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ABSTRACT 

Simulating ecological models is always a difficult task, 

not only because of its complexity but also due to the 

slowness associated with each simulation run as more 

variables and processes are incorporated into the 

complex ecosystem model. The computational overhead 

becomes a very important limitation for model 

calibration and scenario analysis, due to the large 

number of model runs generally required. This paper 

presents a framework for ecological simulations that 

intends to increase system performance through the 

ability to do parallel simulations, allowing the joint 

analysis of different scenarios. This framework evolved 

from the usage of one simulator and several agents, that 

configure the simulator to run specific scenarios, related 

to possible ecosystem management options, one at a 

time, to the use of several simulators, each one 

simulating a different scenario concurrently, speeding 

up the process and reducing the time for decision 

between the alternative scenarios proposed by the 

agents. This approach was tested with a farmer agent 

that seeks optimal combinations of bivalve seeding 

areas in a large mariculture region, maximizing the 

production without exceeding the total allowed seeding 

area. Results obtained showed that the time needed to 

acquire a “near” optimal solution decreases 

proportionally with the number of simulators in the 

network, improving the performance of the agent’s 

optimization process, without compromising its 

rationality. This work is a step forward towards an agent 

based decision support system to optimize complex 

environmental problems. 

INTRODUCTION 

Ecological models are simplified views of nature, used 

to solve scientific and/or management problems. These 

models can be seen as geographical maps (which 

themselves can be seen as models) - different types of 

maps serve different purposes: for cars, for railways, for 

airplanes, for pedestrians, for geologists, and so on. 

They focus on different objects, so they have different 

layouts and they exist also in different scales intending 

to be used in different applications. 

Ecological models contain only the characteristic 

features that are essential in the context of the problem 

to be solved or described. They may be considered a 

synthesis of what is known about the ecosystem with 

reference to the considered problem. As opposed to a 

statistical analysis based on empirical relationships 

between the data, a model is able to translate the 

modeller’s knowledge about a system, formulated in 

mathematical equations and component relationships 

(Jørgensen and Bendoricchio 2001). For the same 

ecosystem there may be different ecological models, 

selected in accordance to the model’s goals. 

Coastal ecosystems always played an important role in 

the life of human beings. They allow an enormous 

amount of possible activities (such as fishing, 

aquaculture, harbour activities, tourism, etc.), and 

guarantee several basic services to humanity, but they 

are also the final destination of many pollutants 

generated by agriculture and other human activities 

(Duarte et al. 2007). In the last century, human 

population migrated intensively from inland to coastal 

boundaries and, nowadays, the World Bank estimates 

that 50% of the world’s population lives within 60km 

from the sea (Watson et al. 1996). These numbers are 

more relevant in Portugal where almost 89% of the 

population lives within 50km from the sea and occupies 

only 39% of the territory (INE 2008). The occurrence of 

ecological disasters alerted the scientists and 

stakeholders to the need of working together towards 

the sustainable management of coastal ecosystems 

within the framework of Integrated Coastal Zone 

Management programs. 

Realistic simulations of coastal ecosystems require 

describing several physical, chemical and biological 

processes in mathematical terms. Physical processes 

include flow and circulation patterns, mixing and 

dispersion of mass and heat, settling and resuspension 

of planktonic organisms and suspended matter, solar 

radiation and light penetration. Chemical processes 

include biogeochemical cycles of important elements, 

such as nitrogen and phosphorus. Biological processes 

include growth and death rate of any organisms that 

may alter the concentration of different elements. The 

accurate simulation of these processes is very important 

for setting up a realistic model of the whole ecosystem. 

Detailed representations of these processes can be found 

in the literature since the 1980’s (Jørgensen and 

Bendoricchio 2001). 
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When coastal ecosystems are exploited for shellfish 

aquaculture one of the issues that always arises is how 

far the holders can increase the production in their 

assets without exceeding ecosystem carrying capacity 

(Duarte et al. 2003). Usually, the balance is maintained 

by legislation, which limits the areas of exploitation and 

thus the number of licenses in each area. Stakeholder’s 

experience, usually acquired by trial and error, 

successes and failures, leads them to have an empirical 

perception of what is the optimal exploitation density of 

each species per unit area, without much consideration 

for potential environmental impacts. 

