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Abstract. Consider a situation, known as Secret Santa, where n players
wish to exchange gifts such that each player receives exactly one gift and
no one receives a gift from oneself. Each player only wants to know in
advance for whom he/she should purchase a gift. That is, the players want
to generate a hidden uniformly distributed random derangement. (Note
that a permutation without any fixed points is called a derangement.) To
solve this problem, in 2015, Ishikawa et al. proposed a simple protocol
with a deck of physical cards. In their protocol, players first prepare n
piles of cards, each of which corresponds to a player, and shuffle the piles.
Subsequently, the players verify whether the resulting piles have fixed
points somehow: If there is no fixed point, the piles serve as a hidden
random derangement; otherwise, the players restart the shuffle process.
Such a restart occurs with a probability of approximately 0.6. In this
study, we consider how to decrease the probability of the need to restart
the shuffle based on the aforementioned protocol. Specifically, we prepare
more piles of cards than the number n of players. This potentially helps
us avoid repeating the shuffle, because we can remove fixed points even
if they arise (as long as the number of remaining piles is at least n).
Accordingly, we propose an efficient protocol that generates a uniformly
distributed random derangement. The probability of the need to restart
the shuffle can be reduced to approximately 0.1.

Keywords: Card-based cryptography · Derangement (Permutation
without fixed points) · Exchange of gifts · Secret Santa

1 Introduction

Let n (≥ 3) be a natural number, and consider a situation, known as Secret Santa,
where n players P1, P2, . . . , Pn wish to exchange gifts such that each player receives
exactly one gift and no one receives a gift from oneself. Every player wants to
? This paper appears in Proceedings of WALCOM 2021. The final authenticated version
is available online at https://doi.org/10.1007/978-3-030-68211-8_7.

https://orcid.org/0000-0001-6623-4000
https://orcid.org/0000-0002-5818-8937
https://orcid.org/0000-0002-8698-1043
https://orcid.org/0000-0002-9395-9987
https://doi.org/10.1007/978-3-030-68211-8_7


2 S. Murata et al.

know in advance for whom he/she should purchase a gift. Mathematically, an
assignment of a gift exchange can be regarded as a permutation, i.e., an element
in Sn, which is the symmetric group of degree n; in this context, a permutation
π ∈ Sn indicates that a player Pi for every i, 1 ≤ i ≤ n, will purchase a gift
for Pπ(i). Such a permutation π ∈ Sn must not have any fixed points, i.e.,
π(i) 6= i for every i, 1 ≤ i ≤ n, to prevent each player from receiving a gift from
himself/herself. Note that a permutation is called a derangement if it has no fixed
point. Therefore, the players want to generate a uniformly distributed random
derangement. Furthermore, to make the exchange fun, it is necessary for each
player Pi to know only the value of π(i). Thus, we aim to generate a “hidden”
uniformly distributed random derangement.

Physical cryptographic protocols are suitable for resolving this type of problem
because they can be easily executed by using familiar physical tools without
relying on complicated programs or computers.

1.1 Background

The problem of generating a hidden derangement was first studied by Crépeau
and Kilian [1] in 1993. Since then, several solutions with physical tools have been
proposed. (Refer to [17] for the non-physical solutions.) As practical protocols,
Heather et al. [6] proposed a protocol with envelopes and fill-in-the-blank cards
in 2014; Ibaraki et al. [7] proposed a protocol with two sequences of cards
representing player IDs and gift IDs in 2016. The common feature of these two
practical protocols is that the generated derangement is not uniformly distributed;
it always includes a cycle of a specific length.

Let us focus on generating a uniformly distributed random derangement.
A protocol that generates a uniformly distributed random derangement was
proposed by Crépeau and Kilian [1] with a four-colored deck of 4n2 cards.
Ishikawa, Chida, and Mizuki [8] subsequently improved the aforementioned
protocol by introducing a pile-scramble shuffle that “scrambles” piles of cards.
Their improved protocol, which we refer to as the ICM protocol hereinafter, uses
a two-colored deck of n2 cards. It is described briefly as follows. (Further details
will be presented in Section 2.5.)

