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Abstract 

Market participants place their limit/market orders by taking into account both the trajectory and 

current status of the limit order book. This behavior is based on the policy that the shape of the limit 

order book is quite informative for predicting future direction of a traded asset. In this paper, we 

employ Support Vector Machine to learn future mid-price directions and apply conformal 

transformation of the kernel function in order to improve its accuracy. Our empirical studies are based 

on Nikkei 225 futures and show that the conformal transform methods improved the precision more 

than 3% in average compared to the standard Gaussian RBF kernel. We further investigate 

numerically how the precision is improved by controlling parameter involved in the conformal 

transform. 

Keywords: Limit Order Book, Support Vector Machine, Riemannian metric,Conformal transformation. 

Introduction  

Dynamics of the Limit Order Book (LOB - described below) has currently addressed with the 

growing availability of ultra high frequency data records. In fact, understanding the LOB dynamics would 

provide effective strategy to save the transaction costs for investors and also provide liquidity at efficient 
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price to market makers. Therefore it is important to investigate the stochastic dynamics of the LOB.  

Market participants place limit/market orders taking into account both the trajectory and current 

status of the LOB. This behavior is based on the policy that the shape of the LOB is quite informative for 

predicting the future direction of a traded asset. In fact, many researchers tried to predict future price 

directions via machine learning techniques such as Logistic regression analysis in Ban Zheng [11] and 

Support Vector Machine as Kercheval and Zhang [6] and Deng, Sakurai and Shioda [3]. The other 

machine learning techniques such as Artificial Neural Network, Random forest and Naive-Bayes classifier 

and Support Vector Regression are applied to predict stock price for relatively long period (daily) without 

the information of the LOB as in Patel, Shah, Thakkar and Kotecha [7]. For the recent comprehensive 

treatmentfor LOB, from mathematical finance point of view,would be found in [5] Gould et al. 

In this paper, we employ Support Vector Machine (SVM - described below) combined with 

conformally transformed Gaussian RBF kernel function to predict the mid-price dynamics in the LOB. For 

this purpose, as Fletcher and Shawe-Tayjor [4] studied, we first see the problem of the LOB dynamics so 

as to fit the SVM formulation. More precisely, shape of the LOB at each time is treated as a training data 

and its outcome that is observable in the future (direction of the mid-price movement) is treated as a 

corresponding label. We expect that if we can train the SVM with many training data effectively, then the 

SVM can predict future direction of the mid-price successfully. However, future direction of the mid-price 

would also depend on the balance between supply and demand in each moment, thereby even perfectly 

same shape of the LOB may produce opposite outcome. Because of such an inconsistency, one may think 

that high accuracy would not be expected for making predictions.  

In order to improve accuracy of the SVM, we adopted kernel modification method pioneered by 

Amari and Wu [1]. They considered the feature space as a Riemannian manifold, which can be realized as 

a curved surface embedded in high dimensional Euclidian space, and express the distance of two distinct 

points in feature space via Riemannian metric. Since the Riemannian metric and the kernel function are 

related to each other, we can discuss about modification of the kernel functions within this framework. 

The issue is how to modify the kernel function preserving computational tractability. In order to focus on 

the effect of kernel modification, we don't discuss about sequential updating for control parameters of 

SVM.  

As some existing researches such as Wu and Amari [10] and Williams, Li, Feng and Wu [8] report, in 

the realm of natural science, SVM with conformally transformed RBF kernel function exhibit more than 3% 

higher performance than standard RBF kernel. Main contribution of our study is to show the same aspect 
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in the area of financial market possibly containing many kinds of noise. To the best of our knowledge, our 

empirical study is the first to apply the conformally transformed kernel to finance area, especially to the 

LOB.   

In this paper, we first describe the data structure we used and methodology for applying SVM to the 

LOB. Next, theoretical backgrounds of the paper are descrived in detal and then explores the results for 

high frequency data of Nikkei 225 Futures.  

Data and Methodology 

Our empirical analyses are based on the historical data of the LOB of Nikkei 225 futures listed in 

Osaka exchange in Japan. Historical LOB data, we rely on, are provided by Osaka exchange via Rakuten 

Securities for her customer without any charge. This LOB data is comprised of agreed prices and event 

records such as volume of limit sell/buy orders for each price level with approximately 20 milliseconds 

time scale. Instead of these original data sets, we use adequately processed data such as second-scale 

historical data obtained by extracting every second from the original data. When there is no renewal in the 

LOB, our processed data remains the same. Example of the LOB data are shown in Table 1 illustrating the 

best-bid price at time 𝑡𝑡 = 09:02:42.379 is 1012 𝛿𝛿 = 10120 yen and the best-ask price at the same time is 

1013 𝛿𝛿 = 10130 yen. From these records, we can read that the market sell order of size 233 was executed 

at 𝑡𝑡 = 09:02:47.913 and bid-ask spread appeared next 644 milliseconds. After that, no limit buy order at 

1012 𝛿𝛿 arrived and limit sell order of size 422 at the price 1012 𝛿𝛿 newly reached hence the mid-price 

changed.  

 

Table 1: Example of the LOB data flow of Nikkei 225 futures as of Dec. 25, 2012. (𝛿𝛿 = 10 yen) 

 

Trading time of Nikkei 225 futures is divided into following four sessions; pre-opening session, 

regular session, pre-closing session and night session. During the pre-opening session starting from 8 AM 

and ending at 9 AM, and during the pre-closing session from 3:00 PM to 3:15 PM, limit orders are 

received but matching cannot be executed. During the night session from 4:30 PM to 3 AM, Japanese 

 



Kernel Modification Effects for Support Vector Machine Applied to Limit Order Book of 
Nikkei 225 Futures 

152 

investors do not trade much and then very few transactions are made. Therefore, for our empirical studies, 

we use the data of regular session starting every weekday from 9 AM and ending 3:10 PM. Our empirical 

studies are concentrated to the period between April 2, 2012 and June 30, 2012. 

