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Abstract

Consider a face-down card lying on the table such that we do not know whether its
suit color is black or red. Then, how do we make identical copies of the card while keep-
ing its color secret? A partial solution has been devised: using a number of additional
black and red cards, Niemi and Renvall proposed an excellent protocol which can copy a
face-down card while allowing only a small probability of revealing its color. In contrast,
this paper shows the non-existence of a perfect solution, namely, the impossibility of
copying a face-down card with perfect secrecy. To prove such an impossibility result, we
construct a rigorous mathematical model of card-based cryptographic protocols; giving
this general computational model is the main result of this paper.

1 Introduction

Consider a face-down card ? lying on the table such that we do not know whether its suit
color is black ( ♣ ) or red ( ♥ ). Then, how do we make identical copies of the card, say
two copies ? ? (having the same color as the original card), while keeping its color secret?

A partial solution has been presented in the literature: using a number of additional
black and red cards ♣ ♣ · · · ♣ ♥ ♥ · · · ♥ (whose backs ? are identical), Niemi and Ren-
vall [11] proposed an excellent protocol which can copy a face-down card ? while allowing
only a small probability of revealing its color; as seen later, in their protocol, a large number
of cards reduces the probability of failure (namely, leaking the color information).

Because of nonzero probability of leaking information about the color of the face-down
card to be copied, Niemi-Renvall’s copy protocol provides a partial solution to the above
problem. In contrast, to the best of our knowledge, the question “what about perfect
solutions?” has not yet been answered. In this paper, we deal with this problem, and show
the non-existence of a perfect solution. That is, we prove the impossibility of copying a
face-down card with perfect secrecy. To prove such an impossibility result, we construct
a rigorous mathematical model of card-based cryptographic protocols; giving a general
computational model via abstract machine is the main result of this paper.

This paper begins with an example of executing Niemi-Renvall’s copy protocol.
∗This paper appears in International Journal of Information Security. The final publication is available
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1.1 Making two copies with success probability 7/8

Given a face-down card ? , Niemi-Renvall’s copy protocol [11] allows us to securely make its
k copies with success probability 1−1/2s+1 using (k+1)+(2s+1−2) pairs of additional black
and red cards (where the integer s ≥ 0 is a security parameter; see [11] for details). Here,
take the simple case of k = s = 2 as an example. Then, the protocol uses (2+1)+(22+1−2) =
9 pairs of ♣ ♥ , and thus we have a sequence of cards

?
x

♣ ♥ ♣ ♥ ♣ ♥ ♣ ♥ ♣ ♥ ♣ ♥ ♣ ♥ ♣ ♥ ♣ ♥ (1)

on the table, where the leftmost card is the given face-down card (to be copied) whose
secret color is denoted by x ∈ {♣,♥} attached below it. Starting from the sequence (1),
the protocol proceeds as follows.

First, turn over all face-up cards so that they are facing down:
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(where a symbol indicating the color is provided below each card for convenience), and
apply three random cuts, each of which is denoted by 〈·〉:

?
x

〈
? ? ? ? ? ?

〉 〈
? ? ? ?

〉〈
? ? ? ? ? ? ? ?

〉
.

A random cut means that, as in the case of usual card games, a random number of cards
on the left are moved on the right side of the sequence without changing their order (of
course, the random number must be unknown). Therefore, we now have
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(2)

for three random colors y, r1, r2 ∈ {♣,♥}, where y denotes the color opposite to that of y,
i.e., {y} = {♣,♥}− {y} (r1 and r2 are defined similarly). Next, consider the 1st, 2nd, 8th,
10th, 12th, 14th, 16th and 18th cards (from the left):

1
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?
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?
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.

Note that if x = y, i.e., both colors of the first and second cards are the same, then the
number of black cards (as well as the number of red cards) among these eight cards must
be even; if x 	= y, i.e., x = y, then it must be odd. Finally, after shuffling all eight cards
(namely, after applying a random permutation), reveal all of them. If an even number of
black cards appear, then the fourth and sixth cards

4

?
y

6

?
y

in the sequence (2) are two copies having the color x (because x = y), as desired. If an odd
number of black cards appear, then the fifth and seventh cards

5

?
y

7

?
y
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are the desired two copies.
When all eight revealed cards have the same color, i.e., x = y = r1 = r2, one can deduce

the color x unambiguously, of course, and hence the secure copy fails; this event occurs with
probability 1/23. When x = y = r1 = r2 does not hold, one obtains no information about
the color x from looking at the colors of the eight shuffled cards. (See [11] for a formal
proof.) Thus, Niemi-Renvall’s copy protocol for k = s = 2 nicely makes two copies with
success probability 7/8.

