2) In pure-shear 
( )3116.8 0.707 29.61 15.08xyN ρ= × = ; cf (14.81ρ), [2]; note  

effectivex y= =   ; at “a/b” = 1. 
Note that the “CCCC” plate is summarized in Table 1 for the “∆ -method” to 

reflect aspect-ratios; using Equation (17) for “ i ” from “ 1i − ”. 
The pure-shear strength values varied from “15.0ρ” at s* = 1 to “10.3ρ” at s* = 
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2.5 (near infinity); these compare well with those of Ref. [2], 14.8ρ to 9.8, respec-
tively. 

3.3. The “SSSS” Plate, (Nx from Δ) Is Compiled in Table 2 

The trend is similar to the “CCCC” in Table 1; pure-shear results are only 
60-percent of existing. 

Brief Application to Free-Vibration in the “SSSS” 
This is elaborated in Columns 10 and 11 in Table 2. Find mass-factor  

ww y xm x w y∗ ∂ ∂ ∂ ∂= ∫∫ ∫∫  and, 2 *H mω = . Illustration is for m = n = 1, first. 

3.4. The “CSCS” Plate in Pure-Shear 

( )( )1 cos sinW m x a m y b= − π π ; 2,4,6,m = 
, 1,2,3,n = 

 

a/b = 1: Hxx = 612; Hxy = 306; Hyy = 114.75; H = 1032.75; 0.001936c∆ = , cf, 
0.00192 [1]; 15.5x = ; 11.625y = ; 6.75 exactxN ρ= = ;  

( )1032.75 0.707 15.5 9.5xyN ρ= × = , expected to be exact. 
Table 3 elaborates the “CSCS” case in the same fashion as the “CCCC” plate 

in Table 1. The results for pure-shear match the literature “SSSS” values and so 
the “SSSS” literature-values are untenable. The real “SSSS” values are as given in 
Table 2 and are about 60-percent of those in Table 3. Comparing ratios,  

,CSCS ,SSSS 6.75 4 1.6875x xN N = =  and ,CSCS ,SSSS 9.5 5.66 1.678xy xyN N = = ; 
these ratios are expected to be of the same order; and they are. 

3.5. Deflection Limit 

In Tables 1-3, the factor, δ δ∆ , exhibits a critical stationary-point, Figure 6, 
where “ limit∆ ” is sampled. The minimum buckling load, for very long plates, 
 

Table 3. “CSCS” plate and s*; Nx = DKcr.; “ ” from “ ∆ ”; ( i shw H∆ ≡ ). 

s* 
(1) 

s∗
∆  

([Ref. [1]) (2) 

CA 
(3) 

∆  

(4) 
H 
(5) 

Kcr; 
(Ref. [2]) 

(6) 

( δ δ∆ ) = monitor 
(7) 

2 0.707xy ∆=   

(8) 
Nxy = (5)/(8) 

“Pure-shear” (9) 

1 0.001936 [0.00192] - 15.5 1032.18 6.75ρ, [6.75] - 10.96 9.5ρ 

1.15 0.0029 - 11.63 688.72 6.0ρ, [] 
 

8.22 8.5ρ 

1.4 0.00465 1.059 7.68 430.35 5.68ρ, [] −2257 (−2144) 5.43 8.0ρ 

1.65 0.00646 1.057 5.84 309.7 5.37 −1016 (−903) 4.13 7.6ρ 

1.90 0.0081 1.054 4.91 246.5 5.09ρ, [] −581 (−468) 3.47 7.2ρ 

2.15 0.0095 1.051 4.54 209.6 4.68ρ, [] −257 (−144) 3.21 6.6ρ 

2.4 0.0107 1.049 4.23 186.3 4.46ρ −258 (−145) 2.99 6.3ρ 

2.65 0.0117 1.046 4.05 170.7 4.27ρ −180 (−77) 2.863 6.04ρ 

2.9 0.0125 1.043 3.96 159.8 4.09ρ; stop!! −113 (0)** 2.80 5.78ρ 

3.15 0.0132 1.043 3.92 151.79 3.92 −243 (−130) 2.77 5.55ρ 

https://doi.org/10.4236/ojce.2020.102010


T. N. Johnarry, F. W. Ebitei 
 

 
DOI: 10.4236/ojce.2020.102010 114 Open Journal of Civil Engineering 

 

 
Figure 6. Curvature-displacement-rate ( δ δ∆ ) versus displacement ( ∆ ). 