The results of the development of an intelligent bivalve 

farmer agent to find out the best combination of bivalve 

seeding areas, within an allowed area of exploitation, 

were reported in (Cruz et al. 2007) and showed 

promising guidelines. One of the constraints pointed out 

in the conclusions of that study was the time consumed 

by each simulation run. Therefore the usage of a 

network of simulators was the natural follow up of that 

study. 

This paper presents the specification of the network that 

supports the coexistence of several simulators, the 

adaptation of the agents’ software to manage the parallel 

simulation of various scenarios, and the implementation 

of algorithms for parallel optimization, to integrate the 

results and decide what the best scenario is. 

The next section describes the problem in analysis, 

followed by the presentation of the framework for 

ecological simulations (EcoSimNet) – its architecture 

and implementation. The following section refers the 

experiments done and the results obtained. The paper 

ends with an analysis of the results, the conclusions and 

a description of future work to be done. 

PROBLEM STATEMENT 

A validated ecosystem model for Sungo Bay, People’s 

Republic of China (Duarte et al. 2003), implemented in 

the EcoDynamo simulator (Pereira et al. 2006) was 

used. The lagoon is modelled with a two-dimensional 

vertically integrated, coupled hydrodynamic-

biogeochemical model, based on a finite difference 

bathymetric staggered grid with 1120 cells (32 columns 

x 35 lines) and a spatial resolution of 500m - Figure 1. 

The model has a land and an ocean boundary and the 

time step used was 30 seconds. 

One realistic simulation for the complete bivalve culture 

cycle should cover approximately 1.5 years, equivalent 

to more than 1 576 800 simulation steps - in a computer 

with an Intel® Core™ 2 CPU 6300 @ 1.86GHz and 

2.00GB of RAM, the time to run the complete 

simulation rounds 10 hours. A previous bivalve farmer 

agent was developed by (Cruz et al. 2007) with the 

objective of finding the best combinations of locations 

to seed and harvest bivalve species within a delimited 

area of exploitation, using the previous model, towards 

bivalve production maximization. In that work the 

farmer agent had to choose the best 5 cells 

(corresponding each to a 500m x 500m area) within a 

large region area of 88 admissible cells to explore 

oysters – corresponding to more than 39 millions of 

possible combinations. The long time and the heavy 

processor power required for one complete simulation, 

limited the previous experiments to use only 1000 

simulation steps in each cycle, extrapolating the results 

for the complete growth cycle – the simulator runs 1000 

steps in about 22 seconds and one experimental round 

(341 simulations) is completed in approximately 2 

hours. 

 

Figure 1 – Location of Sungo Bay, including model domain 
and bathimetry (Duarte et al. 2003) with delimited area of 

exploitation marked 

The usage of a computer network allows decreasing the 

time needed to generate results and performing longer 

simulations to obtain more realistic results. The 

approach idealized was: 

• Repeat the experiments made by (Cruz et al. 

2007) using 1 and using 3 simulators, and 

compare the results obtained in terms of 

temporal savings and quality of the final 

solutions achieved; 

• Increase the number of simulation steps and 

confirm if the extrapolation, regarding the 

results achieved, assumed previously, remains 

valid; 

• Repeat the experiments with more cells to 

explore, and analyse the results. 

The experiments used the algorithms implemented by 

(Cruz et al. 2007), controlled by a simulated annealing 

algorithm (Kirkpatrick et al. 1983) modified to support 

parallelisation and with more flexibility to control the 

number of simulations in each experimental round. 