1.2 Our results and related work

As mentioned in the previous subsection, if a small probability of leaking information about
the color of a given face-down card is acceptable, then one can construct a protocol for
copying the card; this may be sufficient for some practical purposes.

In contrast, this paper deals with perfect secrecy. Intuitively, it seems impossible to
design a perfectly secure copy protocol. However, relying on intuition sometimes leads to
errors. Therefore, to prove such an impossibility result, we construct a rigorous mathemat-
ical model of card-based protocols. Based on such a general computational model, we show
the impossibility of copying a face-down card with perfect secrecy.

Our computational model (constructed later in Section 2) is rather general, and hence
we believe that it can be used for proving the impossibility, finding lower bounds, or showing
the optimality of certain protocols. For example, several card-based cryptographic protocols
for secure computation are listed in Table 1, and it might be possible to show that a
protocol is optimal under some criteria, such as the number of required cards, by using
our computational model; more specifically, for instance, the six-card “committed format”
secure AND protocol given in [8] could be proven to be best possible or not. In this context,
constructing a formal computational model itself is worthwhile work.

# of colors # of cards Avg. # of trials
◦ Secure AND in a non-committed format

den Boer [2] 2 5 1
Mizuki-Kumamoto-Sone [7] 2 4 1
◦ Secure AND in a committed format

Crépeau-Kilian [3] 4 10 6
Niemi-Renvall [11] 2 12 2.5

Stiglic [13] 2 8 2
Mizuki-Sone [8] 2 6 1

◦ Secure XOR in a committed format
Crépeau-Kilian [3] 4 14 6

Mizuki-Uchiike-Sone [9] 2 10 2
Mizuki-Sone [8] 2 4 1

◦ Secure Half Adder in a committed format
Mizuki-Asiedu-Sone [6] 2 8 1

◦ Secure Full Adder in a committed format
Mizuki-Asiedu-Sone [6] 2 10 1

Table 1: Known card-based protocols for secure computation.
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The research area of card-based protocols along with other physically implemented cryp-
tographic protocols (e.g. [1, 4, 10]) can aid professional cryptographers to intuitively explain
to nonspecialists the nature of their constructed cryptographic protocols or what cryptog-
raphy is in general. Some card-based protocols are implemented and used in online games
[12].

The remainder of this paper is organized as follows. In Section 2, we give a general
computational model of card-based protocols. In Section 3, based on our constructed model,
we present a framework for copy protocols. In Section 4, we prove the impossibility of
copying a face-down card with perfect secrecy. This paper is concluded in Section 5 with
possible directions of future work.

2 Computational Model of Card-Based Protocols

In this section, we formally define a computational model which captures what can possibly
be done in playing cards. Specifically, we define a deck, cards and sequences (on a table)
in Section 2.1, consider operations (which can be applied to sequences) in Section 2.2, and
give a formal definition of a protocol in Section 2.3.

As seen below, we introduce many terms and notations. However, we believe that such a
long definition would be unavoidable when constructing a computation model that precisely
captures a new concept (not formalized before).

2.1 A deck, cards and sequences

We refer to a non-empty finite multiset D with D ∩ {?} = ∅ as a deck, where ’?’ is the
“back-side” symbol (as easily imagined). Any element c ∈ D in a deck D is called an atomic
card. For instance, as seen in Section 1.1, Niemi-Renvall’s copy protocol for k = s = 2
implicitly assumes a deck

Dex = [♣,♣,♣,♣,♣,♣,♣,♣,♣,♣,♥,♥,♥,♥,♥,♥,♥,♥,♥,♥ ]

consisting of 10 ♣ s and 10 ♥ s (where we use square brackets to represent a multiset),
because in addition to the nine pairs of ♣ ♥ , another pair is necessary for producing an
unknown face-down card

?
x

to be copied (recall the sequence (1)).
Next, we consider a card lying on the table. For a deck D, an expression c

? with c ∈ D
is called a face-up card (of D), and ?

c with c ∈ D is called a face-down card (of D). For
instance, in accordance with the expressions appearing before, a face-up card ♣

? means ♣ ,
and a face-down card ?

