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Abstract. Consider a group of people who want to know the “rich list”
among them, namely the ranking in terms of their total assets, without
revealing any information about the actual value of their assets. This
can be achieved by a “secure ranking computation,” which was first con-
sidered by Jiang and Gong (CT-RSA 2006); they constructed a secure
ranking computation protocol based on a public-key cryptosystem. In
this paper, instead of using a public-key cryptosystem, we use a deck of
physical cards to provide secure ranking computation protocols. There-
fore, our card-based protocols do not rely on computers, and they are
simple and easy for humans to implement. Specifically, we design four
protocols considering tradeoffs between the number of cards and the
number of shuffles required to execute protocols. We also present a guide
to choose an appropriate protocol according to the number of people
participating in the protocol and the size of the input range.

Key words: Card-based protocols, Secure ranking computation, Secure
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1 Introduction

Assume that there are n players P1, . . . , Pn such that each player Pi, 1 ≤ i ≤ n,
holds xi dollars with 1 ≤ xi ≤ m. They want to know the “rich list” (r1, . . . , rn)
among them, namely the ranking in terms of their total assets, without revealing
any information about the actual values of x1, . . . , xn. More formally, they want
to securely compute the ranking function rk : {1, 2, . . . ,m}n → {1, 2, . . . , n}n
defined as

rk : (x1, . . . , xn) 7→ (r1, . . . , rn)

such that ri = 1 +
∣∣∣{xj | xj > xi, 1 ≤ j ≤ n}

∣∣∣ for every i, 1 ≤ i ≤ n,
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where |X| denotes the cardinality of a set X. For example,

rk(3, 1, 3, 5) = (2, 4, 2, 1),

which means that P4 is the richest, P2 is the poorest, and both P1 and P3
are tied; all the players want to know only the ranking list (2, 4, 2, 1) without
revealing the amounts of their individual money (3, 1, 3, 5).

This is a secure ranking computation problem, which was first considered
by Jiang and Gong [5]. They constructed a secure ranking computation proto-
col based on a public-key cryptosystem. That is, their protocol allows P1 · · · , Pn
whose secret properties are (x1, . . . , xn) to know only the ranking rk(x1, . . . , xn) =
(r1, . . . , rn) without revealing any information about the inputs (x1, . . . , xn).
Note that this falls into the category of secure multiparty computations (MPCs) [12].

1.1 Card-based Protocols

It is well known that MPCs can be conducted by using a deck of physical cards
(such as ♣ ♣ ♥ · · · ), and such a research area is called card-based cryptography
(e.g. [1, 7]). The goal of this paper is to construct efficient card-based protocols
for solving the secure ranking computation problem. Compared to the use of a
public-key cryptosystem, there are certain advantages in using a deck of cards;
their computation, correctness, and secrecy are easier to understand.

As elementary card-based computations, efficient NOT, AND, OR, XOR,
and COPY protocols have been proposed [2, 8]. Therefore, for any n-variable
function f , we can construct a card-based protocol that securely computes f
by combining these elementary protocols. Thus, if one created a logical circuit
representing the ranking function rk, then one could construct a card-based
protocol securely computing rk. However, such a circuit would be huge and
complicated, and hence, the resulting protocol would no longer be practical.

While generic constructions as above tend to be impractical, a protocol spe-
cialized for a specific problem is usually more efficient. For example, consider the
millionaire problem [12]: Two players, Alice and Bob, want to know who is richer.
Indeed, efficient card-based millionaire protocols were proposed [3,6,9]. The goal
of this paper is to design specialized card-based protocols that efficiently solve
the ranking computation problem.

One may notice that the secure ranking computation can be realized by
repeatedly executing a millionaire protocol. However, our proposed protocols
perform the secure ranking computation more efficiently than by repeating the
existing millionaire protocol, as seen later.

We use a deck of four types of cards: black cards ♣ , red cards ♥ , a joker
Jo , and number cards 1 , 2 , . . . , m , which satisfy the following properties:

1. Cards with the same symbol on their faces cannot be distinguished from
each other.

2. All cards have identical backs ? , and the pattern of backs is vertically
asymmetric so that we can distinguish between a face-down card that is
right-side up ? and one that is upside down ¿ .
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We call black cards, red cards, and the joker as color cards.

1.2 Contribution

In this study, we propose four secure ranking computation protocols using a
deck of cards. The protocols are named as follows: two-phase, one-phase, shuffle-
efficient, and card-efficient protocols. Table 1 summarizes their performance.
The two-phase protocol and the one-phase protocol are not finite-runtime, but
they are expected finite-runtime protocols that use an expected finite number of
shuffles, i.e., they are Las Vegas algorithms. By contrast, both the shuffle-efficient
protocol and the card-efficient protocol are finite-runtime; they terminate with a
finite number of shuffles. More details along with the organization of this paper
are as follows.

