
Gold and Fool’s Gold:

Successes, Failures, and Futures

in Computer Systems Research

Butler Lampson

Microsoft

Usenix Annual Meeting

June 2, 2006

Context: Moore’s Law and Friends

$100/M4 M10 x360Display pixels

$1000/MB/s/mo4 GB/s1,000 x12WAN BW

$1/MB/s1 GB/s100 x18LAN BW

$0.35/GB750 GB1,000 x12Storage (disk)

$20/GIPS2x4 GIPS100 x18Processing

6/2006 cost6/2006

best

10 yearsmonths

for 2 x

Implication: spend hardware to simplify software.
Huge components work (operating system, database, browser)

Better hardware enables new applications.

Complexity goes into software.

What is computing good for?

factories, cars,

robots, smart dust

2010Embodiment

(physical world)

email, airline tickets,

books, movies, Google,

Terraserver

1980Communication

(storage)

nuclear weapons, protein

folding, payroll,

games, virtual reality

1950Simulation

Simulation: Protein Folding

UNFOLDING OF THE

DNA BINDING DOMAIN

OF HIV INTEGRASE

HIV uses proteins to insert

its genetic code into our

DNA. The DNA binding

domain of HIV integrase

(below) is the protein which

HIV uses to grab onto our

DNA such that it can then

connect its genetic code into

ours.

Communication: Maps and Pictures

Embodiment: Roomba Vacuum

256 bytes of RAM, $199

YES

Virtual memory

*Address spaces

*Packet nets

Objects / subtypes

RDB and SQL

*Transactions

*Bitmaps and GUIs

Web

Algorithms

History: What Worked?

NO (Not Yet?)

*Capabilities

*Fancy type systems

Functional programming

*Formal methods

Software engineering

*RPC (except for Web)

*Distributed computing

Persistent objects

*Security

RISC

History: What Worked?

MAYBE

Parallelism (but now we really need it)

Garbage collection

Interfaces and specifications

Reuse / components
Works for Unix filters

Platforms

Big things (OS, DB, browser)

Flaky for Ole/COM/Web services

The Failure of Systems Research

We didn’t invent the Web

Why not? Too simple

Old idea
_ But never tried

Wasteful
_ But it’s fast enough

Flaky
_ But it doesn’t have to work

Denial: It doesn’t scale

Only from 100 to 100,000,000

The Future: Motherhood Challenges

Correctness

Scaling

Parallelism

Reuse

Trustworthiness

Ease of use

Jim Gray’s challenges

1. The Turing test: win the impersonation game 30% of the time.
• Read and understand as well as a human.

• Think and write as well as a human.

2. Hear and speak as well as a person: speech_text.

3. See and recognize as well as a person.

4. Remember what is seen and heard; quickly return it on request.

5. Answer questions about a text corpus as well as a human

expert. Then add sounds, images.

6. Be somewhere else: observe (tele-past), interact (tele-present).

7. Devise an architecture that scales up by 106.

8. Programming: Given a specification, build a system that

implements the spec. Do it better than a team of programmers.

9. Build a system used by millions, administered by _ person.
• Prove it only services authorized users.

• Prove it is almost always available: (out < 1 second / 100 years)

A Grand Challenge:

A pure computer science problem

Needs

Computer vision

World models for roads and vehicles

Dealing with uncertainty about sensor inputs,

vehicle performance, changing environment

Dependability

Reduce highway traffic deaths to zero

What is dependability?

Formally, the system meets its spec

We have the theory needed to show this formally

But doing it doesn’t scale

And worse, we can’t get the formal spec right

_ Though we can get partial specs right

_ “Sorry, can’t find any more bugs.”

Informally, users aren’t surprised

Depends on user expectations

_ Compare 1980 AT&T with cellphones

_ How well does the market work for dependability?

How much dependability?

How much do we have? It varies

As much as the market demands
_ Is there evidence of market failure?