♥ means
?
♥

.

Hereafter, any face-up or face-down card α of D (i.e., α = c
? or α = ?

c with c ∈ D) is called
a lying card (of D). Given a lying card α of D, we denote its atomic card by atom(α), that
is, we define atom(α) def= c for a lying card α = c

? or α = ?
c . For instance, atom(♣? ) = ♣,

and atom( ?
♥) = ♥.

We say that a d-tuple Γ = (α1, α2, . . . , αd) consisting of d lying cards from a deck D
with d = |D| (namely, d is the number of atomic cards in D) is a sequence from D if
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[ atom(α1), atom(α2), . . . , atom(αd) ] = D. For instance, the initial “sequence” (1) seen in
Section 1.1 can be expressed as a sequence from the above deck Dex:
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)
.

Note that the first two face-down cards (in both Γex1 and Γex2) are intended to be utilized
for producing an unknown face-down card

?
x

(to be copied); if we regard the second face-down card as the unknown one, then the sequence
Γex1 corresponds to x = ♣, and Γex2 corresponds to x = ♥. Thus, in Niemi-Renvall’s copy
protocol, given Γex1 or Γex2, it suffices to copy the second face-down card while ignoring
the first one. (Throughout this paper, the sequences Γex1 and Γex2 together with the deck
Dex and so on are used as a fixed example to illustrate our terminology and computational
model.)

To employ later, we denote by SeqD the set of all (possible) sequences from a deck D:
we define

SeqD def= {Γ | Γ is a sequence of D}
for a deck D.

2.2 Operations

Given a sequence Γ = (α1, α2, . . . , αd) ∈ SeqD from a deck D (on the table), we have three
natural operations and one new operation, as described below.

2.2.1 Turning over

Define swap( c
? ) def= ?

c and swap(?
c )

def= c
? for an atomic card c. To express the operation of

turning over lying cards, we introduce an operation turnT (·) with a turn set T ⊆ {1, 2, . . . , d}
for a sequence Γ = (α1, α2, . . . , αd):

turnT ((α1, α2, . . . , αd))
def= (β1, β2, . . . , βd)

such that

βi =
{

swap(αi) if i ∈ T ;
αi otherwise

for every i, 1 ≤ i ≤ d. Thus, every card whose position is in the turn set T is turned over
by turnT (·).

For example, for the sequence Γex1 above,

turn{3,4,...,20}(Γex1)

=
( ?
♥ ,

?
♣ ,

?
♣ ,

?
♥ ,

?
♣ ,

?
♥ ,

?
♣ ,

?
♥ ,

?
♣ ,

?
♥ ,

?
♣ ,

?
♥ ,

?
♣ ,

?
♥ ,

?
♣ ,

?
♥ ,

?
♣ ,

?
♥ ,

?
♣ ,

?
♥

)
.
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2.2.2 Rearrangement

One may sometimes want to change the order of a sequence. To this end, we introduce an
operation permπ(·) based on a permutation π ∈ Sd for a sequence Γ = (α1, α2, . . . , αd):

permπ((α1, α2, . . . , αd))
def= (απ−1(1), απ−1(2), . . . , απ−1(d))

where Sd denotes the symmetric group of degree d (throughout this paper).

2.2.3 Shuffling

Remember that Niemi-Renvall’s copy protocol utilizes a random cut, which is a type of
shuffle operation. All existing protocols listed in Table 1 also utilize some form of shuffle
operation. Unquestionably, shuffling must be the most important operation for card-based
cryptographic protocols. Here, we consider as general a treatment of shuffling as possible.
Whereas the operations turnT (·) and permπ(·) are deterministic as seen above, the shuffle
operation is randomized.

For a sequence Γ = (α1, α2, . . . , αd), we define an operation shufΠ,F(·) with a shuffle
pair (Π,F) where Π ⊆ Sd is called a permutation-set and F is a probability distribution on
Π:

shufΠ,F ((α1, α2, . . . , αd))
def= permπ((α1, α2, . . . , αd))

such that π is a permutation drawn from Π according to the probability distribution F .
Thus, shufΠ,F(Γ) probabilistically chooses a permutation π from the permutation-set Π
according to the distribution F , and applies it to the sequence Γ.