State of the Limit Order Book (LOB) 

A single snapshot of the LOB can be handled as a high dimensional vector recorded with timestamp. 

For more precise description of the LOB, we introduce coordinate system consist of time-axis, price-axis 

and volume-axis as shown in Figure 1. Here, for each time, we slide the price-axis and take the best-bid 

price as an origin of the price-axis in this coordinate system. We pay attention to the distance between the 

requested price of the limit order and mid-price rather than exact price level of the limit order. Thus each 

coordinate has three components such as time, the distance between the limit order and best-bid price, and 

the volume size of the limit order. It is assumed that limit orders and market orders can be placed on a 

fixed price grid {1,2,⋯ ,𝑁𝑁} representing multiples of a price tick denoted by 𝛿𝛿, so the state of the LOB 

can be seen as a discrete function on a discrete line calibrated with unit length of 𝛿𝛿.  

The upper boundary 𝑁𝑁 is chosen large enough so that it is highly unlikely that orders at prices 

higher than 𝑁𝑁 will be placed within the time frame of our analysis1. State of the LOB at time 𝑡𝑡 is 

described by the discrete time 𝑁𝑁-dimensional stochastic process 𝒁𝒁(𝑡𝑡)  = (𝑍𝑍1(𝑡𝑡),⋯ ,𝑍𝑍𝑁𝑁(𝑡𝑡)), where the 

𝑝𝑝-th element 𝑍𝑍𝑝𝑝(𝑡𝑡) denotes the time 𝑡𝑡 order size waiting for the future market order of price 𝑝𝑝 ∙ 𝛿𝛿 to be 

matched. Practically in Nikkei 225 futures market, investors cannot necessarily observe all the limit orders 

although more exists. Because of the narrow window of records, only the information close to the best 

price (generally 10 prices for both sell and buy orders) are available and limit orders placed far from the 

best prices are not shown for investors. 

Let the best-ask price at time 𝑡𝑡 is denoted by 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑡𝑡) > 0 and similarly the best-bid price is 

denoted by 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏 (𝑡𝑡) > 0. We define the number of outstanding sell orders at a distance 𝑘𝑘 (equivalently 

𝑘𝑘 ∙ 𝛿𝛿 in price) from the best-bid price 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏 (𝑡𝑡) as 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘 (𝑡𝑡) ∈ 𝑍𝑍+. Thus the quantity 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿 (𝑡𝑡) indicates 

the number of orders of best-ask at time 𝑡𝑡. Similarly the number of outstanding buy orders at a distance 𝑘𝑘 

from the best-ask price is defined as 𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘𝑘𝑘 (𝑡𝑡) ∈ 𝑍𝑍+. 

 

1As described in Cont, Stoikov and Talreja [10] since the model is intended to be used on the time scale of days, this 

finite boundary assumption is reasonable. 
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Figure 1: Time evolution of the Limit Order Book 

 

Application of the Support Vector Machine 

In this paper, we attempt to classify super-short-term (seconds) future price direction with SVM and 

focus on the improvement of its accuracy. We expect that the shape of the LOB is predictably effective for 

the direction of the next mid-price movements. As discussed above, the shape of the LOB means that the 

sequence of volume size of limit orders while absolute price levels are not contained. For simple 

explanation of our methodology, let us first consider the best-ask price and the best-bid price. When the 

volume of the best-ask price is relatively larger than that of the best-bid price, it is natural to consider that 

the market has a high likelihood of downtrend. This simple intuition would be applicable to the general 

circumstances considering all available limit orders. In fact, Fletcher and Shawe-Tayjor [5] considered not 

only the snapshot of the LOB, but also the time-derivatives (these are finite difference because of discrete 

time setting) of the volume size at each price level, which contains past information. In our study, we 

focus on the effectiveness of modification of the kernel function thus the simple structure of training data 

is preferred. Of course, our model could be applied to more generalized structure of training data including 

exponential moving average of the price, standard deviation of the price, the maximum and minimum 
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prices over some period and the number of price increases and decreases over that time period as Fletcher 

and Shawe-Tayjor [5] suggested.  

We consider discretized time grids 𝑇𝑇𝑖𝑖 , 0 ≤ 𝑖𝑖 ≤ 𝑀𝑀 to express full available historical data records of 

the LOB including the mid-price. Let the available shape of the LOB, i.e., the order book volume at time 

𝑇𝑇𝑖𝑖  is identified with 2𝑛𝑛-dimensional vector 

𝒙𝒙𝒊𝒊 = �𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 (𝑇𝑇𝑖𝑖),𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏
(𝑛𝑛−1)𝛿𝛿(𝑇𝑇𝑖𝑖), … ,𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏𝛿𝛿 (𝑇𝑇𝑖𝑖),𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿 (𝑇𝑇𝑖𝑖), … ,𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 (𝑇𝑇𝑖𝑖)�. 

In case of Nikkei 225 futures, constantly available data is restricted to1 ≤ 𝑛𝑛 ≤ 9, which may sounds odd. 

In many cases we can see limit sell/buy orders placed in the price corresponding to 𝑛𝑛 = 10, however, 

sometimes at the time of mid-price change, the bid-ask spread, which is strictly larger than𝛿𝛿, appears in a 

very short time and then the limit order corresponding to 𝑛𝑛 = 10 is pushed out of the records. This is the 

reluctant reason why we have no other alternative but to handle the data with 1 ≤ 𝑛𝑛 ≤ 9.  