Almost any amount is possible
_ If you restrict the aspirations

_ In other words, there’s a tradeoff

How much do we need? It varies

But safety-critical apps are growing fast

What’s the value of a life? Wild inconsistency
_ Look at British railways

Dependable vs. secure

Measuring dependability

Probability of failure

From external events

From internal malfunction
_ complexity (LOC_) good experience (testing etc.)

Cost of failure

Injury or death

External damage
_ Business interruption
_ Breakage
_ Bad PR

TCO

What’s the budget? Who gets fired?

Dependability through redundancy?

Good in its place

But need independent failures

Can’t usually get it for software

_ Example: Ariane 5

Even harder for specs

_ The unavoidable price of reliability is simplicity—Hoare

And a way to combine the results

Dependable No catastrophes

A realistic way to reduce aspirations

Focus on what’s really important

What’s a catastrophe?

It has to be very serious

Must have some numeric measure

_ Dollars, lives? Say $100B, 1000 for terrorism

_ Less controversial: Bound it by size of CCB

Must have a “threat model”: what can go wrong

Probabilities must enter

But how?

Examples of catastrophes

USS Yorktown

Terac 25 and other medical equipment

Loss of crypto keys

Destruction of big power transformers

Are there any computer-only catastrophes?

Misleading examples of catastrophes

Avionics, nuclear reactors

Most attention has gone here

But they are atypical

_ Lots of stuff has to work

_ Shutdown is impossible or very complex

Impossible goals

Never lose a life.

_ Maybe OK for radiation

_ No good for driving

No terrorist incidents

No downtime

Catastrophe prevention that hasn’t worked

Trusted computing base for security

Electric power grid

Air traffic control

The spec said 3 seconds down/year/workstation

Architecture — Catastrophe Mode

Normal operation vs. catastrophe mode

 Catastrophe mode high assurance CCB

Catastrophe mode requires

Clear, limited goals = limited functionality

_ Hence easier than security

Strict bounds on complexity

_ Less than 50k lines of code?

Catastrophe mode is not a retrofit

Catastrophe mode

What it does

Hard stop (radiation therapy)

_ Might still require significant computing

Soft stop (driving a car)

_ Might require a lot of the full functionality, but the

design center is very different

Drastically reduced function (ship engines)

How it does it

Take control, by reboot or hot standby

Censor (no radiation if limits exceeded)

Shed functions

Techniques

Reboot—discard corrupted state

Shed load

Shed functions

Isolate CCB, with minimal configuration

Transactions with acceptance test

Approval pages for financial transactions

Undo and rollback

Well-tested components

Unfortunately, successful components are very big

Learning from security

Perfection is not for this world

The best is the enemy of the good

Set reasonable goals

Dependability is not free

Customers can understand tradeoffs

Though perhaps they undervalue TCO

Dependability is holistic

Dependability is fractal

Dealing with Uncertainty

Unavoidable in dealing with the physical world

Need good models of what is possible

Need boundaries for the models

Unavoidable for “natural” user interfaces:

speech, writing, language

The machine must guess; what if it guesses wrong?

Goal: see, hear, speak, move as well as a person.

Better?

Teach as well as a person?

Example: Speech “Understanding”

Acoustic input: waveform (speech + noise)

“Features”: compression

Phonemes

Words: dictionary

Phrases: Language model

Meaning: Domain model

Uncertainty at each stage.

Example: Robots

Where am I?

What is going on?

What am I trying to do?

What should I do next?

What happened?

Paradigm?: Probability Distributions

Could we have distributions as a standard data

type?

Must be parameterized over the domain (like lists)

What are the operations?

Basic problem (?): Given distribution of x,

compute distribution of f(x).

Hard when x appears twice in f – independence

Conclusions for Engineers

Understand Moore’s law

Aim for mass markets

Computers are everywhere

Learn how to deal with uncertainty

Learn how to avoid catastrophe