For example, let Πex1 = {π1, π2, . . . , π6} with

π1 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20)
π2 = (1, 2, 8, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20)

...
π6 = (1, 2, 4, 5, 6, 7, 8, 3, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20),

and let Fex1 be such that
PrFex1(πi) = 1/6

for every i, 1 ≤ i ≤ 6. Then, shufΠex1,Fex1(Γ) means a random cut to the stack consisting of
the 3rd, 4th, 5th, 6th, 7th and 8th cards in the sequence Γ = turn{3,4,...,20}(Γex1) (as applied
in Niemi-Renvall’s copy protocol).

To use later, we present a notation for the set of all (possible) shuffle pairs under a deck
D with d = |D|:

SPd def= {(Π,F) | F is a probability distribution on Π ∈ 2Sd}.

It should be noted that the rearrangement operation permπ(·) above can be expressed
exactly as shuf{π},F (·) such that PrF (π) = 1. Therefore, if preferable, one could exclude the
operation permπ(·) from the model without loss of generality. Furthermore, note that any
number of consecutive shuffle operations can be combined into a single shuffle operation;
for example, let (Πex2,Fex2) be a shuffle pair corresponding to a random cut to the stack
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consisting of the 9th, 10th, 11th and 12th cards (as also applied in Niemi-Renvall’s copy
protocol), then shufΠex2,Fex2(shufΠex1,Fex1(·)) can be expressed as shufΠ′,F ′(·) such that

Π′ = {σ2 ◦ σ1 | σ1 ∈ Πex1, σ2 ∈ Πex2}

and PrF ′(π) = 1/24 for every π ∈ Π′. (On the other hand, removing rearrangement
operations or combining shuffle operations might lead to a protocol that is not player-
friendly.)

2.2.4 Random flip

As seen above, we obtained the shuffle operation shufΠ,F(·) by adding randomization to
the rearrangement operation permπ(·). Analogically, one may add randomization to the
turn over operation turnT (·). For example, given a sequence, one might want to reveal a
face-down card at a random position in the sequence.

For a sequence Γ = (α1, α2, . . . , αd), we define an operation rflipΦ,G(·) with a flip-pair
(Φ,G) where G is a probability distribution on Φ ⊆ 2{1,2,...,d} :

rflipΦ,G((α1, α2, . . . , αd))
def= turnT ((α1, α2, . . . , αd))

such that T is a turn set drawn from Φ according to the probability distribution G. We also
define

FPd def= {(Φ,G) | G is a probability distribution on Φ ⊆ 2{1,2,...,d}}.
A random flip operation has not been used in the construction of any of the existing

protocols, and at present, its usefulness and potential power (and even the difficulty of its
implementation) are unclear. However, we positively include this operation in our model
because we desire as general a model as possible.

2.3 A protocol

In this subsection, we provide a formal definition of a “protocol.” Roughly speaking, a
protocol, which has a finite state control and a table, specifies an operation to be applied to
a current sequence step by step, depending on its internal state and the view of looking down
the sequence on the table. Our formalization of protocols is partially based on the ideas
behind the Turing machine [14] with a random tape and Fischer-Wright’s communication
model [5].

2.3.1 Notations

Let D be a deck.
First of all, we have to consider the “input” to a protocol. For example, as seen before,

Niemi-Renvall’s copy protocol for k = s = 2 starts from the sequence Γex1 or Γex2 (illustrated
in Section 2.1), and hence we can consider the set {Γex1,Γex2} as an input. Thus, the input
set U to a protocol is a set of sequences from D, i.e., U ⊆ SeqD.

Next, consider what one can look at on the table during the execution of a protocol.
That is, the action of a protocol can depend on the view on the table. Therefore, we define
the visible sequence vis(Γ) of a sequence Γ = (α1, α2, . . . , αd) as:

vis((α1, α2, . . . , αd))
def= (top(α1), top(α2), . . . , top(αd))

7



where top( c
? ) def= c and top(?

c )
def= ? for an atomic card c. For instance, for the above sequence

Γex1,
vis(Γex1) = (?, ?,♣,♥,♣,♥,♣,♥,♣,♥,♣,♥,♣,♥,♣,♥,♣,♥,♣,♥).