IMPLEMENTATION 

EcoSimNet Framework 

The system architecture was designed to perform 

complex simulations of aquatic ecosystems, to integrate 

easily new applications in the system, like plug-and-



play hardware in computers, and enabling 

communications between different applications

The Ecological Simulation Network (EcoSimNet) 

based in a multi-agent architecture (Wooldridge 2002; 

Weiss 1999) where all the applications communicate 

TCP/IP with messages formatted according to the 

specification of the ECOLANG language 

2005). The framework can support 

EcoDynamo simulator (Pereira et al. 2006)

parallel or concurrent simulations, and several agents 

representing the human interests over the simulated 

ecosystem (Figure 2). 

The ECOLANG language specification forces messages 

to be simple, expansible, independent from any 

computational platform or operating system, and 

readable by the humans, allowing easy trace

This architecture permits the exploitation of machine 

learning algorithms with the inclusion of agents in the 

network (Dzeroski 2001; Russel and Norvig 2002; 

Pereira et al. 2004). 

Figure 2 - EcoSimNet architecture

The simulator has a simple graphical user interface 

where users can interact with some ecological model 

properties – the user can select the model to 

processes to simulate, the period of time simulated, the 

variables for output, and the output formats such as 

or chart. Definitions such as system 

geometric representation, dimensions and number of 

model grid cells and initial values of variables and 

parameters are fixed when the model is created

output files are compatible with major free and 

commercial software for posterior treatment, and the 

charts are generated through MatLab® libraries

None of the agents have direct access to the model 

database. These models are available

simulators. The simulators provide information about 

the model to the agents through the ECOLANG 

 

, and enabling 

communications between different applications. 

Ecological Simulation Network (EcoSimNet) is 

(Wooldridge 2002; 

the applications communicate via 

with messages formatted according to the 

specification of the ECOLANG language (Pereira et al. 

can support more than one 

(Pereira et al. 2006), to allow 

parallel or concurrent simulations, and several agents 

senting the human interests over the simulated 

The ECOLANG language specification forces messages 

to be simple, expansible, independent from any 

computational platform or operating system, and 

allowing easy traceability. 

This architecture permits the exploitation of machine 

learning algorithms with the inclusion of agents in the 

(Dzeroski 2001; Russel and Norvig 2002; 

 

EcoSimNet architecture 

The simulator has a simple graphical user interface 

ecological model 

the user can select the model to use, which 

to simulate, the period of time simulated, the 

formats such as file 

system morphology, 

geometric representation, dimensions and number of 

cells and initial values of variables and 

model is created. The 

output files are compatible with major free and 

commercial software for posterior treatment, and the 

libraries. 

None of the agents have direct access to the model 

. These models are available only to the 

information about 

the model to the agents through the ECOLANG 

messages. This approach ensures true independence 

between the simulator and the agents.

Farmer Agent Implemented Algorithms

The base algorithm developed for the initial agent was a 

simple hill-climbing optimization algorithm, based on 

simulated annealing with Monte Carlo probability 

(Kirkpatrick et al. 1983; Mishra et al. 2005)

seeks iteratively a new solution and 

higher quality as the best

optimizations can be activated to influence the selection 

logic of the new solutions 

generation of the new solutions 

improved by the inclusion of known alg

tabu search (Glover 1986), genetic algorithms 

1975) and reinforcement learning

1998), that can be triggered at any stage of the 

optimization process. The novelty of this approach is 

centred in the system of customizable tactics that 

enables the activation of any one of the 

algorithms during the experiment, and the possibility of 

having, together, the various algorithms involved in 

choosing the best solution. 

The initial agent communicates 

To manipulate the information of several simulators, it 

was necessary to generate a new agent

former one, and with a decision

should integrate, in real time, the results from the 

various simulators as they were generated. The choice 

made was the implementation of a parallel simulated 

annealing algorithm (Ram et al. 1996)

Parallel Simulated Annealing Algorithm

Simulated annealing (SA) is considered a good tool for 

complex nonlinear optimization problems

et al. 1983) but one of its major drawbacks is its slow 

convergence. One way to improve its efficiency it’s 

parallelisation (the development of a parallel version of 

the algorithm). 