1. Prepare n piles of cards, each of which corresponds to a player.
2. Apply a pile-scramble shuffle to the n piles to permute them randomly.
3. Check whether there are fixed points in the n piles somehow.
– If there is at least one fixed point, restart the shuffle process, i.e., go back

to Step 2.
– If there is no fixed point, the piles serve as a hidden random derangement.

Thus, the ICM protocol is not guaranteed to terminate within a finite runtime,
because it restarts the shuffle process whenever a fixed point arises. The probability
that at least one fixed point appears in Step 3 is 1−

∑n
k=0 (−1)k/k! ≈ 1− 1/e ≈

0.63 (where e is the base of the natural logarithm), which will be described later
in Section 2.5.
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In 2018, Hashimoto et al. [4] proposed the first finite-runtime protocol for
generating a uniformly distributed random derangement by using the properties
of the types of permutations. While their proposed protocol is innovative, its
feasibility to be performed by humans has not been studied, as it requires a
shuffle operation with a nonuniform probability distribution.

1.2 Contributions

In this study, we also deal with generating a uniformly distributed random
derangement and propose a new card-based protocol by improving the ICM
protocol. Specifically, we devise a method to reduce the probability of the need
to restart in the ICM protocol. Recall that, after one shuffle is applied in Step 2,
the ICM protocol returns to Step 2 with a probability of approximately 0.6. In
card-based protocols, it is preferable to avoid repeating shuffle operations because
players manipulate the deck of physical cards by hand. Here, we prepare more
piles of cards than the number n of players, i.e., we prepare n+ t piles for some
t ≥ 1. This potentially helps us remove fixed points (if they arise); hence, we can
reduce the probability of the need to restart the shuffle. In the same manner as
the ICM protocol, the proposed protocol generates a hidden uniformly distributed
random derangement. The probability of the need to restart the shuffle is reduced
by increasing the number t of additional piles. Specifically, the probability of the
need for such a restart can be reduced to approximately 0.1 by setting t = 3.

The remainder of this paper is organized as follows. In Section 2, we introduce
the notions of card-based cryptography, the properties of permutations, and the
ICM protocol. In Section 3, we present our protocol. In Section 4, we demonstrate
the relationship between the number t of additional piles and the probability of
the need to restart the shuffle; we illustrate how the probability can be reduced
by increasing the number t.

1.3 Related Works

Card-based cryptography involves performing cryptographic tasks, such as secure
multi-party computations, using a deck of physical cards; since den Boer [2] first
proposed a protocol for a secure computation of the AND function with five
cards, many elementary computations have been devised (e.g., [11,14]). For more
complex tasks, millionaire protocols [9,12,13] that securely compare the properties
of two players, a secure grouping protocol [5] that securely divides players into
groups, and zero-knowledge proof protocols for pencil puzzles [3, 10, 15, 16, 18]
were also proposed.

2 Preliminaries

In this section, we introduce the notions of cards and the pile-scramble shuffle
used in this study, and the properties of permutations. Furthermore, we introduce
the ICM protocol proposed by Ishikawa et al. [8].
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2.1 Cards

In this study, we use a two-colored (black ♣ and red ♥ ) deck of cards. The
rear sides of the cards have the same pattern ? . The cards of the same color
are indistinguishable. Using n cards consisting of n− 1 black cards and one red
card, we represent a natural number i, 1 ≤ i ≤ n, using a sequence such that the
i-th card is red and the remaining cards are black:

1
♣

2
♣ · · ·

i

♥ · · ·
n−1
♣

n

♣ .

If a sequence of face-down cards represents a natural number i according to the
above encoding rule, we refer to it as a commitment to i and express it as follows:

1
?

2
? · · ·

n

?︸ ︷︷ ︸
i

.

2.2 Pile-scramble Shuffle

A pile-scramble shuffle is a shuffle operation proposed by Ishikawa et al. [8].
Let (pile1, pile2, . . . , pilen) be a sequence of n piles, each consisting of the same
number of cards. By applying a pile-scramble shuffle to the sequence, we obtain a
sequence of piles (pileπ−1(1), pileπ−1(2), . . . , pileπ−1(n)) where π ∈ Sn is a uniformly
distributed random permutation. Humans can easily implement a pile-scramble
shuffle by using rubber bands or envelopes.

