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Abstract
Primary B+-tree, a variant of B+-tree structure
with row data in leaf blocks, is an ideal storage
organization for queries involving exact match
and/or range search on primary keys.
Commercially, primary B+-tree like structures
have been supported in DBMSs like Compaq
Non-Stop SQL, Sybase Adaptive Server, and
Microsoft SQL Server. Oracle’s index-organized
table is like a primary B+-tree; however, it
differs from its commercial counterparts in the
following respects: 1) The storage organization
does not require the entire row to be stored in
the primary key index. Infrequently accessed
columns can be selectively pushed into an
overflow storage area to speed up access to
columns that are frequently accessed. 2)
Secondary indexes on index-organized tables
support logical primary key-based row
identifiers, and still provide performance
comparable to secondary indexes with physical
row identifiers by storing and making use of
guess-DBA (Database Block Address). 3)
Support for primary key compression leads to
reduced storage requirements. This paper

presents the index-organized table storage
option in Oracle8i with emphasis on the novel
aspects mentioned above. The applicability of
index-organized tables to new domains such as
the Internet, E-Commerce and Data
Warehousing is discussed. A performance study
is presented, that validates the clustering
benefits of Oracle’s primary B+-tree
implementation, and characterizes the impact of
overflow storage area, guess-DBA use in
secondary B+-tree indexes, and primary key
compression.

1 Introduction
A significant number of applications deal with data sets
where each individual row is identified by a primary key.
The primary key could be a single column such as social
security number for employees table in a HR application,
or a multi-column entity such as <warehouse, district,
order, order line> for orders table in a product sales and
distribution business application [TPCC93]. For such
applications, if the query workload is dominated by
primary-key access, then clustering the rows of the table
in the primary key order would be beneficial. In fact,
several DBMSs provide a variant of B+-trees [Com79]
with row data in leaf node, also referred to as primary
B+-trees, to speed-up primary key-based access to the
table data.

Along the same lines, in Oracle8, a new storage option
ORGANIZATION INDEX is introduced. Tables created
using this option, referred to as index-organized tables1,
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include not only the indexed columns, but implicitly also
include all the remaining columns of the table in the
primary B+-tree. Each row consists of key and non-key
columns, and the non-key columns are stored along with
the key columns in a B+-tree, making the whole table
structure have an index-organization. Typically, the
entire table data can be held in its primary key index.
The benefits of this organization are:

• it provides fast random access on the primary key
because an index-only scan is sufficient. Once a leaf
block is reached, both the key as well as the non-key
columns can be retrieved.

• it provides fast range access on the primary key
because the rows are clustered in primary key order
and they contain both key and non-key columns.

• it avoids duplication of primary key columns as in a
heap-organized table with a primary key index.

The distinguishing features of index-organized tables
when compared to other primary B+-tree
implementations are:

• support for a (heap-organized) overflow storage area
that provides supplementary storage for columns.
This allows controlling the placement of columns in
the index vs. overflow storage area and provides the
capability for tuning the number of rows that fit in
an index leaf. Infrequently accessed non-key
columns of the index-organized table can be pushed
to the overflow storage area, by (1) specifying the
percentage of space reserved for a row in the index
block, and/or (2) specifying a column at which a row
should be divided into index and overflow portions.
This increases the leaf row density, that is, the
number of index rows that can fit in a leaf block of
the B+-tree structure.

• support for secondary indexes with logical primary
key-based row identifiers, which include the primary
key as well as a database block address (DBA). This
DBA, referred to as guess-DBA, is treated as a guess
as to where the row may be found in the base table
(primary B+-tree). A valid guess will cost only a
single block I/O. However, if the guess is invalid, the
primary key is used to find the row. Thus, for valid
guess-DBAs, the secondary index performance is
comparable to that of secondary index with physical
row identifiers. At the same time, the logical nature
of secondary indexes enables faster reorganization
and increased uptime of the base table since they
need not be updated during such a reorganization.
Support for online guess-DBA fixing allows
regaining the guess-DBA based performance.

• support for compressing common (column) prefixes
of the primary key. Since the rows are clustered in

the primary key order, there is more likelihood of
finding common prefixes.

Index-organized tables in Oracle8i have full-table
functionality with features such as constraints, triggers,
LOB and object columns, and horizontal partitioning.
Index-organized tables are key components in several
Oracle RDBMS features such as online index creation
and rebuild, message queues [OAQ97], nested table
columns [OSC97], domain indexes [SMSAD00] and
time-series cartridge [OTS97].

Traditionally, primary B+-tree like structures such as
index-organized tables have been used in OLTP
applications that require fast primary key-based access.
However, we argue that such a storage organization,
combined with the novel features described above, can be
equally useful to several new domains as summarized in
Table 1 in Section 3.

Index-organized tables are suitable for order
processing applications with 24x7 availability
requirements such as for E-Commerce [BSZ98].
Specifically, faster reorganization is achieved due to the
logical nature of secondary indexes. Index-based scan
performance degradation is avoided through use of guess-
DBAs and the guess-DBA based performance is retained
by online fixing of any guess-DBAs invalidated during
reorganization. Key-compressed index-organized tables
are suitable for Internet applications that may require a
hierarchical storage organization, such as portals and
electronic storefronts. Internet search engines and text
databases can implement the inverted index, the
fundamental data structure needed for full-text search, as
an index-organized table. The need to handle variable
length rows in the inverted index [ZMS92] without
degrading access to small rows can be met by using
index-organized table column placement options. Index-
organized tables can also be used for fact tables in data
warehousing applications as described in Section 3.5.