Table 1. The performance of our proposed protocols.

Protocol finite-runtime? # of color cards # of num. cards (Expected) # of shuffles

two-phase no n(2m+ 1) 0 k + 2 + (m− k + 1)
∑k
i=1

1
i (= S)

one-phase no n(m+ 1) 0 ≤ S + 1 + (m+ 1)
∑m−k
i=1

1
i

shuffle-efficient yes (n+ k)(m+ 1) m+ 1 k + 3

card-efficient yes n(m+ 1) m+ 1 3k + 1

In Section 2, we review fundamental shuffling operations in card-based cryp-
tography.

In Section 3.1, we propose the two-phase protocol. The first phase of this
protocol computes the “equality” of input (x1, . . . , xn), i.e., it reveals the quotient
set {1, . . . , n}/{(i, j) | xi = xj}; each equivalent class corresponds to a group of
players who have the same amount of money. We often use k to denote

k = m− |{1, . . . , n}/{(i, j) | xi = xj}|

throughout this paper (including Table 1); in other words, k is the number of
amounts of money that nobody has. Making the use of k, the second phase of this
protocol outputs rk(x1, . . . , xn). Note that knowing the ranking rk(x1, . . . , xn)
implies learning the “equality,” and hence, revealing such a quotient set will not
leak any information beyond the ranking.

While the two-phase protocol mentioned above has two phases, we propose
the one-phase protocol in Section 3.2. That is, we get rid of the “equality check”
phase so that the number of required cards is n(m + 1), which is the smallest
among all the proposed protocols.

Remember that both the two-phase and one-phase protocols are not finite-
runtime. In Section 4, we focus our attention on constructing finite-runtime
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protocols that always terminate with a fixed number of shuffles. We first pro-
pose the finite-runtime shuffle-efficient protocol, which uses only k + 3 shuffles
although it requires a relatively large number of cards. We can modify this proto-
col to reduce the number of required cards by increasing the number of shuffles.
Carrying this technique further, we next propose the finite-runtime card-efficient
protocol.

In Section 5, we compare the two finite-runtime protocols with the exist-
ing millionaire protocol and discuss which protocol is appropriate in practical
situations.

In Section 6, we summarize this paper and mention future work.

2 Preliminaries

In this section, we review three types of shuffles that are often used in card-
based protocols. As seen later, we can conceal input values by applying a shuffle
operation to a sequence of face-down cards.

2.1 Random Cut

Consider a sequence of ` face-down cards ? ? · · · ? denoted by (c1, c2, . . . , c`).
A random cut randomly and cyclically shifts a sequence of cards. Applying a
random cut to the sequence (c1, c2, . . . , c`) results in (c1+r, c2+r, . . . , c`+r), where
r is uniformly randomly generated from Z/`Z and is unknown to everyone. Note
that a random cut can be implemented securely by human hands [11].

2.2 Pile-Scramble Shuffle

Consider a pile of face-down cards ? . Assume that we have ` such piles
? ? · · · ? , all of whose sizes are the same; we denote it by (p1,p2, . . . ,p`).
A pile-scramble shuffle [4] is a shuffle operation for such a sequence of piles. Ap-
plying a pile-scramble shuffle to the sequence (p1,p2, . . . ,p`) results in (pπ−1(1),
pπ−1(2), . . . ,pπ−1(`)), where π ∈ S` is a uniformly distributed random permu-
tation and S` is the symmetric group of degree `. We can easily implement a
pile-scramble shuffle by making piles with rubber bands or envelopes.

Alternatively, we can reduce the implementation of a pile-scramble shuffle to
random cuts. We make a sequence of piles by using upside down cards as follows:

¿ ? · · · ?︸ ︷︷ ︸
p1

¿ ? · · · ?︸ ︷︷ ︸
p2

· · · ¿ ? · · · ?︸ ︷︷ ︸
pl

.

Then, after applying a random cut to it, we take out the first pile, which is
randomly chosen from ` piles. Next, do the same operation for the remaining
` − 1 piles. Repeating this ` − 1 times in total, we have a randomly permuted
sequence of ` piles.
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2.3 Pile-Shifting Shuffle

A pile-shifting shuffle [10] cyclically and randomly shifts a sequence of piles. Ap-
plying a pile-shifting shuffle to (p1,p2, . . . ,p`) results in (p1+r,p2+r, . . . ,p`+r),
where r is uniformly randomly generated from Z/`Z and is unknown to everyone.