Many implementations of this algorithm exist but they 

are, inherently, problem dependent

proposed two distributed algorithms for simulated 

annealing – the clustering algorithm (CA) and the 

genetic clustering algorithm (GCA). 

evidence that a good initial solution r

convergence. 

The CA technique starts n nodes of the network to run 

SA algorithm using different initial solutions. After a 

fixed number of iterations, they exchange their partial 

results to get the best one. All the nodes accept that 

solution and restart the SA based on that solution. This 

process is repeated a predefined number of times. There 

must be a coordinator node to choose the best solution 

and to control the moment to stop and end the 

The process implemented in our agent can be viewed as 

integrating the CA techniques described: the agent 

accumulate the functions of coordinating 

 

messages. This approach ensures true independence 

between the simulator and the agents. 

Agent Implemented Algorithms 

developed for the initial agent was a 

timization algorithm, based on 

nnealing with Monte Carlo probability 

ck et al. 1983; Mishra et al. 2005) – the agent 

seeks iteratively a new solution and saves the one with 

higher quality as the best. Several configurable 

optimizations can be activated to influence the selection 

logic of the new solutions (Cruz et al. 2007). The 

generation of the new solutions was facilitated and 

of known algorithms, like 

, genetic algorithms (Holland 

and reinforcement learning (Sutton and Barto 

ggered at any stage of the 

The novelty of this approach is 

system of customizable tactics that 

the activation of any one of the implemented 

s during the experiment, and the possibility of 

er, the various algorithms involved in 

The initial agent communicates only with one simulator. 

To manipulate the information of several simulators, it 

was necessary to generate a new agent, extending the 

ecision-making process that 

should integrate, in real time, the results from the 

various simulators as they were generated. The choice 

made was the implementation of a parallel simulated 

(Ram et al. 1996). 

Parallel Simulated Annealing Algorithm 

is considered a good tool for 

complex nonlinear optimization problems (Kirkpatrick 

but one of its major drawbacks is its slow 

convergence. One way to improve its efficiency it’s 

parallelisation (the development of a parallel version of 

Many implementations of this algorithm exist but they 

dependent. (Ram et al. 1996) 

proposed two distributed algorithms for simulated 

the clustering algorithm (CA) and the 

genetic clustering algorithm (GCA). Both explore the 

evidence that a good initial solution results in a faster 

nodes of the network to run 

SA algorithm using different initial solutions. After a 

fixed number of iterations, they exchange their partial 

t the best one. All the nodes accept that 

solution and restart the SA based on that solution. This 

process is repeated a predefined number of times. There 

to choose the best solution 

and to control the moment to stop and end the process. 

our agent can be viewed as 

techniques described: the agent can 

accumulate the functions of coordinating (coordinator 



 

 

node) and generating solutions (worker node); the 

generation of the new solutions is driven by the tactics 

chosen in each agent taking advantage of their 

autonomy. The flexibility of the framework allows each 

agent to control only some simulators. 

As simulators run in different computers, each one 

finalizes its simulation independently and the agent 

compares the result against all results accumulated so 

far; there is no need to synchronize the simulators. 

The implementation carried out can work perfectly only 

with one agent - in this case the coordinator and the 

worker nodes coincide. 

The basic algorithm for the coordinator node is 

presented in Figure 3 and the functions for the worker 

nodes are presented in Figure 4.  

 

Figure 3 – Parallel SA Algorithm - coordinator node 

The number of synchronization points determines the 

number of times the worker nodes exchange partial 

results, and this is important to speed up the 

optimization process. With this process, the number of 

iterations is distributed uniformly by the agents (worker 

nodes) but not necessarily by the simulators: while the 

coordinator node waits for agents synchronization to 

exchange the partial results (Figure 3, line 3.2), each 

worker node controls the number of iterations with all 

simulators monitored by it (Figure 4, runSA – line 3), 

which means that if there is one very fast simulator and 

other one very slow, it is expectable that the faster one 

runs more simulations than the slower. 