2.3 Properties of Permutations

An arbitrary permutation can be expressed as a product of disjoint cyclic permu-
tations. For example, the permutation

τ =
(

1 2 3 4 5 6 7
3 5 6 4 2 7 1

)
can be expressed as the product of three disjoint cyclic permutations τ1 =
(4), τ2 = (25), τ3 = (1367): τ = τ1τ2τ3 = (4)(25)(1367). The lengths of the cyclic
permutations τ1, τ2, and τ3 are 1, 2, and 4, respectively. A cycle of length one is
a fixed point.

Let dn denote the number of all derangements in Sn; then, dn can be expressed
as follows:

dn = n!
n∑
k=0

(−1)k

k!

for n ≥ 2, and d1 = 0. The number of permutations (in Sn) having exactly f
fixed points is nCf · dn−f , where we define d0 = 1.
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2.4 Expression of Permutation Using Cards
Hereinafter, we use the expression [1 : m] to represent the set {1, 2, . . . ,m} for a
positive integer m. Remember that a commitment to i ∈ [1 : n] consists of one
red card at the i-th position and n− 1 black cards at the remaining positions.
In this paper, we represent a hidden permutation π ∈ Sn using a sequence of n
distinct commitments (X1, . . . , Xn) such that

X1 : ? ? · · · ?︸ ︷︷ ︸
π(1)

...
Xn : ? ? · · · ?︸ ︷︷ ︸

π(n)

. (1)

Given a hidden permutation π ∈ Sn in the above form (1), to check whether
an element i ∈ π is a fixed point, it suffices to reveal the i-th card of the
i-th commitment: if the revealed card is red, the element is a fixed point, i.e.,
π(i) = i.

2.5 The Existing Protocol
We introduce the ICM protocol [8], which generates a uniformly distributed
random derangement using n2 cards with the pile-scramble shuffle, as follows.
1. Arrange n distinct commitments corresponding to the identity permutation

(in Sn) according to the form (1). That is, all the cards on the diagonal are
red ♥ and the remaining cards are black ♣.

2. Apply a pile-scramble shuffle to the sequence of n commitments. Note that
the resulting n commitments correspond to a certain permutation π ∈ Sn;
moreover, π is uniformly randomly distributed.

3. Turn over the n cards on the diagonal to check whether there are fixed points
in the permutation π.
– If at least one red card appears, return to Step 2.
– If all the revealed cards are black, π has no fixed point; hence, π is a

uniformly distributed random derangement.
After n players P1, P2, . . . , Pn obtain a hidden derangement (consisting of n
commitments) through this protocol, Secret Santa can be implemented by Pi
receiving the i-th commitment; he/she reveals the commitment privately to
confirm the value of π(i), and then purchases a gift for Pπ(i).

Whenever a generated permutation π is not a derangement, the protocol
returns to Step 2. The probability that a generated permutation uniformly
randomly chosen from Sn is a derangement is dn/n! =

∑n
k=0 (−1)k/k!. As

limn→∞
∑n
k=0 (−1)k/k! = 1/e, the probability of the need to restart the shuffle

in the ICM protocol is approximately 1− 1/e ≈ 0.63.
Note that Ishikawa et.al. [8] also showed that the number of required cards can

be reduced from n2 to 2ndlog2 ne+6 by arranging each pile of cards corresponding
to a player based on a binary number.
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3 Proposed Protocol for Generating a Derangement

In this section, we improve the ICM protocol [8] described in Section 2.5 so that
the probability of the need to restart the shuffle is decreased. Here, we prepare
more piles of cards than the number n of players.