Similar to the implementation of a pile-scramble shuffle based on upside
down cards, as discussed in Section 2.2, we can implement a pile-shifting shuffle
by applying a random cut once.

3 Simple Protocols

In this section, we propose two simple protocols. The first is the fundamental
one, which has two phases. The second is obtained by removing one phase from
the two-phase protocol. The numbers of cards and shuffles required to execute
the two protocols were shown in Table 1; note that there is a tradeoff.

3.1 Proposal of Two-phase Protocol

This simple ranking protocol consists of two phases, namely, the Check-equality
phase and the Create-ranking phase, after the setup.

Setup. Each player Pi holds one red card ♥ and m − 1 black cards ♣ s, and
places a sequence ofm cards face down, denoted by αi, that encodes their private
value xi ∈ {1, . . . ,m}, as follows:

αi ?
♣︸︷︷︸

1-st

?
♣
· · · ?

♣
?
♥︸︷︷︸

xi-th

?
♣
· · · ?

♣︸︷︷︸
m-th

.

That is, Pi puts ♥ at the xi-th position and ♣ s at the remaining positions
with their faces down. Likewise, each player Pi makes the following sequence of
cards βi:

βi ?
♥︸︷︷︸

1-st

?
♥
· · · ?

♥
?
♣︸︷︷︸

xi-th

?
♥
· · · ?

♥︸︷︷︸
m-th

.

Check-equality phase. In this phase, we reveal the “equality” of the inputs
(x1, . . . , xn). Formally speaking, we want to know the quotient set {1, . . . , n}/{(i, j) |
xi = xj}. Note that, as mentioned before, knowing rk(x1, . . . , xn) implies learn-
ing the quotient set, and hence, revealing the equality does not leak any infor-
mation beyond the ranking.
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1. Take the i-th (i = 1, . . . ,m) cards from all players’ input sequences α1, . . . , αn
(while keeping the order unchanged) to make a pile pi of size n:

α1 ? ? · · · ?

α2 ? ? · · · ?
...

...
...

...

αn ? ? · · · ?

↓ ↓ ↓

?︸︷︷︸
p1

?︸︷︷︸
p2

· · · ?︸︷︷︸
pm

.

(1)

Note that if the j-th and `-th cards of the pile pi (for some j, `) are red:

pi

1
?
♣

2
?
♣
· · ·

j

?
♥
· · ·

`

?
♥
· · ·

m

?
♣
,

then both Pj and P` hold i dollars, i.e., xj = x` = i, and hence, they are
tied.

2. Apply a pile-scramble shuffle to (p1,p2, . . . ,pm).
3. Reveal all the piles (pπ−1(1),pπ−1(2), . . . ,pπ−1(m)). Then, two types of piles

should appear: a pile consisting of only ♣ s (which we call an empty pile) or
a pile containing ♥ s (which we call a non-empty pile).
If a non-empty pile contains ♥ s at j-th and `-th positions for some j, `, we
have xj = x`, but we cannot know the actual value of xj = x`. Therefore,
each non-empty pile tells us an equivalent class, and hence, all the non-empty
piles reveal the equality, namely {1, . . . , n}/{(i, j) | xi = xj}.

Create-ranking phase. Let k be the number of empty piles, i.e., k = m −
|{1, . . . , n}/{(i, j) | xi = xj}|.

1. Every player Pi adds a face-down jokeri to the last of βi:

βi ?
♥︸︷︷︸

1-st

?
♥
· · · ?

♥
?
♣︸︷︷︸

xi-th

?
♥
· · · ?

♥
?
Jo︸︷︷︸

m+1-st

. (2)

2. Create a sequence (p1,p2, . . . ,pm+1) in the same way as in (1) in Section 3.1.
3. Repeat the following until k empty pilesii are removed.

(a) Apply a pile-shifting shuffle to the sequence.
(b) Choose (any) one pile and reveal all the cards of the pile.

– If it is an empty pile, remove it from the sequence.
i Jo can be substituted by ♣ ; we use Jo for the purpose of easy understanding.

ii An empty pile consists of only ♥ (and a joker) here.
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– If it is not an empty pile, turn over all the face-up cards and return
the pile to the sequence.

4. Apply a pile-shifting shuffle to the sequence.
5. Reveal all the remaining piles. Then, we obtain the ranking by cyclically

shifting the revealed piles so that the pile consisting of only jokers is at the
end of the sequence.

