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Abstract. Card-based cryptography is an attractive and unconventional
computation model; it provides secure computing methods using a deck of
physical cards. It is noteworthy that a card-based protocol can be easily
executed by non-experts such as high school students without the use of
any electric device. One of the main goals in this discipline is to develop
efficient protocols. The efficiency has been evaluated by the number of
required cards, the number of colors, and the average number of protocol
trials. Although these evaluation metrics are simple and reasonable, it is
difficult to estimate the total number of operations or execution time of
protocols based only on these three metrics. Therefore, in this paper, we
consider adding other metrics to estimate the execution time of protocols
more precisely. Furthermore, we actually evaluate some of the important
existing protocols using our new criteria.

Keywords: Cryptography, Card-based protocols, Real-life hands-on
cryptography, Secure multi-party computations

1 Introduction

Card-based protocols are unconventional computing methods using a deck of
physical cards; their advantage is that they can be executed by humans practically
(e.g. [4, 6, 13]). To illustrate this, let us explain how to manipulate Boolean values
based on a two-colored deck of cards. Given a black card ♣ and a red card ♥ ,
a Boolean value can be expressed as:

♣ ♥ = 0 , ♥ ♣ = 1 .

? This paper appears in Proceedings of UCNC 2018. The final publication is available
at Springer via https://doi.org/10.1007/978-3-319-92435-9_11.
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Following this encoding, for example, two players, Alice and Bob, can each put
two cards face down on a table representing their private bits a and b, respectively:

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

. (1)

Here, we assume that the backs ? of all cards are indistinguishable and that
the fronts ♣ or ♥ are also indistinguishable if the cards have the same color.
We call the left pair of two face-down cards in (1) a commitment to a. Similarly,
the right pair of two face-down cards are a commitment to b.

Typically, given two input commitments to a, b ∈ {0, 1}, as in (1), a card-
based protocol should generate a commitment to the value of a predetermined
function f(a, b). For instance, we can get a commitment to a ∧ b without leaking
any information about a and b, if we execute an AND protocol:

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

→ . . . → ? ?︸ ︷︷ ︸
a∧b

.

As shown in Table 1, there are many existing AND protocols (in committed
formati). This table implies that the design of “efficient” protocols is one of the
goals of card-based protocols; so far, the efficiency has been evaluated in terms
of three metrics: (i) the number of required cards, (ii) the number of colors,
and (iii) the average number of required trials. These evaluation metrics are
simple and reasonable. However, if we are going to actually execute a card-based
protocol, these three metrics are insufficient to accurately estimate the number
of operations that need to be done during the protocol and the overall execution
time of the protocol.

Therefore, in this paper, we introduce new metrics to evaluate protocol
efficiency more precisely. That is, we determine all the operations during a
protocol, and then analyze the execution time of each operation. Furthermore,
we actually evaluate all the AND protocolsii shown in Table 1, based on our
new criteria by counting the number of operations thoroughly. We also make a
comparison of the AND protocols and discuss which protocol is the most efficient
and practical. It should be noted that card-based protocols are outside the Turing
model [8, 9].

The rest of this paper is organized as follows. In Section 2, we introduce the
AND protocol invented by Stiglic [15] as an example, and then give a formalization
of the operations in card-based protocols [8]. In Section 3, we give new metrics of
efficiency, which directly indicate the execution time of a protocol. In Section 4,
we evaluate the existing AND protocols based on our proposed metrics. We
conclude this study in Section 5.

i There are also “non-committed-format” AND protocols [1, 7].
ii This paper addresses only AND computation because the other important primitive,

XOR, can be done with only four cards and one trial [10].
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Table 1: The existing AND protocols (in committed format)

Year #Colors #Cards Avg.#Trials

Crépeau & Kilian [2] 1993 4 10 6

Niemi & Renvall [11] 1998 2 12 2.5

Stiglic [15] 2001 2 8 2

Mizuki & Sone [10] 2009 2 6 1

Five-card KWH [5] 2015 2 5 1

Four-card KWH [5] 2015 2 4 3

2 Preliminaries: A Protocol with Operations

In this section, we introduce Stiglic’s AND protocol [15] as an example to demon-
strate the possible operations in card-based protocols. As already seen in Table 1,
this protocol requires a two-colored deck of eight cards and two average trials.
Given input commitments to a and b along with four additional cards ♣ ♣ ♥ ♥ ,
the protocol proceeds as follows.