Let 𝜋𝜋(𝑇𝑇𝑖𝑖) ≔ (𝑃𝑃𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒 (𝑇𝑇𝑖𝑖) + 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏 (𝑇𝑇𝑖𝑖))/2 denote the mid-price at time 𝑇𝑇𝑖𝑖  and define 

𝔗𝔗(𝑇𝑇𝑘𝑘) = min�𝑗𝑗 + 1�𝜋𝜋�𝑇𝑇𝑗𝑗+1� ≠ 𝜋𝜋�𝑇𝑇𝑗𝑗 �, 𝑗𝑗 ≥ 𝑘𝑘� 

as an index of discretized time grid at which the mid-price moved for the first time after 𝑇𝑇𝑘𝑘 . Training data 

for SVM is a set of sequence of prior trials {𝒙𝒙𝒊𝒊 ∈ 𝑅𝑅2𝑛𝑛}0≤𝑖𝑖≤𝑚𝑚  with 𝑚𝑚 ≤ 𝑀𝑀 that have already been 

classified into two classes. In our case, classification means that each 𝒙𝒙𝒊𝒊 has been assigned a label 

𝑦𝑦𝑖𝑖 ∈ {+1,−1} depending on the direction of the first mid-price movement as follows. 

𝑦𝑦𝑖𝑖 = �
+1     𝑖𝑖𝑖𝑖  𝜋𝜋�𝑇𝑇𝔗𝔗(𝑇𝑇𝑖𝑖)� >  𝜋𝜋�𝑇𝑇𝔗𝔗(𝑇𝑇𝑖𝑖)−1�
−1     𝑖𝑖𝑖𝑖  𝜋𝜋�𝑇𝑇𝔗𝔗(𝑇𝑇𝑖𝑖)� <  𝜋𝜋�𝑇𝑇𝔗𝔗(𝑇𝑇𝑖𝑖)−1�

� 

That is, if the first mid-price movement after 𝑇𝑇𝑖𝑖  was upward direction, then we set 𝑦𝑦𝑖𝑖 = +1 and in an 

opposite case we set 𝑦𝑦𝑖𝑖 = −1 . Nonlinear SVM maps the input data 𝒙𝒙 ∈ 𝐼𝐼 = 𝑅𝑅2𝑛𝑛  into a higher 

dimensional feature space 𝐹𝐹 = 𝑅𝑅𝑁𝑁 , 2𝑛𝑛 ≤ 𝑁𝑁  by a nonlinear mapping Φ  By choosing an adequate 

mappingΦ, the data points become mostly linearly separable in the feature space. Trained SVM finds 

maximum margin hyper plane in a feature space 𝐹𝐹 as a final decision boundary defined by 

𝑓𝑓(𝒙𝒙) = � 𝑦𝑦𝑖𝑖𝛼𝛼𝑖𝑖𝐾𝐾(𝒙𝒙,𝒙𝒙𝒊𝒊) + 𝑏𝑏
𝑖𝑖∈𝑆𝑆𝑆𝑆

 

where 𝐾𝐾 is called kernel function and summation runs over all the support vectors. Here, parameters 𝛼𝛼𝑖𝑖  

are derived by solving quadratic programing problem 
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max
𝛼𝛼

� 𝛼𝛼𝑖𝑖 −  
1
2
� 𝛼𝛼𝑖𝑖𝛼𝛼𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗

𝑚𝑚

𝑖𝑖 ,𝑗𝑗

𝑚𝑚

𝑖𝑖=1
𝐾𝐾�𝒙𝒙𝒊𝒊,𝒙𝒙𝒋𝒋� 

s. t.      0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶, �𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖

𝑚𝑚

𝑖𝑖=1

= 0 

withprespecified parameter 𝐶𝐶, which controls the trade-off between margin and misclassification error. It 

is well known that Φ(𝒙𝒙) ∈ 𝐹𝐹 is not necessarily known to derive separating boundary and we only need to 

know the inner product of vectors Φ(𝒙𝒙) in the feature space by virtue of 𝐾𝐾(𝒙𝒙,𝒙𝒙′) = Φ(𝒙𝒙) ∙ Φ(𝒙𝒙′). Thus 

the trained SVM with 𝑚𝑚 data will return predicted direction 𝑦𝑦𝑚𝑚+1 = ℎ(𝒙𝒙𝑚𝑚+1) ≔ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑓𝑓(𝒙𝒙𝑚𝑚+1)) ∈

{+1,−1} for new trial data 𝒙𝒙𝑚𝑚+1. 

Geometric reformulation of the Kernel 

In order to improve the performance of SVM classifiers, Amari and Wu [6] and Wu and Amari [7] 

proposed conformal transformation of kernel functions based on the understanding that a good kernel 

should enlarge the separation between the two classes. Furthermore, Williams, Li, Feng and Wu [8] 

studied more robust method in the sense that the additional free parameter is only one and then 

computational algorithm is kept simple. 

From geometrical point of view, the mapped data 𝒛𝒛 = Φ(𝒙𝒙) generally lie on a 2𝑛𝑛 dimensional 

surface 𝑆𝑆 in 𝐹𝐹. Hear we omitted the subscript 𝑖𝑖 in 𝒙𝒙𝒊𝒊 indicating the time recorded for simplicity. If we 

assume that Φ has all continuous derivatives, 𝑆𝑆 can be seen as an embedded submanifold possessing 

Riemannian metric. The Riemannian metric enable one to measure the distance of two distinct points on 𝑆𝑆 

via line integral along the shortest curve (geodesic) connecting these two points. Here, the line element, 

denoted by 𝑑𝑑𝑑𝑑, can be expressed as 

(𝑑𝑑𝑑𝑑)2 = � 𝑔𝑔𝑖𝑖𝑖𝑖 𝑑𝑑𝑥𝑥𝑖𝑖𝑑𝑑𝑑𝑑𝑗𝑗
1≤𝑖𝑖 ,𝑗𝑗≤2𝑛𝑛

 

where 𝑔𝑔𝑖𝑖𝑖𝑖  is called Riemannian metric and superscript 𝑖𝑖 in 𝑥𝑥𝑖𝑖  denote the 𝑖𝑖-th element of vector 𝒙𝒙. 

