TITLE:
3-Dimensional Kinematic Comparison of Arm Movements between an Individual with NGLY1 Deficiency and a Neurotypical Individual
AUTHORS:
Charles S. Layne, Christopher A. Malaya, Brock Futrell, Dacia Martinez Diaz, Christian Alfaro, Hannah E. Gustafson, Subhalakshmi Chandrasekaran, Rhea M. Phatak, Bernhard Suter
KEYWORDS:
NGLY1 Deficiency, Developmental Disorders, Kinematics, 3 Dimensional Analyses
JOURNAL NAME:
Case Reports in Clinical Medicine,
Vol.13 No.4,
April
28,
2024
ABSTRACT: NGLY1 Deficiency is an ultra-rare autosomal recessively inherited disorder. Characteristic symptoms include among others, developmental delays, movement disorders, liver function abnormalities, seizures, and problems with tear formation. Movements are hyperkinetic and may include dysmetric, choreo-athetoid, myoclonic and dystonic movement elements. To date, there have been no quantitative reports describing arm movements of individuals with NGLY1 Deficiency. This report provides quantitative information about a series of arm movements performed by an individual with NGLY1 Deficiency and an aged-matched neurotypical participant. Three categories of arm movements were tested: 1) open ended reaches without specific end point targets; 2) goal-directed reaches that included grasping an object; 3) picking up small objects from a table placed in front of the participants. Arm movement kinematics were obtained with a camera-based motion analysis system and “initiation” and “maintenance” phases were identified for each movement. The combination of the two phases was labeled as a “complete” movement. Three-dimensional analysis techniques were used to quantify the movements and included hand trajectory pathlength, joint motion area, as well as hand trajectory and joint jerk cost. These techniques were required to fully characterize the movements because the NGLY1 individual was unable to perform movements only in the primary plane of progression instead producing motion across all three planes of movement. The individual with NGLY1 Deficiency was unable to pick up objects from a table or effectively complete movements requiring crossing the midline. The successfully completed movements were analyzed using the above techniques and the results of the two participants were compared statistically. Almost all comparisons revealed significant differences between the two participants, with a notable exception of the 3D initiation area as a percentage of the complete movement. The statistical tests of these measures revealed no significant differences between the two participants, possibly suggesting a common underlying motor control strategy. The 3D techniques used in this report effectively characterized arm movements of an individual with NGLY1 deficiency and can be used to provide information to evaluate the effectiveness of genetic, pharmacological, or physical rehabilitation therapies.