1. Arrange the sequence as:

? ?︸ ︷︷ ︸
a

♥ ♣ ? ?︸ ︷︷ ︸
b

♣ ♥ → ? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
1

? ?︸ ︷︷ ︸
b

? ?︸ ︷︷ ︸
0

.

2. Apply a random cut to the sequence of eight cards:

〈 ? ? ? ? ? ? ? ? 〉 → ? ? ? ? ? ? ? ? .

The term random cut means a cyclic shuffle. If we attach numbers to the
cards for the sake of convenience:

1

?
2

?
3

?
4

?
5

?
6

?
7

?
8

? ,

then a random cut results in one of the following eight sequences (with a
probability of 1/8):

1

?
2

?
3

?
4

?
5

?
6

?
7

?
8

? ,

2

?
3

?
4

?
5

?
6

?
7

?
8

?
1

? ,

...
8

?
1

?
2

?
3

?
4

?
5

?
6

?
7

? .
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Note that a random cut is known to be easily implemented by humans
securely via the Hindu cut [16] (as shown in Figure 1).

Fig. 1: The Hindu cut

3. Turn over the first two cards (from the left).
(a) If the revealed cards are ♥ ♥ , we obtain a commitment to a ∧ b as

follows:
♥ ♥ ? ? ? ? ?︸ ︷︷ ︸

a∧b

? .

(b) If the revealed cards are ♣ ♣ , we obtain

♣ ♣ ? ? ?︸ ︷︷ ︸
a∧b

? ? ? .

(c) If the revealed cards are ♣ ♥ or ♥ ♣ , turn over the third card.

i. If the three face-up cards are ♥ ♣ ♣ , we have

♥ ♣ ♣ ? ? ?︸ ︷︷ ︸
a∧b

? ? .

ii. If the three face-up cards are ♣ ♥ ♥ , we have

♣ ♥ ♥ ? ? ? ? ?︸ ︷︷ ︸
a∧b

.

iii. If the three face-up cards are ♣ ♥ ♣ or ♥ ♣ ♥ , turn them over
and go back to Step 2.

This is Stiglic’s AND protocol, which we denote by PSti hereinafter. A shuffling
operation called a random cut is used in Step 2 of PSti. The average number of
trials is two, because the probability that Step 3–(c)–iii occurs and we go back to
Step 2 is 1/2. As seen partially in the description of PSti, the possible operations
used in card-based protocols (not just Stiglic’s but others that have not been
described thus far) are turning-over, rearrangement, and shuffling operations,
which can be formalized as follows [8]. Below, we assume a sequence of d cards
Γ = (α1, α2, . . . , αd).
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1. Turning-over operation: (turn, i).
A turn operation involves turning over the i-th card αi, as shown in Figure 2.
The resulting sequence is (α1, . . . , αi−1, βi, αi+1, . . . , αd), where βi is obtained
by turning over αi.

Fig. 2: Turning-over operation

2. Rearrangement operation: (perm, π).
A perm operation involves the application of a permutation π ∈ Sd (where
Sd represents the symmetric group of degree d) to the sequence, as illustrated
in Figure 3. The resulting sequence is (απ−1(1), απ−1(2), . . . , απ−1(d)).

Fig. 3: Rearrangement operation

3. Shuffling operation: (shuffle, Π, F).
A shuffle operation involves the application of a permutation π ∈ Π chosen
from a permutation set Π ⊆ Sd according to a probability distribution F ,
as shown in Figure 4. Note that a set Π along with a distribution F specifies
a shuffle.

Fig. 4: Shuffling operation
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Fig. 5: PSti’s KWH-tree

3 New Metrics and Execution Time of Protocols

As mentioned in Section 2, turn, perm, and shuffle operations are used in card-
based protocols. We need to take these operations into account to analyze the
“execution time” of protocols. In other words, the efficiency evaluation metrics
shown in Table 1, i.e., the number of required cards, the number of colors, and
the average number of trials, are insufficient to estimate the overall execution
time.