Furthermore, we define the visible sequence set VisD of D as:

VisD def= {vis(Γ) | Γ ∈ SeqD};

recall that SeqD is the set of all sequences from D.
The action of a protocol also depends on its state. The state set Q is a finite set of states

having an initial state q0 ∈ Q and a final state qf ∈ Q.
Given a state q ∈ Q−{qf} and a visible sequence v ∈ VisD, a protocol has to specify an

operation, turnT (·), permπ(·), shufΠ,F(·) or rflipΦ,G(·), to be performed at that step. This
can be captured by a partial function, called an action function,

A : (Q − {qf}) × VisD → Q × (2{1,2,...,d} ∪ Sd ∪ SPd ∪ FPd)

where d = |D|. Recall that Sd is the symmetric group of degree d, and that SPd and FPd

are the set of all shuffle pairs and the set of all flip-pairs, respectively; therefore, note that
2{1,2,...,d}, Sd, SPd and FPd are pairwise disjoint. The action function determines both the
next state and the operation to be performed. That is, A(q, v) = (q′, T ) with q′ ∈ Q and
T ∈ 2{1,2,...,d} means that the state in the finite state control becomes q′ and the sequence
on the table becomes turnT (Γ) where Γ is the current sequence and hence v = vis(Γ).
Similarly, A(q, v) = (q′, π) with π ∈ Sd means that the sequence turns into permπ(Γ)
from Γ, A(q, v) = (q′, (Π,F)) with (Π,F) ∈ SPd means that the sequence probabilistically
becomes shufΠ,F(Γ), and A(q, v) = (q′, (Φ,G)) with (Φ,G) ∈ FPd means that the sequence
probabilistically becomes rflipΦ,G(Γ).

2.3.2 How to move

We are now ready to formally define a protocol. A protocol (having a finite state control
and a table on which a single sequence is placed) is a quadruple P = (D, U,Q,A) where

• D is a deck;

• U ⊆ SeqD is an input set;

• Q is a state set having an initial state q0 ∈ Q and a final state qf ∈ Q;

• A : (Q − {qf})× VisD → Q× (2{1,2,...,|D|} ∪ S|D| ∪ SP|D| ∪ FP|D|) is an action function.

A protocol P = (D, U,Q,A) proceeds as expected: starting from the initial instanta-
neous description (q0,Γ0) for some input Γ0 ∈ U , its instantaneous description, namely a
pair of its current state and sequence on the table moves to another one according to the
output of the action function A. When the state becomes the final state qf , the proto-
col terminates. Note that when A outputs a shuffle pair (Π,F) or a flip-pair (Φ,G), the
move is randomized (unless PrF (π) = 1 for some π ∈ Π or PrG(T ) = 1 for some T ∈ Φ).
If the action function A(q,Γ) for some instantaneous description (q,Γ) is undefined dur-
ing the execution of the protocol, then the execution aborts. For an execution where the
protocol P terminates, the enumeration (Γ0,Γ1, ...,Γt) of all sequences appearing on the
table is called a sequence-trace (of P), and such Γt is called a final sequence; similarly, such
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(vis(Γ0), vis(Γ1), ..., vis(Γt)) and vis(Γt) are called a visible sequence-trace and a final visible
sequence, respectively.

Consider Niemi-Renvall’s copy protocol for k = s = 2 (seen in Section 1.1) as an
example to be specified by using our model: it can be formally described by a quadruple
(Dex, {Γex1,Γex2}, {q0, q1, q2, q3, q4, q5, qf}, Aex) such that

Aex(q0, vis(Γex1)) = (q1, {3, 4, . . . , 20})
Aex(q1, (?, ?, . . . , ?)) = (q2, (Πex1,Fex1))
Aex(q2, (?, ?, . . . , ?)) = (q3, (Πex2,Fex2))
Aex(q3, (?, ?, . . . , ?)) = (q4, (Πex3,Fex3))
Aex(q4, (?, ?, . . . , ?)) = (q5, (Πex4,Fex4))
Aex(q5, (?, ?, . . . , ?)) = (qf , {2, 3, 9, 11, 13, 15, 17, 19})

where the shuffle pair (Πex3,Fex3) (which represents a random cut) can be defined similarly
to (Πex1,Fex1) and (Πex2,Fex2),

Πex4 = {π ∈ S20 | ∀i ∈ {1, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20} π(i) = i}

and PrFex4(π) = 1/8! for every π ∈ Πex4. Note that vis(Γex1) = vis(Γex2), and that
(Πex4,Fex4) represents a shuffle of the eight cards.