 

Figure 4 – Parallel SA Algorithm – worker node 

EXPERIMENTS AND RESULTS 

Description 

The new agent developed extends the previous one 

created by (Cruz et al. 2007) with the inclusion of the 

described parallel SA algorithm and a new user-friendly 

interface to configure and parameterize the implemented 

algorithms and tactics. All the experiments were done 



 

 

with only one agent that accumulates the roles of the 

coordinator and worker nodes. 

The first set of experiments tried to reproduce the 

experiments made by (Cruz et al. 2007) - find the best 5 

cells within a large region area of 88 admissible cells to 

explore oysters. Each simulation runs 1000 steps (about 

8 hours of real time).  

The second set of experiments was performed using 3 

distinct simulators; the agent communicates and 

configures all the simulators. The results were registered 

when the whole system reached 341 iterations (results 

collected to compare with the first set). 

In the third set of experiments the number of simulation 

steps was increased to cover one month of oysters 

growth (from 1000 to 86400 steps) to verify if the 

extrapolation assumed in previous experiments remains 

valid. For this experiment 4 simulators were used. 

The fourth set of experiments extended the previous one 

increasing the number of cells to seed to 50. Table 1 

summarizes the experiments done. 

Table 1 - Experiments summary 

Set Description 

1 Reproduces experiences made by (Cruz et al. 

2007) with 1 agent and 1 simulator 

2 Repeats set 1 using 3 distinct simulators 

3 Extends set 2 to cover one month of simulation 

– using 4 simulators 

4 Extends set 3 with more cells to seed (50) 

 

The experiments were performed in computers with an 

Intel® Core™ 2 Quad CPU Q9300 @ 2.50GHz, with 

3.25 GB of RAM. The first set of experiments ran in 

about one hour and a half and the results confirm the 

tendencies related in (Cruz et al. 2007) – the borders are 

the best areas to explore: top right corner of the 

exploitation area is the best one (Table 2 and Figure 5).  

Table 2 - Results of experimental set 1 

Rank 
Production Value 

(Tonnes) Cells 

1 169.82 71-79-85-86-87 

2 169.81 39-79-85-86-87 

3 169.78 70-78-84-86-87 

4 169.78 52-79-85-86-87 

5 169.77 31-84-85-86-87 

 

The results showed that the inclusion of parallel SA 

didn’t influence the results of the other algorithms. 

Although the results would be predictably different, the 

trends are comparable. In this experiment the difference 

between the maximum and the minimum production 

value was less than 0.10% of the minimum. 

 

 

Figure 5 - Visualization of the 2 best solutions (exp #1) 

The second set of experiments was performed using 3 

distinct simulators, and one agent that configures the 

simulators and accumulates the coordinator and worker 

roles. As expected, the time needed to achieve 341 

iterations was approximately one third (35 minutes) of 

the initial time and the results (Table 3 and Figure 6) 

followed the tendency observed previously. In this 

experiment the difference between the maximum and 

the minimum production value was 0.16% of the 

minimum. 

Table 3 – Results of experimental set 2 

Rank 
Production Value 

(Tonnes) Cells 

1 169.83 71-78 -79-86-87 

2 169.82 70-71-79-86-87 

3 169.82 62-71-79-86-87 

4 169.82 55-71-78-86-87 

5 169.81 63-79-85-86-87 

 

 

Figure 6 - Visualization of the 2 best solutions (exp #2) 

In terms of results quality and time savings, it seems 

that the parallel SA is working as expected – the results 

maintain the tendency observed previously by Cruz et 

al. (2007) - and the time savings are directly related to 

the number of simulators in the network. 

In the third set of experiments, the number of simulation 

steps was increased from 1000 steps to 86400 steps 



 

 

(from 8h20m till about one month of real time).  This 

experiment took about 1 day and 19 hours to finish and 

the results are presented in Table 4 and Figure 7. The 

difference between the maximum and the minimum 

production value was now 0.83% of the minimum. 