3.1 Overview of the Proposed Protocol

Let us provide an overview of the proposed protocol.
We first prepare n+ t commitments instead of n commitments, and apply a

pile-scramble shuffle to them. These t additional commitments provide a buffer
that absorbs any fixed points that may arise. By revealing the cards on the
diagonal, we determine all the fixed points; let f be their number. If the fixed
points are too many to be absorbed, i.e., f > t, restart the shuffle. If f ≤ t, we
apply the “fixed-point removal” operation (described in Section 3.2), resulting
in n + t − f commitments. Subsequently, we apply the “reduction” operation
(described in Section 3.2) to eliminate the t− f extra commitments.

We explain both the fixed-point removal and reduction operations in the
following subsection.

3.2 Definitions of the Two Operations

Suppose that we execute Steps 1 and 2 in the ICM protocol (shown in Sec-
tion 2.5), starting with the identity permutation of degree n+ t (instead of
degree n). Then, we obtain a sequence of n+ t commitments corresponding to a
uniformly distributed random permutation in Sn+t: we refer to such a sequence
of commitments as a committed permutation on [1 : n+ t].

Fixed-point Removal Operation. For the above committed permutation on
[1 : n + t], let us reveal all the n + t cards on the diagonal as in Step 3 of
the ICM protocol. Subsequently, we determine all the fixed points in the
permutation. Let IFP be the set of indices of these fixed points. Ignoring the
commitments corresponding to the fixed points, namely, the commitments
whose positions are in IFP, the sequence of the remaining commitments
corresponds to a derangement uniformly distributed on [1 : n+ t]\IFP: we
refer to this sequence as a committed derangement on [1 : n+ t]\IFP.

Through the fixed-point removal operation, a committed permutation of degree
n+ t is transformed into a committed derangement on [1 : n+ t]\IFP of degree
n+ t− |IFP|.

Consider the case of (n, t) = (4, 3) as an example. Let us transform a commit-
ted permutation shown in Figure 1a. Then, after the fixed-point removal operation
is applied to the committed permutation of degree seven, all the seven cards on
the diagonal are revealed as shown in Figure 1b. In this example, the commitment
X2 is a fixed point; hence, we have IFP = {2} and the sequence of the remain-
ing six commitments (X1, X3, X4, X5, X6, X7) is a committed derangement on
[1 : 7]\{2} = {1, 3, 4, 5, 6, 7} of degree six.
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(a) A committed permuta-
tion on [1 : 7]

(b) X2 turns out to be a fixed
point

(c) X7 is revealed

(d) Case 1: The seventh card
of X4 is red

(e) Case 2: The seventh card
of X4 is black

(f) X4 is revealed and the
seventh card of X5 is turned
over

Fig. 1: Example of execution of the proposed protocol

As n = 4, the current committed derangement (depicted in Figure 1b) has
two “extra” commitments, i.e., we aim to reduce the degree by two. To this end,
we turn over the last commitment, i.e., the seventh commitment X7. Assume
that the revealed value of X7 is 4 as illustrated in Figure 1c, indicating a mapping
7 7→ 4, which we refer to as a bypass. That is, let us ignore the seventh revealed
commitment and regard mapping to 7 as virtually mapping to 4 (via the bypass
7 7→ 4). Consequently, we obtain a committed permutation on {1, 3, 4, 5, 6} of
degree five, which has been reduced by one.

We now have the committed permutation of degree five (as in Figure 1c). It
may not be a derangement because if 4 7→ 7, it (virtually) has a fixed point (due
to the cycle 7 7→ 4 7→ 7). Therefore, we turn over the seventh card of the fourth
commitment X4 to check whether it is a fixed point.

– If a red card appears as shown in Figure 1d, we have the cycle 7 7→ 4 7→ 7,
indicating a fixed point. Let Icycle denote the set of all the indices of the
cycle, i.e., Icycle = {4, 7}. Ignoring this cycle, namely, the commitments X4
and X7, the sequence of the remaining commitments (X1, X3, X5, X6) becomes
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a committed derangement uniformly distributed on [1 : 7]\(IFP ∪ Icycle) =
{1, 3, 5, 6}. Thus, we obtain a committed derangement of degree four, as desired.
Note that, in this case, the degree decreases by two.

– If a black card appears as shown in Figure 1e, there is no fixed point; hence,
this committed permutation (X1, X3, X4, X5, X6) is a uniformly distributed
derangement of degree five under the bypass 7 7→ 4. In this case, the degree
decreases by one.