3 Framework for Copy Protocol

In the previous section, we have constructed a formal computational model of the card-based
protocols. In this section, based on it, we deal with a framework for copying a face-down
card, by using Niemi-Renvall’s copy protocol

PNR = (Dex, {Γex1,Γex2}, {q0, q1, q2, q3, q4, q5, qf}, Aex)

(specified above in Section 2.3) as an example. Note that the size of every sequence-trace
(Γ0,Γ1, ...,Γ6) of PNR is equal to 7.

Before proceeding further, we define an “execution-trace” as follows. Remember that
during an execution of a protocol P, its current sequence Γ is changing from Γ into either
(i) turnT (Γ) for a turn set T or (ii) permπ(Γ) for a permutation π; we call such T or π a
transformer. Enumerating such transformers τi ∈ 2{1,2,...,d}∪Sd together with the sequence-
trace (Γ0,Γ1, ...,Γt), we have the execution-trace(

(Γ0,Γ1, ...,Γt), (τ1, τ2, ..., τt)
)

of the protocol P.

3.1 Being a copy protocol

Consider the characteristics allowing the protocol PNR to make identical copies of a face-
down card:

• it has a suitable input set;

• it always terminates with a sequence-trace of a finite size;
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• every visible sequence-trace (more specifically, the number of ♣ s in the final visible
sequence) determines the positions at which correct copies certainly reside;

• it does not touch the first lying card.

Carrying this observation further, we obtain the following definition without loss of gener-
ality.

Definition 1. We say that a protocol P = (D, {Γ♣,Γ♥}, Q,A) achieves making two copies
if

• the two sequences in the input set are

Γ♣ =
( ?
♥ ,

?
♣ , α3, α4, . . . , α|D|

)
and

Γ♥ =
( ?
♣ ,

?
♥ , α3, α4, . . . , α|D|

)
for face-up cards α3, α4, . . . , α|D|;

• it terminates with an execution-trace having a finite average number of sequences;

• there exist two functions

f1 : (VisD)∗ → {2, 3, . . . , |D|}

and
f2 : (VisD)∗ → {2, 3, . . . , |D|}

such that, for every sequence-trace

(Γ0,Γ1, ..., (β1, β2, . . . , β|D|))

of P and its visible sequence-trace

ν = (vis(Γ0), vis(Γ1), ..., vis((β1, β2, . . . , β|D|))),

f1(ν) 	= f2(ν) and

βf1(ν) = βf2(ν) =

{
?
♣ if Γ0 = Γ♣
?
♥ if Γ0 = Γ♥,

where
(VisD)∗ =

⋃
i≥1

(VisD)i.

• the action function A does nothing against the first lying card, i.e., each transformer
in every execution-trace of P is either a turn set T with 1 /∈ T or a permutation π
with π(1) = 1.
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Note that, as implied by the second item in Definition 1, we admit a copy protocol to
be a Las Vegas algorithm. (Actually, as seen in the last column of Table 1, some existing
protocols are Las Vegas algorithms.)

The protocol PNR satisfies all of the conditions in Definition 1, of course: in regard to
the third condition, it suffices to set

f1(ν) = 5, f2(ν) = 7

for any visible sequence-trace ν whose final visible sequence has an even number of ♣ s, and

f1(ν) = 6, f2(ν) = 8

for any ν whose final visible sequence has an odd number of ♣ s.

3.2 Security

We next consider the security. To make an information-theoretical argument, we need to
define two random variables (as below); to this end, it is necessary to take a probability
distribution on the input set U into account.

Given a protocol P = (D, U,Q,A), a probability distribution M on U is called an input
distribution for P. A protocol P together with an input distribution M for it specifies the
entire world; we call such a pair (M,P) a system (following the terminology in Fischer-
Wright’s communication model [5]).