 
is indicated at that point, whatever the values of “m, n or s*”. The relative weak-
ness of a plate is indicated in bending-buckling-vibration-analyses [6]-[12]. By 
Yaghoobi [13] the buckling strength of the “SSSS” at s* = 1.5 is 91-percent of the 
value at s* = 1; this is the kind of statement sought-after here. This sits well with 
the ratio of 89-percent in Table 2. In “plate buckling solution based on 
pre-buckling deflection” [14], relevance of deflection was focused on. Here, the 
analysis starts with beam-strip solutions that are already fully known; for simply 
supported strip, c = 5/384 = 0.01302 and the “SSSS” plate ends in this value 
when it is very long or very short; for example check the 0.0135c∆ =  in Table 
2 in the “SSSS” at s* = 3.5; so the size of “ ∆ ” can, also, be used to terminate so-
lutions.  

3.6. Higher Modes in Buckling: The “SSSS” 

Table 2 has already solved this problem, relying only on the fundamental wave, 
m = n = 1, but the question may be posed: what is the failure mode for a given 
aspect ratio? In combining two neighboring symmetrical waves, the tried Dun-
kerley’s approximate resultant is used to study this question. 

For example: s* = 2.5, try two waves, placed between the actions, 1)  

* 2.5, 1
1

s m
n C

= =
= ≡ , or C2.5,1; and 2) m = 3, 2.5,31n C= ≡ ; in details:  
1) C2.5,1: Hxx = 1.54; Hxy = 19.2; Hyy = 60.1; H = 80.8; 0.974x = ; 6.0875y = ; 

3.5308av = ; 82.95 8.4xxN ρ= = . 
2) C2.5,3: Hxx = 374; Hxy = 519; Hyy = 180.2; H = 1073; 26.3x = ; 4.13 .xxN ρ=  
Combining by Dunkerley’s:  

( ) ( )8.4 4.13 8.4 4.13 2.77crN ρ= × + = , cf, 2.91 in Table 2 above. This is a 
fail-safe combination.  

So, it can be said that the waves “m = 1 and m = 3” combine for the aspect ra-
tio, s* = 2.5; N2.5,1,3 = 2.77ρ. This result is very different from the reference value 
of “4ρ” [1] [2]. In this way the complementary question of failure-mode is ans-
wered after the strength-solution. 

4. Conclusions 

1) The finite “Capacity” of the Kirchhoff’s plate differentials is constant in 
shear, in plate-buckling, in pure-shear plate-buckling, among others; compliant 
deflection functions supply domain relations. 

2) The von Misses shear condition was shown to correlate exactly with the 
behavior of all-clamped rectangular plate in pure shear. 

3) Using the same method new results are found for the “SSSS” plate; they are 
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about 60-percent of currently held values. The imposition of stiffeners introduc-
es boundary conditions different from the “SSSS” and so the present results, 
without stiffeners, appear more realistic.  

4) The presently held “SSSS” shear values are, here, found corresponding to 
those of a plate clamped on Y-Y and simply-supported on the long side, X-X, 
with very good accuracy.  

5) It is, therefore, concluded that the pure-shear results for the “SSSS” plate 
had not been found until the new results presented here: for “a/b = 1”, Nxy = 
5.66ρ and not 9.3ρ. The difference is huge with respect to safety and frequency of 
maintenance of vessels. 
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Nomenclature 

a, b: rectangular plate dimensions in X, Y 
s*: aspect ratio, a/b 
E: Young’s modulus of elasticity 

2 2D bρ = π  
t: thickness of plate 
D: flexural rigidity of plate, (isotropic); ( )23 12 1D Et µ= −  
µ : poisson’s ratio 
w: deflection symbol; wsh = shape-function value 
∆ : general value of displacement; δ∆  = small change in the displacement 
wxx-r; wyy-r: relative curvature in X-direction; Y-direction 
wxx-r/w: relative-curvature/deflection ratio; must be a scalar for any solution  
XX-SC, YY-CC: plate simply and clamped on X-X; and clamped-clamped on 

Y-Y  
rcap: capacity ratio of axes as, ( )( )4 4 4 4w x w y∂ ∂ ∂ ∂  

( )4 4 4 2 2 4 42 xx xy yyH w x w x y w y H H H= ∂ ∂ + ∂ ∂ ∂ + ∂ ∂ = + +  
 : curvature;   = small change in the curvature; VM  = von Misses effec-

tive curvature 
m, n: wave numbers 

crσ ; Ncr: critical stress symbol; critical buckling load symbol  
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