In the above example, if a black card appears, we obtain a derangement
of degree five; hence, we need to reduce the degree further (because n = 4).
Therefore, we are expected to reveal another commitment (in this case, we reveal
the fourth commitmentX4 because of the bypass 7 7→ 4, as illustrated in Figure 1f;
we will revisit it later).

In general, we define the reduction operation for a committed derangement
on [1 : n+ t]\(IFP ∪ Icycle ∪ IBP) as follows, where IFP is the set of fixed points,
Icycle is the set of indices in cycles, there is a bypass i1 7→ i2 7→ · · · 7→ i`−1 7→ i`,
and IBP = {i1, i2, . . . , i`−1}.

Reduction Operation. If IBP 6= φ, turn over the i`-th commitment Xi` (which
is the end of the bypass). If IBP = φ, turn over the last of the remaining
commitments, i.e., the (max([1 : n+t]\(IFP∪Icycle)))-th commitment; in this
case, we set i` = i1 = max([1 : n+t]\(IFP∪Icycle)) for the sake of convenience.
In either case, let i`+1 be the value of the turned over commitment. Then,
turn over the i1-th card of the i`+1-th commitment Xi`+1 .
– If a red card appears, this committed permutation has the cycle i1 7→ · · · 7→
i`+1 7→ i1. The indices i1, . . . , i`+1 of this cycle, namely, all the elements in
set IBP ∪ {i`, i`+1}, are added to the set Icycle, and the bypass disappears;
hence, we set IBP = φ. Ignoring all the commitments whose positions are
in IFP ∪ Icycle, the sequence of the remaining commitments becomes a
committed derangement on [1 : n+ t]\(IFP∪Icycle). Note that the degree of
the committed derangement has been reduced by two (because of ignoring
Xi` and Xi`+1).

– If a black card appears, the sequence of the remaining commitments is a
committed derangement uniformly distributed on [1 : n+ t]\(IFP ∪ Icycle ∪
IBP) under the bypass i1 7→ · · · 7→ i` 7→ i`+1 (where IBP = {i1, i2, . . . , i`}).
In this case, the degree of the committed derangement has been reduced
by one.

3.3 Description of the Proposed Protocol

We describe the proposed protocol using the two aforementioned operations. This
protocol uses n+ t piles (whereas the ICM protocol [8] uses n piles), as follows.

1. Arrange n+t distinct commitments corresponding to the identity permutation
(in Sn+t) according to the form (1). That is, all the n+t cards on the diagonal
are red ♥ and the remaining cards are black ♣.
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2. Apply a pile-scramble shuffle to the sequence of n+ t commitments, and the
resulting n+ t commitments become a committed permutation on [1 : n+ t].

3. Apply the fixed-point removal operation described in Section 3.2 to the
committed permutation obtained in Step 2. Let IFP be the set of fixed points
and f = |IFP|. We obtain a committed derangement on [1 : n + t]\IFP of
degree n+ t− f .
– In the case of f > t, the committed derangement is insufficient because its

degree is less than the number n of players. Therefore, turn all the cards
face-down, and return to Step 2.

– In the case of f = t, the degree of the committed derangement is n, as
desired. Therefore, proceed to Step 5.

– In the case of f < t, proceed to Step 4.
4. Repeatedly apply the reduction operation described in Section 3.2 to the

committed derangement on [1 : n+ t]\IFP obtained in Step 3, until its degree
becomes n or less. Recall that each application of the reduction operation
reduces the degree by one or two.
– If a committed derangement of degree n− 1 is obtained, turn all the cards

face-down, and return to Step 2.
– If a committed derangement of degree n is obtained, proceed to Step 5.