In Section 3.1, we clarify all the operations that need to be considered. In
Section 3.2, we count the number of occurrences of each operation for every AND
protocol. In Section 3.3, we provide new metrics to estimate the execution time
of protocols.
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3.1 Operations to Consider

In addition to the three kinds of operations, i.e., turn, perm, and shuffle, introduced
in Section 2, we define another operation, named place. The place operation
involves the addition of a card to the sequence with its face up (in order for players
to be able to confirm the color), as shown in Figure 8. When actually executing
a protocol that requires additional cards, this place operation is necessary.

Fig. 8: Place operation: Adding two cards

Therefore, altogether, the actual execution of a card-based protocol invokes
four kinds of operations: place, turn, perm, and shuffle.

3.2 Analysis of the Number of Operations in Each Protocol

In this subsection, we analyze the number of operations in each of the six existing
AND protocols shown in Table 1. To this end, we use the KWH-tree [5] developed
by Koch, Walzer, and Härtel, which is a diagram showing the state transition.

We first analyze PSti in detail. The KWH-tree of PSti is shown in Figure 5.
This figure enables us to count all the operations appearing in PSti, as follows.

1. The number of place (adding a card) operations in PSti.
The number of place operations in PSti is four, because we add four cards to
execute the protocol.

2. The number of turn (turning over a card) operations in PSti.
Firstly, we execute the turn operation four times, because we need to turn
over the four added cards after checking their colors. Secondly, we require the
turn operation twice because of (turn, {1, 2}) after applying the first random
cut. At this time, the probability that ♣♣ or ♥♥ appears and the protocol
terminates is 1

8 × 2. On the other hand, the probability that the protocol
terminates by (turn, {3}) is 3

8 ×
1
3 × 2. If the protocol does not terminate

by (turn, {3}), we have to turn over the three face-up cards and execute
(turn, {1, 2}) again after applying a random cut. Consequently, the expected
number of turn operations in PSti is

4 +

∞∑
n=1

{
(12n− 7)× 1

4
×
(

1

2

)n−1 }
= 12.5.
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3. The number of perm (rearranging a sequence of cards) operations
in PSti.
We use no perm operation in PSti, and hence the number of utilizations of
the perm operation is 0.

4. The number of shuffle (shuffling a sequence of cards) operations in
PSti.
As seen in the calculation for turn, the probability that PSti terminates by
(turn, {1, 2}) is 1

4 . The probability that PSti terminates by (turn, {3}) is 1
4 ,

and the probability that PSti does not terminate and gets into a loop is 1
2 .

Therefore, the expected number of shuffle operations is

∞∑
n=1

{
n× 1

2
×
(

1

2

)n−1 }
= 2.

Thus, the numbers of place, turn, perm, and shuffle operations are 4, 12.5, 0, and
2, respectively. See the line of PSti in Table 2.

Similarly, we also create the KWH-trees of PCK (Crépeau and Kilian’s pro-
tocol [2]) and PNR (Niemi and Renvall’s protocol [11]), as shown in Figures 6
and 7, respectively; the KWH-tree of PMS (Mizuki and Sone’s protocol [10]) has
been given in some existing literatures (e.g. [9]). Utilizing these KWH-trees, we
are able to count each operation in PCK, PNR, and PMS. Table 2 summarizes the
results.

In addition, we conducted the same calculation for the two KWH protocols [5].
Table 3 shows the number of operations in the protocols. These protocols need
shuffles which have non-uniform probability distributions, and hence, they need
special indistinguishable boxes or envelopes [12] to be implemented. Therefore,
we have judged that these two protocols are more time-consuming than the other
four protocols. Therefore, in the sequel, we focus on the four protocols in Table 2,
which we call “practical” AND protocols.

Table 2: The number of operations in the practical AND protocols

#place #turn #perm #shuffle

PCK [2] 6 21 1 8

PNR [11] 8 28 4.5 7.5

PSti [15] 4 12.5 0 2

PMS [10] 2 4 2 1
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Table 3: The number of operations in the KWH protocols [5]

#place #turn #perm #shuffle

Five-card KWH [5] 1 11/3 7/6 14/3

Four-card KWH [5] 0 7 2 8

3.3 Execution Time of Protocols

Here, we present an expression for the execution time of each protocol based on
four metrics. First, we denote the execution time of place, turn, perm, and shuffle
by tplace, tturn, tperm, and tshuf , respectively. In addition, Time(P) denotes the
overall execution time of a protocol P . Then, the execution time of the protocols
in Table 2 can be easily expressed as follows.