Table 4 - Results of experimental set 3 

Rank 
Production Value 

(Tonnes) Cells 

1 7,731.80 5-28-46-50-72 

2 7,725.19 19-45-60-67-82 

3 7,724.11 28-50-57-61-64 

4 7,722.25 27-50-59-60-66 

5 7,722.06 27-53-57-58-59 

 

 

Figure 7 - Visualization of the 2 best solutions (exp #3) 

The results of this experiment show a spread of 

solutions that hardly reveals any significant trend. It is 

important to notice that the ecosystem in question is 

subjected to tides, which influence how organic 

substances and phytoplankton are transported along the 

bay. The availability of these two items – the main 

bivalve food sources – determines oyster growth and 

production.  

It is no surprise that the trends revealed in the initial 

experiments were not confirmed, due to their very short 

simulation time. The simulated 8 hours is a very short 

period when compared to water residence time in the 

bay – between one and nineteen days (Duarte et al. 

2003). Therefore, 8 hours is not enough to simulate 

properly the mixing processes and the food variability 

affecting oyster growth. Furthermore, when oyster 

biomass increases, important feedbacks to available 

food become apparent where local depletion of food 

items  may limit bivalve growth (Duarte et al. 2005). 

Even without an obvious tendency in the area 

occupation, the fourth experimental set was realized to 

verify if the results were more reliable when the ratio 

between occupied area vs. exploitation area increases – 

from 5,7% in the previous experiments to 56,8% in this 

one (seed 50 cells within the same area of 88 cells to 

explore). The experiment took about 1 day and 18 hours 

and the results are presented in Table 5 and Figure 8. 

Table 5 - Results of experimental set 4 

Rank 
Production Value 

(Tonnes) Cells 

1 77,199.52 

Different 

sequences of 50 

cells 

2 77,184.49 

3 77,177.26 

4 77,137.60 

5 77,104.35 

 

 

Figure 8 - Visualization of the 2 best solutions (exp #4) 

The solutions present different patterns but with a 

tendency to concentrate oysters in the upper and right 

sides of the exploitation area. The patterns strengthen 

the tendency to fill the areas near the open sea, where 

sea water exchanges are more intense and food tends to 

be more abundant. 

Another important result is the coincidence in the 

occupied areas – the 2 best solutions share 37 cells in 50 

(74%) and in the 5 best solutions more than 60% of the 

cells remain selected. The difference between the 

maximum and the minimum production value increases 

to 1.9% of the minimum. 

CONCLUSIONS AND FUTURE WORK 

This paper presented a new framework for complex 

ecological simulations - EcoSimNet. This framework 

allows the coexistence of multiple simulators in the 

network, controlled by different agents, enabling the 

simulation of different scenarios in parallel, increasing 

the number of simulations and the real time simulated, 

without compromising the quality of results and 

ensuring a more complete analysis of scenarios.  

The results obtained showed that the time needed to 

reach a “near” optimal solution decreases proportionally 

to the number of parallel simulators in the network. 

The strategy followed in the implementation of the 

parallel simulated annealing algorithm, separating the 

roles of the coordinator and the worker nodes, allowed 

the independence of each agent tactics for optimization; 

the experiments showed that the inclusion of the two 

roles in the same agent didn’t compromise the agent’s 

rationality.  



 

 

This work is a step forward towards an agent based 

decision support system to optimize complex 

environmental problems. 

More experiments need to be done, increasing the 

number of simulators and agents in the network, in 

order to have a clear idea of what reasonable limits 

should be imposed on the size of the EcoSimNet 

framework. 

The next steps in this platform will incorporate 

automatic decision in the coordinator agent, to decide 

how many simulators and worker agents will be 

necessary to consider new scenarios, and to determine 

degrees of similarity with scenarios already exploited. 

Furthermore, multi-criteria optimization simulations 

will be tested, where agents will evaluate different 

scenarios according to environmental and economical 

objectives. 
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