Let P = (D, {Γ♣,Γ♥}, Q,A) be a protocol achieving making two copies, and let M be
an input distribution for P. Then, the system (M,P) induces a probability distribution
on the input set {Γ♣,Γ♥}, of course. Therefore, we can characterize the secret color of the
unknown faced-down card (to be copied) by a random variable X(M,P) (whose superscript
is omitted if it is clear from context); X = ♣ means that the secret color is ♣, and X = ♥
means that it is ♥. Similarly, we use a random variable V (M,P) (whose superscript is also
omitted if it is clear from context) to express the visible sequence-trace; V = (v0, v1, . . . , vt)
means that we have seen each visible sequence vi, 0 ≤ i ≤ t, on the table in this order.
Note that the randomization comes from not only the input distribution M but also the
randomized operations shufΠ,F(·) and rflipΦ,G(·) output by the action function A.

The two random variables X and V are sufficient for evaluating the security. Take the
protocol PNR as an example. (Remember that PNR fails to securely copy with probability
1/8 as mentioned in Section 1.1.) Using random variables X and V along with the (Shannon)
entropy H(·) and the conditional entropy H(·|·), we can information-theoretically write that

• H(X|V = ν) = H(X) and Pr[V = ν] = 7/8 for any visible sequence-trace ν =
(v0, v1, . . . , v6) such that the final visible sequence v6 contains at least one ♣ and at
least one ♥;

• H(X|V = ν) = 0 and Pr[V = ν] = 1/8 for any ν = (v0, v1, . . . , v6) such that v6

contains only cards of a single color.

4 Impossibility of Perfectly Secure Copy

In this section, we prove that there does not exist a protocol that achieves making two
copies with perfect secrecy.

We first formally define perfectly secure copy protocols.

11



Definition 2. We say that a protocol P achieves making two copies with perfect secrecy if
it achieves making two copies, and moreover,

H(X(M,P)|V (M,P)) = H(X(M,P))

holds for any system (M,P).

We next prove that such a protocol does not exist. Roughly speaking, the idea behind
our proof is based on a simple fact: when the unknown card (to be copied) is possibly
turned over, its entropy must decrease.

Take a system (M,PNR) of the protocol PNR with Pr[X = ♣] > 0 and Pr[X = ♥] > 0
as an example. Consider when the eight cards are revealed in the final step, i.e., when the
operation

turn{2,3,9,11,13,15,17,19}(Γ5)

is applied, where (Γ0,Γ1, ...,Γ5,Γ6) will be the sequence-trace. For convenience, we virtually
split the turn over operation into turn{2}(Γ5) and

turn{3,9,11,13,15,17,19}(Γ5.5),

that is, we focus on the case when the second (face-down) card has just been turned over.
Assume that the revealed (face-up) card is ♣

? . Then, the probability that the second card
revealed now has come from the unknown card (to be copied) is exactly 1/8, and hence

Pr[X = ♣ | E ] =
(1/8) · Pr[X = ♣] + (7/8) · Pr[X = ♣] · (1/2)

(1/8) · Pr[X = ♣] + (7/8) · (1/2)
=

9Pr[X = ♣]
2Pr[X = ♣] + 7

> Pr[X = ♣]

where E is such an event. Therefore, the entropy must decrease (as formally shown below in
Lemma 1). Note that E is an “intermediate” event; subsequently, the remaining seven cards
are turned over, i.e., turn{3,9,11,13,15,17,19}(Γ5.5) is applied, and the protocol terminates with
a visible sequence-trace ν such that H(X|V = ν) = H(X) or H(X|V = ν) = 0 (as described
in the previous section), and hence we have H(X(M,PNR)|V (M,PNR)) < H(X(M,PNR)).

For a random variable Z, we denote by Z−1(z) the (maximal) event resulting in Z = z.
We say that an event E respects a random variable Z if either Z−1(z) ⊆ E or Z−1(z)∩E = ∅
for any z [5]. We have the following lemma.

Lemma 1. Let Y,Z be random variables, and let E be an event respecting Z. If Pr[Y =
y | E ] 	= Pr[Y = y] for some y, then H(Y |Z) < H(Y ).