Applying Φ, 2𝑛𝑛-dimensional vector 𝒅𝒅𝒅𝒅 = (𝑑𝑑𝑥𝑥1,⋯ ,𝑑𝑑𝑑𝑑2𝑛𝑛) is mapped to 

𝒅𝒅𝒅𝒅 = Φ(𝒙𝒙 + 𝒅𝒅𝒅𝒅) −Φ(𝒙𝒙). 

Then the line element 𝑑𝑑𝑑𝑑 is expressed in feature space as 

(𝑑𝑑𝑑𝑑)2 = ‖𝑑𝑑𝑑𝑑‖2 = ‖Φ(𝒙𝒙 + 𝒅𝒅𝒅𝒅) −Φ(𝒙𝒙)‖2. 
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From Taylor's theorem for 2𝑛𝑛-variate function 𝑅𝑅2𝑛𝑛 = 𝐼𝐼 ∋ 𝒙𝒙 ↦ Φ(𝒙𝒙) = (Φ1(𝒙𝒙),⋯ ,Φ𝑁𝑁(𝒙𝒙)) ∈ 𝐹𝐹 , 

the line element 𝑑𝑑𝑑𝑑 is re-expressed with the kernel function 𝐾𝐾 as follows 

(𝑑𝑑𝑑𝑑)2 = ���
𝜕𝜕Φ𝑘𝑘(𝒙𝒙)
𝜕𝜕𝑥𝑥𝑗𝑗

2𝑛𝑛

𝑗𝑗=1

�

2𝑁𝑁

𝑘𝑘=1

 

= � �
𝜕𝜕Φ𝑘𝑘(𝒙𝒙)
𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕Φ𝑘𝑘(𝒙𝒙)
𝜕𝜕𝑥𝑥𝑗𝑗

1≤𝑖𝑖 ,𝑗𝑗≤2𝑛𝑛

𝑁𝑁

𝑘𝑘=1

𝑑𝑑𝑥𝑥𝑖𝑖𝑑𝑑𝑥𝑥𝑗𝑗  

= � �
𝜕𝜕2𝐾𝐾(𝒙𝒙,𝒙𝒙′)
𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥′ 𝑗𝑗

�
𝒙𝒙=𝒙𝒙′1≤𝑖𝑖 ,𝑗𝑗≤2𝑛𝑛

𝑑𝑑𝑥𝑥𝑖𝑖𝑑𝑑𝑥𝑥𝑗𝑗 . 

Therefore the Riemannian metric induced on 𝑆𝑆 can be written as 

𝑔𝑔𝑖𝑖𝑖𝑖 (𝒙𝒙) = �
𝜕𝜕2𝐾𝐾(𝒙𝒙,𝒙𝒙′)
𝜕𝜕𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥′ 𝑗𝑗

�
𝒙𝒙=𝒙𝒙′

. 

It shows how a local area in 𝐼𝐼 is magnified (by the factor 𝑔𝑔𝑖𝑖𝑖𝑖 (𝒙𝒙)) in 𝐹𝐹 under the mapping Φ(𝒙𝒙). 

Conformal Transformation 

In general, inner product of vectors defines the length of vector, the angle between two vectors and 

the orthogonality. Angle and orthogonality are invariant under the multiplication of inner product by a 

positive number and we say that multiplied inner product is conformal to the original inner product. 

Similarly, since a metric is an inner product on tangent space of manifold, when some metric on manifold 

is multiplied by a positive function on manifold, we say that the multiplied metric is conformal to the 

original one. 

A conformal transformation preserves both angles and the shapes of infinitesimally small figures, but 

not necessarily their size. The original idea of Amari and Wu [6] and Wu and Amari [7] of conformal 

transformation of the kernel function is to enlarge the magnification factor 𝑔𝑔𝑖𝑖𝑖𝑖 (𝒙𝒙) around the separating 

boundary but reduce it around other points far from the boundary by modifying the kernel 𝐾𝐾 as  

𝐾𝐾�(𝒙𝒙,𝒙𝒙′) = 𝐷𝐷(𝒙𝒙)𝐷𝐷(𝒙𝒙′)𝐾𝐾(𝒙𝒙,𝒙𝒙′) 

with a properly defined positive function 𝐷𝐷(𝒙𝒙). We have 

𝑔𝑔�𝑖𝑖𝑖𝑖 (𝒙𝒙) = 𝐷𝐷(𝒙𝒙)2𝑔𝑔𝑖𝑖𝑖𝑖 (𝒙𝒙) + 𝐷𝐷𝑖𝑖′(𝒙𝒙)𝐷𝐷𝑗𝑗′(𝒙𝒙)𝐾𝐾(𝒙𝒙,𝒙𝒙) + 2𝐷𝐷𝑖𝑖′(𝒙𝒙)𝐷𝐷(𝒙𝒙)𝐾𝐾𝑖𝑖′(𝒙𝒙,𝒙𝒙) 
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where 𝐾𝐾𝑖𝑖′(𝒙𝒙,𝒙𝒙) = �𝜕𝜕𝜕𝜕(𝒙𝒙,𝒙𝒙′ )
𝜕𝜕𝑥𝑥𝑖𝑖

�
𝒙𝒙=𝒙𝒙′

 and  𝐷𝐷𝑖𝑖′(𝒙𝒙) = 𝜕𝜕𝜕𝜕(𝒙𝒙)
𝜕𝜕𝑥𝑥𝑖𝑖

. In order to increase the soft margin around the separating 

boundary in 𝐹𝐹, 𝐷𝐷(𝒙𝒙) should be chosen in a way such that 𝑔𝑔�𝑖𝑖𝑖𝑖 (𝒙𝒙) has greater values around the separating 

boundary. Next we list the form of 𝐷𝐷(𝒙𝒙) proposed by many authors.  