3.2 Proposal of One-phase Protocol

In this subsection, we construct a protocol without relying on checking equality.
Recall that in the Create-ranking phase of the two-phase protocol, we remove

a pile if it is an empty pile. If it is not an empty pile, it goes back to the sequence.
Notice that each non-empty pile is unique and contains information on players
having the same amount of money, namely the corresponding equivalent class.
Therefore, even if we do not know the “equality” in advance, we can find all
empty piles by searching them until all piles are revealed. Players can memorize
revealed piles so that they can determine when they finish.

Thus, we can skip the Check-equality phase, and our one-phase protocol
proceeds as follows.

Setup. Pi creates a sequence of cards βi in the same way as in (2) in Section 3.1.

Create-ranking phase.

1. Create (p1,p2, . . . ,pm+1) in the same way as in (1) in Section 3.1.
2. Repeat the following until all m+ 1 piles are revealed.

(a) Apply a pile-shifting shuffle to the sequence.
(b) Reveal (any) one pile.

– If it is an empty pile, remove it from the sequence.
– If it is not an empty pile, memorize it, turn over all the face-up cards,

and return the pile to the sequence.
3. Apply a pile-shifting shuffle to the sequence.
4. Reveal all the remaining piles. We obtain the ranking by shifting the sequence

of piles based on the pile consisting of only jokers.

4 Finite-runtime Protocols

The two proposed protocols in the previous section are not finite-runtime (be-
cause we have to repeat the shuffle until all empty piles are found). In this section,
we solicit finite-runtime protocols that perform the secure ranking computation
with a fixed number of shuffles. Specifically, we design two protocols considering
the tradeoff between the number of cards and the number of shuffles. First, we
propose the finite-runtime shuffle-efficient protocol specialized for reducing the
number of shuffles. Next, we introduce a technique for reducing the number of
cards, and propose the finite-runtime card-efficient protocol.
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4.1 Proposal of Shuffle-efficient Protocol

In this protocol, we first find all empty piles at once, add markers to them, and
search the empty piles with the help of the markers.

1. Pi creates a sequence of cards βi in the same way as in (2) in Section 3.1.
2. Create (p1,p2, . . . ,pm+1) in the same way as in (1) in Section 3.1.
3. For every j, 1 ≤ j ≤ m+ 1, add a number card j to the top of the pile pj so

that we have a new pile p′
j of size n+ 1.

4. Apply a pile-scramble shuffle to the sequence of piles:

?︸︷︷︸
p′
π

−1
1 (1)

?︸︷︷︸
p′
π

−1
1 (2)

· · · ?︸︷︷︸
p′
π

−1
1 (m+1)

.

5. Reveal all the cards except for the number cards. Now, we find all the empty
piles (whose positions are randomly permuted). Let k be the number of
empty piles.

6. For each found empty pile, add a marker which consists of m ♣ s and one ♥
being placed on the piles so that the red card ♥ indicates the empty pile, as
follows:

marker ?
♣

?
♥

· · · ?
♣

? ?︸︷︷︸
empty pile

· · · ? .

One marker indicates one empty pile, and hence, we stack k markers on the
sequence of piles. We denote the resulting sequence by (p′′

1,p
′′

2, . . . ,p
′′
m+1).

7. Apply a pile-scramble shuffle to the sequence of piles:

?︸︷︷︸
p′′

π
−1
2 (1)

?︸︷︷︸
p′′

π
−1
2 (2)

· · · ?︸︷︷︸
p′′

π
−1
2 (m+1)

.

8. Reveal only the number cards, each of which is the (k + 1)-st card from the
top of the corresponding pile, and rearrange the order of the piles so that
the number cards are in ascending order; remove all the number cards:

?︸︷︷︸
p′′′

1

?︸︷︷︸
p′′′

2

· · · ?︸︷︷︸
p′′′

m+1

.

9. We remove all empty piles without anyone getting to know the “distance”
between any pair of non-empty piles: Repeat the following until k empty
piles are removed.
(a) Apply a pile-shifting shuffle to the sequence.
(b) Reveal one marker and remove the corresponding empty pile.

10. Apply a pile-shifting shuffle to the sequence.
11. Reveal all the remaining piles. We obtain the ranking by shifting the sequence

of piles based on the pile consisting of only jokers.
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4.2 Proposal of Card-efficient Protocol

In the finite-runtime shuffle-efficient protocol presented in Section 4.1, we use
k markers, i.e., we use k(m + 1) cards as markers. We consider a method of
reducing the number of cards used for these markers. If we arrange only one
marker in Step 6 of the finite-runtime shuffle-efficient protocol, we can compute
the ranking by repeating the process from Step 3 to Step 9 k times. Then, the
number of cards used for markers can be reduced from k(m + 1) to m + 1.
However, the number of required shuffles increases from k + 3 to 3k + 1.

