TITLE:
Re-Evaluation of Kombat-Style Mineralization and Implications for Exploration in the Otavi Mountainland, Namibia
AUTHORS:
Abner Nghoongoloka, Rob Bowell, Fred Kamona, Helke Mocke
KEYWORDS:
MVT-Type Deposit, Hydrothermal, Syn-Sedimentary, Genetic Model, Exploration
JOURNAL NAME:
Open Journal of Geology,
Vol.10 No.11,
November
30,
2020
ABSTRACT: This study re-evaluates the characteristics of Cu-Pb-Ag and Fe-Mn ore mineralization of the Kombat Mine and Gross Otavi Mine based on field geology, fluid inclusions, petrology, mineralogy, and geochemistry. This is to determine the genetic relationship between Fe-Mn and Cu-Pb-Ag mineralization. The study has established that the Cu-Pb-Ag ore at the Kombat Mine can be classified as a variant of MVT-type deposit, whereas the Fe-Mn ore can be classified as a stratiform-syn-sedimentary deposit. The formation of the MVT-type deposit is associated with a hydrothermal fluid system with a mean temperature of 183°C and mean salinity of 12.85 wt. % NaCl equivalent. The syn-sedimentary Fe-Mn ore, which is largely associated with calc-silicate lithologies, consists mainly of magnetite and hematite with minor pyrite, hausmannite and jacobsite, and was deposited by diagenetic and mixed diagenetic-hydrogenetic processes under changing oxic and anoxic conditions within the sedimentary basin. Acceptable geochemical exploration indicators of the existing mineralization include anomalous values above 0.5% Cu, 0.2% S; 0.05% Pb; 0.04% As; 0.01% Zn; V, W, Mo, and Ag are 0.002%. Mineralogical indicators include chalcopyrite, bornite, covellite and galena with minor chalcocite, sphalerite, and tennantite for the Cu-Pb MVT-type ores at Kombat Mine.