The form of 𝑫𝑫(𝒙𝒙) 

Some existing proposed functions are listed bellow. Amari and Wu [6] considered  

𝐷𝐷(𝒙𝒙) = � 𝐶𝐶𝑘𝑘exp�−
‖𝒙𝒙 − 𝒙𝒙𝒌𝒌‖2

2𝜏𝜏2 �
𝑘𝑘∈𝑆𝑆𝑆𝑆

 

where𝜏𝜏 is a free parameter and summation runs over all support vectors. Hear 𝐶𝐶𝑘𝑘  should be chosen 

carefully depending on support vectors. Wu and Amari [7] considered  

𝐷𝐷(𝒙𝒙) = � exp�−
‖𝒙𝒙 − 𝒙𝒙𝒌𝒌‖2

𝜏𝜏𝑘𝑘2
�

𝑘𝑘∈𝑆𝑆𝑆𝑆

 

where 𝜏𝜏𝑘𝑘  is defined by 

𝜏𝜏𝑘𝑘2 =
1
𝑀𝑀
�‖𝒙𝒙𝒎𝒎 − 𝒙𝒙𝒌𝒌‖2
𝑀𝑀

𝑚𝑚=1

. 

The summation runs over 𝑀𝑀 support vectors {𝒙𝒙𝒎𝒎}𝑚𝑚=1,⋯,𝑀𝑀  that are nearest to 𝒙𝒙𝒌𝒌. Subsequently, 

Wu and Chang [9] extended this idea to undesirable case where the training dataset is imbalanced, by 

applying adaptively tuned 𝜏𝜏𝑘𝑘  according to the spacial distribution of support vectors in feature space 𝐹𝐹. 

This is achieved by taking 𝜏𝜏𝑘𝑘  as 

𝜏𝜏𝑘𝑘2 = AVG𝑖𝑖∈�‖Φ(𝒙𝒙𝒊𝒊)−Φ(𝒙𝒙𝒌𝒌)‖2<ℓ,   𝑦𝑦𝑖𝑖≠𝑦𝑦𝑗𝑗 �(‖Φ(𝒙𝒙𝒊𝒊) −Φ(𝒙𝒙𝒌𝒌)‖2) 

where the average comprises all the support vectors in Φ(𝒙𝒙)'s neighborhood within the radius of ℓ but 

having a different class label. Hear, ℓ is the average distance of the nearest and the farthest support vector 

from Φ(𝒙𝒙𝒌𝒌). 

In this paper, as many authors selected ([6] [7] [8] [9]), we adopt the Gaussian radial basis function  
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 𝐾𝐾(𝒙𝒙,𝒙𝒙′) = exp �− �𝒙𝒙−𝒙𝒙′ �2

2𝜎𝜎2 � (12) 

as a primary kernel and as Williams, Li, Feng and Wu [8], we assume that the conformal function 𝐷𝐷(𝒙𝒙) 

has the form of 

 𝐷𝐷(𝒙𝒙) = 𝑒𝑒−𝜅𝜅𝑓𝑓(𝒙𝒙)2  (13) 

where 𝑓𝑓(𝒙𝒙) is given by the decision boundary (2) and 𝜅𝜅 is positive constant. We call 𝑓𝑓 as the first-pass 

solution of primary Gaussian RBF kernel. This takes its maximum of the separating region where 

𝑓𝑓(𝒙𝒙) = 0, and decays to 𝑒𝑒−𝜅𝜅  at the margins of the separating region where 𝑓𝑓(𝒙𝒙) ± 1. 

One can see particularly that the conformal transformation under (13) achieves the expected change 

of magnifications depending on the distance from the separating boundary as Williams, Li, Feng and Wu 

[8] suggested as follows. First, we remember that the volume form with respect to the metric 𝑔𝑔𝑖𝑖𝑖𝑖  is given 

by �det(𝑔𝑔(𝒙𝒙))𝑑𝑑𝑥𝑥1 ⋯𝑑𝑑𝑥𝑥2𝑛𝑛 , where 𝑔𝑔(𝒙𝒙) is the matrix whose (𝑖𝑖, 𝑗𝑗)-element is 𝑔𝑔𝑖𝑖𝑖𝑖 (𝒙𝒙). Here we call the 

term �det(𝑔𝑔(𝒙𝒙)) as the magnification factor, which represent how a local area is magnified in 𝐹𝐹 under 

the mapping Φ. When 𝐾𝐾 is the Gaussian RBF kernel (12),  

𝑔𝑔𝑖𝑖𝑖𝑖 (𝒙𝒙) =
1
𝜎𝜎2 𝛿𝛿𝑖𝑖𝑖𝑖  

and then the magnification factor is  

�det(𝑔𝑔(𝑥𝑥)) =
1
𝜎𝜎𝑛𝑛

. 

Furthermore, transformed Riemannian metric 𝑔𝑔�𝑖𝑖𝑖𝑖  is given by 

𝑔𝑔�𝑖𝑖𝑖𝑖 (𝑥𝑥) =
𝐷𝐷(𝑥𝑥)2

𝜎𝜎2 𝛿𝛿𝑖𝑖𝑖𝑖 + 𝐷𝐷𝑖𝑖(𝑥𝑥)𝐷𝐷𝑗𝑗 (𝑥𝑥) 

and then the magnification factor is  

det(𝑔𝑔�(𝒙𝒙)) =
𝐷𝐷(𝒙𝒙)2𝑛𝑛

𝜎𝜎2𝑛𝑛 +
𝐷𝐷(𝒙𝒙)2𝑛𝑛−2

𝜎𝜎2𝑛𝑛−2 �𝐷𝐷𝑖𝑖(𝒙𝒙)2
2𝑛𝑛

𝑖𝑖=1

. 