5. We have a committed derangement of degree n on [1 : n+t]\(IFP∪Icycle∪IBP),
as desired.

After we obtain a committed derangement in Step 5, we renumber the players
based on the remaining n commitments. If there is a bypass i1 7→ i2 7→ · · · 7→ i`, a
player who turns over the commitment to i1 should purchase a gift for the player
corresponding to i`. For example, consider the committed derangement illustrated
in Figure 1f, which is obtained from Figure 1e by revealing X4 and the seventh
card of X5. We renumber the four players such that P1 = P ′1, P2 = P ′3, P3 = P ′5,
and P4 = P ′6, and make P ′1, P ′3, P ′5, and P ′6 receive commitments X1, X3, X5,
and X6, respectively. Each player secretly turns over the assigned commitment to
know for whom he/she should purchase a gift. Because of the bypass 7 7→ 4 7→ 5,
the player who reveals the commitment to 7 should purchase a gift for P ′5.

Thus, the proposed protocol generates a committed derangement. As there
is a trade-off between the number t of additional piles and the probability of
returning to Step 2, we comprehensively analyze the probability of the need to
restart the shuffle in the following section.

4 Probability of the Need to Restart the Shuffle

In the proposed protocol presented in the previous section, the probability of
the need to restart the shuffle depends on the number t (≥ 1) of additional piles.
In this section, we analyze this probability. Recall that the restart occurs when
either more than t fixed points appear in Step 3 or a derangement of degree n− 1
is obtained in Step 4.

Let f be the number of fixed points determined in Step 2. A restart from
Step 3 occurs if t+ 1 ≤ f ≤ n+ t. As the probability that a uniformly distributed
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random permutation in Sn+t has exactly f fixed points is n+tCf · dn+t−f/(n+ t)!,
the following equation holds:

Pr[Restart from Step 3] =
n+t∑
f=t+1

n+tCf · dn+t−f

(n+ t)! . (2)

Next, we consider a restart from Step 4. Suppose that we have a committed
derangement of degree n + x for a non-negative integer x. Let ε(n, x) be the
probability that repeated applications of the reduction operation result in a
committed derangement of degree n−1 and we return to Step 2. Each application
of the reduction operation to the committed derangement of degree n+x produces
a committed derangement of degree either n+ x− 2 or n+ x− 1. The former
occurs when the commitment to be revealed is included in a cycle of length
two; therefore, its occurrence probability is (n+ x− 1)dn+x−2/dn+x. The latter
occurs with a probability of 1− (n+ x− 1)dn+x−2/dn+x. Thus, ε(n, x) can be
expressed recursively as follows:

ε(n, x) =
(

1− (n+ x− 1)dn+x−2

dn+x

)
· ε(n, x− 1)

+ (n+ x− 1)dn+x−2

dn+x
· ε(n, x− 2),

where ε(n, 0) = 0 and ε(n, 1) = n · dn−1/dn+1. As Step 4 occurs when f lies
between 0 and t− 1 with a probability of n+tCf · dn+t−f/(n+ t)!, the following
equation holds:

Pr[Restart from Step 4] =
t−1∑
f=0

n+tCf · dn+t−f

(n+ t)! · ε(n, t− f). (3)

The probability of the need to return to Step 2 for the entire proposed
protocol, denoted by Pr[Restart(n,t)], is the sum of Eqs. (2) and (3). Figure 2
shows the relationship between t (≤ 10) and the probability Pr[Restart(n,t)] for
the number of players from n = 3 to n = 20. Pr[Restart(n,0)] is the same as the
probability for the ICM protocol. The proposed protocol improves significantly
as t increases. If we prepare t additional piles, the number of required cards
increases by t(t+ 2n); considering an unnecessarily large t is not realistic. Even
if we set t to a small value such as 2 or 3, the probability can be reduced to
approximately 0.1 compared with that of the ICM protocol (approximately 0.6).

5 Conclusion

In this paper, we proposed a new efficient protocol that generates a uniformly
distributed random derangement. We prepared more piles of cards than the
number n of players to suppress the need to restart the shuffle process. There is
a trade-off between the number t of additional piles and the probability of the
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Fig. 2: Relationship between the number t of additional piles and the probability
of the need to restart Pr[Restart(n,t)]

need to restart the shuffle. When executing the proposed protocol, it is better to
set t = 2 or t = 3, as shown in Figure 2.

The proposed technique can also be applied to the existing protocol based on
the binary expression of the indices of players [8].
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