1. Crépeau & Kilian’s protocol (PCK).
Time(PCK) = 6tplace + 21tturn + tperm + 8tshuf .

2. Niemi & Renvall’s protocol (PNR).
Time(PNR) = 8tplace + 28tturn + 4.5tperm + 7.5tshuf .

3. Stiglic’s protocol (PSti).
Time(PSti) = 4tplace + 12.5tturn + 2tshuf .

4. Mizuki & Sone’s protocol (PMS).
Time(PMS) = 2tplace + 4tturn + 2tperm + tshuf .

In the next section, we make a comparison to determine the most efficient and
practical protocol.

4 Comparison of the Protocols

In this section, we evaluate the efficiency of the four practical AND protocols in
Table 2 and discuss which protocol is the most efficient.

4.1 Efficiency Comparison Based on the Execution Time

In this subsection, we compare the execution times of the protocols.
First, we compare each coefficient of equation shown in Section 3.3 or Table 2.

Obviously, we obtain the following inequalities:

Time(PSti) < Time(PCK),

Time(PSti) < Time(PNR).

Therefore, PSti is superior to PCK and PNR. Hence, it suffices to compare PSti

with PMS.
At first glance, the coefficients might give us an impression that PMS would be

better than PSti. However, we cannot immediately come to a conclusion because
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Time(PMS) has 2tperm while Time(PSti) has no tperm. Therefore, we actually
measured the duration of each operation by manipulating real cards. As a result,
our measurement provides us the following relationship:

tplace = tturn and 0.1tperm < tturn.

Moreover, it is reasonable to assume that

tperm < tshuf

because the shuffling operation generally takes more time than the rearrangement
operation. From these findings, we have

Time(PMS) = 2tplace + 4tturn + 2tperm + tshuf

< 2tplace + 14tturn + tperm + tshuf

< 4tplace + 12.5tturn + 2tshuf = Time(PSti).

Therefore, we have Time(PMS) < Time(PSti). This implies that PMS is the
protocol with the least execution time.

4.2 Impact of The Execution Time of Shuffling

In the previous subsection, we assumed that tperm < tshuf holds. In this subsection,
we further investigate how the difference between tperm and tshuf affects the overall
execution time of a protocol. To this end, we regard tshuf as a variable and other
metrics tplace, tturn, and tperm as constants. Specifically, based on our measurement
of the actual execution time, we fix

tplace = tturn = 0.8 (sec.), tperm = 7tturn.

Then, we vary the value tshuf from three seconds to sixty seconds; Figure 9 shows
the result. According to this figure, PSti and PMS are considered to be more
efficient.



Analyzing Execution Time of Card-Based Protocols 11

0

50

100

150

200

250

300

350

400

450

500

550

0 5 10 15 20 25 30 35 40 45 50 55 60

P
ro

to
co

l E
xe

cu
ti

o
n

 T
im

e 
(s

ec
)

Shuffle Time (sec)

CK

NR

Sti

MS
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5 Conclusion

The widely-used efficiency evaluation metrics of card-based protocols do not
capture the number of operations fully, and hence, it is difficult to estimate
their execution time accurately. Therefore, we considered all kinds of possible
operations so that we have four metrics, and focused on counting the number of
operations comprehensively to estimate the execution time of protocols. Our new
criteria allows us to evaluate the efficiency of protocols. Thus, we were able to
compare the execution time of the protocols. We concluded that the Mizuki–Sone
AND protocol [10] is the most efficient and practical as an AND protocol in
terms of the execution time.

To count the number of operations, we created KWH-trees for PCK, PNR,
and PSti, as shown in Figures 7, 6, and 5, respectively. This is the first attempt to
describe KWH-trees for these previous protocols, and we believe that Figures 7,
6, and 5 themselves form one of the major contributions of this paper.

Our future work involves (i) applying our new criteria to the other existing
protocols (e.g. [3, 14]) and (ii) clarifying the variables that affect the execution
time of a shuffle (e.g., the number of cards) and other operations.
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Fig. 6: The first part of PCK’s KWH-tree. The expression < ♣♠♥♦ > means
♣♠♥♦, ♠♥♦♣, ♥♦♣♠, or ♦♣♠♥.
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Fig. 7: PNR’s KWH-tree