By definition, 𝐷𝐷𝑖𝑖(𝒙𝒙), 𝑖𝑖 = 1,2,⋯ ,2𝑛𝑛  are the components of ∇𝐷𝐷(𝒙𝒙) = 𝐷𝐷(𝒙𝒙)∇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝒙𝒙) , one then 

obtain the ratio of the transformed to the original magnification factors as 

 



Kernel Modification Effects for Support Vector Machine Applied to Limit Order Book of 
Nikkei 225 Futures 

159 

�
det(𝑔𝑔�(𝒙𝒙))
det(𝑔𝑔(𝒙𝒙))

= 𝐷𝐷(𝒙𝒙)2𝑛𝑛�1 + 𝜎𝜎2‖∇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝒙𝒙)‖2. 

Substituting (13), one obtain  

�
det(𝑔𝑔�(𝒙𝒙))
det(𝑔𝑔(𝒙𝒙))

= exp(−𝑛𝑛𝑛𝑛𝑛𝑛(𝒙𝒙)2)�1 + 4𝜅𝜅2𝜎𝜎2𝑓𝑓(𝒙𝒙)2‖∇𝑓𝑓(𝒙𝒙)‖2. 

Qualitative meaning of this equation would be summarized as follows. Dominating term 

exp(−𝑛𝑛𝑛𝑛𝑛𝑛(𝑥𝑥)2) in the right handside achieves the greatest magnification when 𝑓𝑓(𝑥𝑥) = 0 and decreases 

rapidly as 𝑓𝑓(𝑥𝑥) moves away from 0. Thus we can enlarge the magnification factor around the separating 

boundary but reduce it around other points far from the boundary. The other term 

�1 + 4𝜅𝜅2𝜎𝜎2𝑓𝑓(𝑥𝑥)2‖∇𝑓𝑓(𝑥𝑥)‖2 in the right hand side could be understood as follows. Along contours of 

constant 𝑓𝑓(𝑥𝑥), the magnification is greatest where the contours are closest. In this paper, we call this SVM 

equipped with conformally transformed kernel function (6) with (13) as modified kernel SVM.  

Computational algorithm for modified kernel SVM 

In order to train the modified kernel SVM, first we need to train the SVM equipped with the primary 

kernel (12) as usual and then reuse the results 𝑓𝑓(𝑥𝑥) as the first-pass solution to get the second-pass 

solution of the modified kernel SVM. In each supervised training stage, training data should be chosen 

large enough to obtain reliable decision boundary. On the one hand, old information of the mid-price and 

the LOB would be less effective for prediction rather than the most recent information. In our empirical 

study, the training of SVM is refreshed every day and then, for each day, we chose the time interval with 

running interval [𝑇𝑇𝑚𝑚 ,𝑇𝑇𝑚𝑚+𝑘𝑘], (𝑚𝑚 = 0,1,2,⋯ ) for training data, where 𝑇𝑇0 = 09:00:00 (opening time) and 

𝑇𝑇𝑘𝑘 =10:00:00 are fixed. Since we had processed the original data into second-scale data, 𝑇𝑇𝑚𝑚+1 − 𝑇𝑇𝑚𝑚 =

1second.  

Here, we must note that the label 𝑦𝑦ℓ, which will be apparent at time 𝑡𝑡 > 𝑇𝑇ℓ, associated with training 

data 𝑥𝑥ℓ should be known by the time 𝑇𝑇𝑚𝑚  to take into account for training at 𝑇𝑇𝑚𝑚 . Otherwise one knows 

the answer before it happens. Therefore, if we are in a time 𝑇𝑇𝑚𝑚 , we can use the data during [𝑇𝑇𝑚𝑚−𝑘𝑘 ,𝑇𝑇ℓ], 

where ℓ = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑖𝑖 ∈ {1,2,⋯ ,𝑀𝑀}|𝑇𝑇𝔗𝔗(𝑇𝑇𝑖𝑖) ≤ 𝑇𝑇𝑚𝑚� for learning at 𝑇𝑇𝑚𝑚 . In what follows, we abbreviate the 

term training data [𝑇𝑇𝑚𝑚 ,𝑇𝑇𝑚𝑚+𝑘𝑘 ] so as to identify the training data and its corresponding time interval. So if 

we say training data [𝑇𝑇𝑚𝑚 ,𝑇𝑇𝑚𝑚+𝑘𝑘 ] , it indicates the available training data during the time interval 
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[𝑇𝑇𝑚𝑚 ,𝑇𝑇𝑚𝑚+𝑘𝑘 ]. Computational algorithm of our newly proposed prediction model of the modified kernel 

SVM is summarized as follows. 

 

Algorithm 

Step 0. Set the control parameters 𝐶𝐶,𝜎𝜎, 𝜅𝜅 and the time parameter 𝑇𝑇0 =09:00:00 and 𝑇𝑇𝑘𝑘 =10:00:00. 

Training data is set to [𝑇𝑇0,𝑇𝑇𝑘𝑘 ] and 𝑚𝑚 = 0. 

Step 1. Train SVM with a primary RBF kernel 𝐾𝐾 defined by (12).  

Get 𝛼𝛼𝑖𝑖 ,𝑏𝑏 and the set of support vectors that determine the decision boundary (2).  

Step 2. Given 𝑓𝑓(𝑥𝑥), train the modified kernel SVM defined by (6) and (13) for the same data. 

Get the new decision boundary 𝑓𝑓(𝑥𝑥).  