By extending this idea further, no marker is needed. We construct a finite-
runtime card-efficient protocol that does not rely on markers. The procedure is
shown below.

1. Pi creates a sequence of cards βi in the same way as in (2) in Section 3.1.
2. Create (p1,p2, . . . ,pm+1) in the same way as in (1) in Section 3.1.
3. Repeat the following until k empty piles are removed (while repeating, the

number of piles is decreasing from m+ 1 to m+ 1− k):
(a) Apply a random cut to a sequence consisting of number cards:

?
1

?
2
· · · ?

m+1
→ ?

1+r
?

2+r
· · · ?

m+1+r
.

(b) For each pile pj , add the number card j + r to the pile so that we have
a new pile p′

j .
(c) Apply a pile-scramble shuffle to the sequence of piles:

?︸︷︷︸
p′
π

−1
1 (1)

?︸︷︷︸
p′
π

−1
1 (2)

· · · ?︸︷︷︸
p′
π

−1
1 (m+1)

.

(d) Reveal all the cards except for the number cards.
(e) Remove one empty pile along with the number card. Note that because

the removed number card does not indicate the position of the pile (be-
cause of the random permutation π1), information on the input is not
leaked.

(f) Turn all the cards face-down and apply a pile-scramble shuffle to the
sequence of piles:

?︸︷︷︸
p′
π

−1
1 (π−1

2 (1))

?︸︷︷︸
p′
π

−1
1 (π−1

2 (2))

· · · ?︸︷︷︸
p′
π

−1
1 (π−1

2 (m+1))
.

(g) Reveal only the number cards, each of which is the top of the corre-
sponding pile, and rearrange the order of the piles so that the number
cards are in ascending order. Remove all the number cards.

4. Apply a pile-shifting shuffle to the sequence of piles.
5. Reveal all the remaining piles. We obtain the ranking by shifting the sequence

of piles based on the pile consisting of only jokers.
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5 Discussion

In this section, we discuss comparison of protocols and real use cases.

Comparing Protocols. We compare the two finite-runtime protocols (pre-
sented in Section 4) with the repetition of the existing millionaire protocol [6]
in terms of the number of cards and shuffles, and the input range m. We fix the
number of players at n = 5, the number of color cards at 52, and the number of
number cards at 10.

Figure 1 shows the number of shuffles required to execute the three protocols.
One can confirm that our protocols use fewer shuffles compared to the case of
repeating the millionaire protocol.
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Finite-runtime card-effcient protocol (average)

Fig. 1. Number of required shuffles (n = 5).

Use Case. Next, we discuss how our protocols can be used. To reduce the
number of cards, it is reasonable to compare digits in the amounts instead of



Card-based Secure Ranking Computations 11

direct amounts of money. For example, if the amount of money that any player
holds is between 10 and 10y+1 − 1 for some y ∈ N, we can set the input range
to {1, . . . , y}.

Assume that the number of players is n = 5 and the number of digits in
the amounts is m = 6. For example, if a player Pi holds more than 103 dollars
and less than 104 dollars, she sets to xi = 3, if she holds 106 dollars, she sets
to xi = 6, and so on. In this case, 42 cards are required to execute our card-
efficient protocol. The breakdown is as follows: 10 ♣ s, 25 ♥ s, and 7 number
cards. Assume that, for instance, the number of empty piles is k = 3, and the
number of required shuffles is 10. Both the numbers of cards and shuffles are
within a feasible range in practice.

If there are two or more players at the same rank, it is possible to compare
the amounts of money between the players in finer units. If there are three or
more players to compare, using our finite-runtime shuffle-efficient protocol or
finite-runtime card-efficient protocol is efficient; if there are only two players,
using the existing millionaire protocol would be a good choice.

6 Conclusion

In this paper, we first proposed card-based secure ranking computation pro-
tocols. While our two simple protocols are Las Vegas algorithms, our shuffle-
efficient protocol and card-efficient protocol always terminate with a finite num-
ber of shuffles. Future work will be to devise a protocol that works with a stan-
dard deck of playing cards. Finding lower bounds on the number of shuffles for
a secure ranking computation protocol is also interesting.
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Numbers JP17K00001, JP17J01169, and JP19J21153. We would like to thank
the anonymous reviewers for their fruitful comments.
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