Proof. Assume that Pr[Y = y | E ] 	= Pr[Y = y] for some y, and suppose for a contradiction
that H(Y |Z) = H(Y ). Then, Y and Z are independent, and hence Pr[Y = y, Z = z] =
Pr[Y = y] Pr[Z = z] for any z. Since E respects Z, there exists η such that {Z−1(z) | z ∈ η}
partitions E . Thus,

Pr[Y = y | E ] =
Pr[Y = y, E ]

Pr[E ]
=

∑
z∈η Pr[Y = y, Z = z]∑

z∈η Pr[Z = z]
= Pr[Y = y],

which contradicts Pr[Y = y | E ] 	= Pr[Y = y].

We are now ready to prove our theorem.
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Theorem 1. There exists no protocol that achieves making two copies with perfect secrecy.

Proof. Let (M,P) be a system of a protocol P = (D, {Γ♣,Γ♥}, Q,A) achieving making
two copies, such that Pr[X = ♣] > 0 and Pr[X = ♥] > 0. Choose (and fix) an arbitrary
execution-trace of P whose sequence-trace (Γ0,Γ1, ...,Γt) satisfies Γ0 = Γ♣. For every
sequence Γi, we denote by posi the position of the unknown card (which is the second
lying card ?

♣ in the initial sequence Γ0 = Γ♣). That is, we set pos0 = 2, and for every i,
1 ≤ i ≤ t, recursively define posi = π(posi−1) if the i-th transformer is a permutation π;
and posi = posi−1 otherwise.

Suppose that every i-th transformer which is a turn set T satisfies posi−1 /∈ T , i.e.,
the unknown card has never been turned over. Then, if we started the protocol P from
the other sequence Γ♥ (contained in the input set) instead of Γ♣, we would necessarily
have a case where the resulting sequence-trace would be (Γ♥,Γ1, ...,Γt). Since their visible
sequence-traces are the same, namely

(vis(Γ♣), vis(Γ1), . . . , vis(Γt)) = (vis(Γ♥), vis(Γ1), . . . , vis(Γt)),

we could not determine where desired identical copies are, a contradiction. Hence, there
must exist an i-th transformer which is a turn set T such that posi−1 ∈ T .

Focus on the case where such a transformer, namely a turn set T , first appears, and
assume that such T appears as the 	-th transformer. Hence, turnT (Γ�−1) = Γ�. Without loss
of generality, one may assume that T is a singleton set, i.e., T = {k} for some k. Then, the
k-th lying card in Γ�−1 is ?

♣ , and that in Γ� is ♣
? . We now consider an event, denoted by E ,

in which the first (	+1) visible sequences are the same as vis(Γ♣), vis(Γ1), . . . , vis(Γ�). Note
that the event E respects the random variable V (expressing visible sequence-traces). Also,
denote by E− the event that the first 	 visible sequences are vis(Γ♣), vis(Γ1), . . . , vis(Γ�−1).
Within the event E−, we consider two events Pos ⊆ E− and O♣ ⊆ (E−−Pos): Pos represents
that “the k-th lying card in the 	-th sequence (counting from 1) is the unknown card,” and
O♣ represents that “it comes from other cards and is ?

♣ .” Then, we have

Pr[X = ♣ | E ] =
Pr[Pos] Pr[X = ♣] + (1 − Pr[Pos]) Pr[X = ♣] Pr[O♣]

Pr[Pos] Pr[X = ♣] + (1 − Pr[Pos]) Pr[O♣]
> Pr[X = ♣].

Note that the inequality holds even when Pr[O♣] = 0. Hence, by Lemma 1 we have
H(X|V ) < H(X).

5 Conclusion

In this paper, we constructed a rigorous mathematical model of card-based cryptographic
protocols. Based on this general computational model, we showed that it is impossible to
make identical copies of a face-down card with perfect secrecy.

Since our constructed computational model is rather general, we believe that it can be
used to find another impossibility result, or to show the optimality of a certain protocol.
For example, as listed in Table 1, six cards are sufficient for securely computing AND
in a committed format [8], and it is open to answer the question whether there exists a
“committed format” AND protocol that requires fewer than six cards. We hope that our
computational model can provide unambiguous answers to such questions in the future.
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The model is also expected to enable us to discuss the “time complexity” and “shuffle
complexity” of protocols more precisely.

As seen, the cards considered in our model (as well as in previous works [2, 3, 6, 7,
8, 9, 11, 13]) have no “polarity,” that is, we never put them upside down like ♣ ♥♥ ♣.
Introducing polarity or rotation of a card might be one intriguing direction of future works.
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