Step 3. Based on 𝑓𝑓(𝑥𝑥) and newly observed current state of the LOB denoted by 𝑥𝑥𝑚𝑚+𝑘𝑘+1,  

Calculate the prediction 𝑦𝑦𝑚𝑚+𝑘𝑘+1 = ℎ�(𝑥𝑥𝑚𝑚+𝑘𝑘+1) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑓𝑓(𝑥𝑥𝑚𝑚+𝑘𝑘+1)) and store the result. 

Step 4. Increment the time parameter by 1 second; 𝑚𝑚 ← 𝑚𝑚 + 1. 

        Set the training data as [𝑇𝑇𝑚𝑚 ,𝑇𝑇𝑚𝑚+𝑘𝑘].  

        Go to Step 1 until 𝑇𝑇𝑚𝑚+𝑘𝑘  reaches 15:10:00, the ending time of the regular session. 

 

To proceed above algorithm in a real market, total computational time of Step 1 and 2 should be 

sufficiency smaller than one tick, i.e., 1 second. In our Matlab computational environment of iMac with 

4GHz Intel Core i7, 32GB 1867MHz DDR3, total computational time of Step 1 and 2 is 0.17 second in 

average.  

Next, we visually illustrate rough mechanism how the modified kernel SVM can manage the problem 

of which the standard SVM can't resolve. We consider the case 𝑛𝑛 = 1 for buy and sell orders to plot 

everything in 2 dimensional input space. Figures 2 and 3 plot the 2 dimensional vector 

s𝑥𝑥𝑖𝑖 = (𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝛿𝛿 (𝑇𝑇𝑖𝑖),𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝛿𝛿 (𝑇𝑇𝑖𝑖)), which are used as training data (green * and red +), and also a newly classified 

one plot indicating price prediction made by trained SVM. Suppose that the current time is 𝑡𝑡 =14:23:53 

as of April 17th 2012 and we want to predict the next mid-price direction, which become visible at 𝑡𝑡′ > 𝑡𝑡 

as𝑦𝑦 = +1. Figures 2 shows that the prediction made by the standard SVM was 𝑦𝑦 = −1 illustrated by 

light orange plus symbol (+), which is incorrect. Figures 3 shows that the prediction made by the modified 

kernel SVM with 𝜅𝜅 = 0.3 was 𝑦𝑦 = +1 illustrated by blue asterisk (*), which is correct. 
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Figure 2: Prediction via the standard SVM         Figure 3: Prediction via the modified SVM 

 

The above example illustrates the case that the trained data set is sparse around the trial data, which 

we want to classify. Contrary to the above illustrations, next Figures 4 and 5 shows the case that the 

trained data set is dense around the trial data. 

Suppose that the current time is 𝑡𝑡 =10:00:09 as of March 2nd 2012 and we want to predict the next 

mid-price direction, which become visible at 𝑡𝑡′ > 𝑡𝑡 as 𝑦𝑦 = −1. Figure 4 shows that the prediction made 

by the standard SVM was 𝑦𝑦 = +1 illustrated by blue asterisk (*), which is incorrect. Figure 5 shows that 

the prediction made by the modified kernel SVM with 𝜅𝜅 = 0.3 was 𝑦𝑦 = −1 illustrated by light orange 

plus symbol (+), which is correct. In both cases, we can see that via modification of the kernel function, 

misclassifications decided by the standard SVM is corrected   

 

 
Figure 4: Prediction via the standard SVM           Figure 5: Prediction via the modified SVM 
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Thus the modified kernel seems to have great potential for improvement and next we illustrate the 

detail of our empirical studies. Since the trajectory of the LOB is an aggregated view of many kinds of 

market participants, pros and cons of future direction of the mid-price are batted back and forth, even 

exactly the same shape of the LOB have the potential of opposite direction. This would be a one of the 

reason why performance of SVM is relatively low rather than the applications to natural sciences. In our 

empirical studies in the area of finance, we show that the conformal modification possesses nice 

performance. 

Results and Discussion 

We need to determine evaluation method in order to compare the newly proposed prediction model of 

the modified kernel SVM with the standard one that is treated as a benchmark. Our objective is to make 

sure of the existence of nice parameter 𝜅𝜅 that controls 𝐷𝐷(𝑥𝑥) so as to outperform the benchmark. We rely 

on a confusion matrix for evaluation but we don't want to get into the detail for tuning methodology of the 

control parameters 𝐶𝐶 and 𝜎𝜎. Therefore we calculate the case with 𝐶𝐶 ∈ {1, 10, 100} and 𝜎𝜎 = 1 and take 

average of these three cases in terms of Precision defined bellow. 

Let 𝜎𝜎1,1 be a number that count the event of actual upward direction of the mid-price movements 

that were correctly predicted as upward direction (true positive), while a number 𝜎𝜎−1,1 count the event of 

actual upward direction that were incorrectly predicted as down ward direction (false negative). Similarly, 

let 𝜎𝜎−1,−1 be a number that count the event of actual down ward direction of the mid-price movements 

that were correctly predicted as down ward direction (true negative), while a number 𝜎𝜎1,−1 count the 

event of actual down ward direction that were incorrectly predicted as up ward direction (false positive). 

These numbers constitute the confusion matrix as given in Table 2, which is often employed in the field of 

machine learning and specifically the problem of statistical classification.  

 

Table 2: Confusion matrix 

 Realization  

 1 -1 Total 

Prediction 
1 𝜎𝜎1,1 𝜎𝜎1,−1 𝜎𝜎1,1 + 𝜎𝜎1,−1 

-1 𝜎𝜎−1,1 𝜎𝜎−1,−1 𝜎𝜎−1,1 + 𝜎𝜎−1,−1 

Total 𝜎𝜎1,1 + 𝜎𝜎−1,1 𝜎𝜎1,−1 + 𝜎𝜎−1,−1 𝜎𝜎1,1 + 𝜎𝜎−1,1 + 𝜎𝜎1,−1 + 𝜎𝜎−1,−1 
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And then the concepts of precision, recall and accuracy are defined respectively as follows. 

 

𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(+𝟏𝟏) =
𝜎𝜎1,1

𝜎𝜎1,1 + 𝜎𝜎1,−1
, 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑(+𝟏𝟏) =

𝜎𝜎1,1

𝜎𝜎1,1 + 𝜎𝜎−1,1
 

𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(−𝟏𝟏) =
𝜎𝜎−1,−1

𝜎𝜎−1,1 + 𝜎𝜎−1,−1
, 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑(−𝟏𝟏) =

𝜎𝜎−1,−1

𝜎𝜎−1,−1 + 𝜎𝜎1,−1
 

𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 =
𝜎𝜎1,1 + 𝜎𝜎−1,−1

𝜎𝜎1,1 + 𝜎𝜎−1,1 + 𝜎𝜎1,−1 + 𝜎𝜎−1,−1
 

 

Roughly speaking, precision and recall are related as trade-off. One can extract some model 

parameters such as 𝐶𝐶 and 𝜎𝜎 based on some tuning methodology. One of these methodology would be 

achieved by solving numerically the next optimization problem; maximizing 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 with respect to 

𝐶𝐶 and 𝜎𝜎 under some constraint on 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑 such as 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑>0.6. However, as we simply focus on the 

effect of the conformal transformation, we do not involved with the detail of tuning methodology for 𝐶𝐶 

and 𝜎𝜎. Therefore, in the rest of our study, we evaluate mainly in terms of 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏. 

The effect of the conformal transforms 

The most intrigued results of the empirical analysis would be the following; how much the modified 

kernel SVM outperforms the benchmark? Next figures (6) and (7) show the performance of the 

predictions in terms of 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(+𝟏𝟏) and 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(−𝟏𝟏) respectively for each days. For illustration, we 

selected 𝑛𝑛 = 9 and then the training data for each time 𝑇𝑇𝑖𝑖  is 18 dimensional vector 𝒙𝒙𝑖𝑖 . For the training 

of modified kernel, i.e., in order to get the second-pass solution, we fixed𝜅𝜅 = 1.5. We calculated 

separately for three cases (𝐶𝐶,𝜎𝜎) = (1,1), (10,1), (100,1)and take average of these cases in order to 

eliminate the possibilities of misleading that may have been caused by inappropriate specification of 𝐶𝐶 

and𝜎𝜎. Both two graphs show that the precisions obtained by the modified kernel SVM (solid line) are 

mostly located above the benchmark (dashed line). As Table 3 shows, 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(+𝟏𝟏) and 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(−𝟏𝟏) 

outperform the benchmark more than 3% in average between April 2, 2012 and June 30, 2012.  
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Figure 6: Transition of 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(+𝟏𝟏) from April 2, 2012 and June 30, 2012 

 

 

Figure 7: Transition of 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(−𝟏𝟏) from April 2, 2012 and June 30, 2012 

 

Table 3: 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(+𝟏𝟏) and 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(−𝟏𝟏) in average between April 2, 2012 and June 30, 2012 

 Benchmark Modified SVM  Benchmark Modified SVM 

𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(+𝟏𝟏) 54.340% 57.757% 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(−𝟏𝟏) 54.566% 58.220% 
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The effect of 𝜿𝜿 

In the previous subsection, we compared the performance of modified kernel SVM with the 

benchmark under prespecified parameter 𝜅𝜅 in (13), which plays an important rule for improvement. Next 

figures from 8 to 13 show how the 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(+𝟏𝟏) and 𝐏𝐏𝐏𝐏𝐏𝐏𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜(−𝟏𝟏) vary with respect to 𝜅𝜅 for each 

month. As is clear from (13), 𝜅𝜅 = 0 corresponds to the standard SVM and then by viewing these figures 

we can see how much the precisions improved when we increased 𝜅𝜅. Three lines black, orange and blue 

in each figure corresponds to the dimension 𝑛𝑛 of training data.  

 

 

Figure 8: Average of 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(+𝟏𝟏) in April 2012  Figure 9: Average of 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(−𝟏𝟏) in April 2012 

Figure 8 shows that the 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(+𝟏𝟏)in April 2012 increase with the increasing 𝜅𝜅 for the three 

cases 𝑛𝑛 = 5,6,7 in much the same way, while the Figure 9 shows, the level of the𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(−𝟏𝟏)in April 

2012 vary depending on 𝑛𝑛, i.e., 𝑛𝑛 = 5,6 exceed 𝑛𝑛 = 9. Thus we can’t conclude that 𝑛𝑛 = 9is the most 

informative.  

 

 
Figure 10: Average of 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(+𝟏𝟏) in May 2012   Figure 11: Average of 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(−𝟏𝟏) in May 2012 
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Figure 10 shows that increasing 𝜅𝜅 is more effective to larger 𝑛𝑛, while Figure 11 shows that it is not 

necessarily correct. It is interesting to note that, as Figure 12 and 13 show, 𝑛𝑛 = 5 case is less sensitive for 

increasing 𝜅𝜅 rather than 𝑛𝑛 = 7,9 cases. 

 

 
Figure 12: Average of 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(+𝟏𝟏) in June 2012   Figure 13: Average of 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏(−𝟏𝟏) in June 2012 

Conclusions 

As some existing works support, SVM would be a one of the best machine learning technique for 

predicting mid price direction by using LOB. In this paper, we found effectiveness of the SVM equipped with 

conformally transformed Gaussian RBF kernel to improve precision and studied the sensitivity with respect to 

the parameter 𝜅𝜅 which control the degree of the conformal transform. Since the computational load is twice as 

much as the standard Gaussian RBF kernel, conformal transform method would be widely applied to high 

frequency data analysis in finance. 
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