1.1 Outline of the Paper

The related work is presented next. Section 2 gives an
overview of index-organized table with emphasis on its
novel features. Section 3 discusses the applications of
index-organized tables to new domains. Section 4
presents experimental results that compare and contrast
index-organized table and heap-organized table
performance. Section 5 concludes with a summary and
outlines future work.

1.2 Related Work

There have been several efforts to build specialized
structures to hold table data based upon the primary
modes of data access. Oracle RDBMS [OSC97] has
traditionally supported Index-clusters and Hash-clusters.
These can be used to cluster one or more tables based on
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the cluster key. A single data block can hold rows from
different tables with the same cluster keys. The primary
motivation is to support efficient join-operations on the
set of clustered tables.

Non-Stop SQL2 [Tand87] supports key-sequenced
tables, which cluster data based on primary keys. Online
reorganization of these tables is also supported [Troi96].
However, these tables support rows of only limited size
and do not provide the flexibility to control the placement
of columns between the index and overflow storage areas.
Non-Stop SQL also supports secondary indexes with
primary key based row identifiers, but these row
identifiers are strictly logical and do not incorporate the
guess-DBA mechanism found in secondary indexes for
index-organized tables. Thus, they always incur an
additional primary B-tree traversal for index-based scan.

IBM DB2 [DB2V5.2] allows the secondary index
structure to include additional columns. For example,
users can create an index for an employee table on a
column, say empno, but also include the column salary
into the index. Thus, an index-only scan is sufficient for
queries referencing both the columns empno and salary,
but this speed-up is achieved at the cost of column
duplication.

Sybase Adaptive Server [SYB95] and Microsoft SQL
Server 7.0 [MS98] support the concept of a table with
single clustered index, which forces the table rows to be
maintained in the clustered index key order. However,
like Non-Stop SQL, they do not support rows of
arbitrarily large size, or flexible column placement
between the index and overflow. Secondary indexes for
these tables contain physical row identifiers, limiting the
online availability of the base table.

Online reorganization of database objects, namely
tables and indexes, is increasingly gaining importance
and many database systems support some form of online
operations. IBM AS/400 [SI96] allows online index
(re)construction. Sybase provides capabilities for online
resource management [RDC96]. [ZS98] discusses an
approach for secondary index maintenance during online
reorganization by piggybacking secondary index updates
with user transactions. During online reorganization of
index-organized tables, secondary indexes need not be
maintained due to their logical nature.

2 Index-Organized Tables
This section gives an overview of index-organized tables
and then discusses the novel features.

                                                       
��2UDFOH���2UDFOH�L���'%���1RQ6WRS�64/��0LFURVRIW��64/
6HUYHU��6\EDVH�$GDSWLYH�6HUYHU�DUH�UHJLVWHUHG�WUDGHPDUNV�

2.1 Overview

Index-organized tables are like conventional tables in
Oracle8i except for the fact that the data in the table is
organized as a B+-tree index built on the primary key for
the table. For example, an inverted index which is
typically used by a web text-search engine for providing
content-based search capability can be implemented
using an index-organized table in the following manner:

CREATE TABLE inverted_doc ( token CHAR(20),
doc_id NUMBER, token_frequency NUMBER,
CONSTRAINT pk_inverted_doc PRIMARY KEY (token,
doc_id))
ORGANIZATION INDEX TABLESPACE ind_tbs;

This creates a table where all the row data, namely the
primary key columns plus the remaining columns, are
stored in the primary key B+-tree index leaf blocks
(Figure 1).

Such a storage organization enables fast primary key-
based access to table data for queries involving exact
match and/or range search. Once the search has located
the target primary key, the remaining columns are
present at the same location. This eliminates the need to
follow a row identifier to table data, as would be the case
with a conventional table and index structure, thereby
avoiding an additional I/O. Furthermore storage
requirements are reduced as there is no duplication of key
columns in the table and the index, and row identifiers
are not needed in the primary key B+-tree structure.

DBMS 1 17
DBMS 2 2
Oracle 1 14
Oracle 2 31

 DBMS 1    ROW ID1
 DBMS 2    ROW ID2
 Oracle 1    ROW ID3
 Oracle 2    ROW ID4

 DBMS 1    17
 DBMS 2     2
 Oracle 1    14
 Oracle 2    31

Traditional Table and Index
   Key columns duplicated

Index-organized Table
 All data stored in index

Figure 1: Conventional Table with an Index vs. Index-
Organized Table.

Oracle8i applications can manipulate the index-
organized table just like a conventional table using
standard SQL statements.

2.2 Overflow Storage Area and Column Placement
Options

Storing all non-key columns in the primary key B+-tree
index structure may not always be desirable or possible.
Specifically:

• Each additional non-key column stored in the
primary key index reduces the leaf row density of the
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B+-tree. To achieve better performance for access to
frequently accessed columns, users may want to store
only those columns in the index.

• Since a B+-tree leaf block must hold at least two
index rows, placing all non-key columns as part of
index row may not always be possible.

To overcome these problems, an overflow storage area
can be associated with an index-organized table. For
example, if an additional column, say token_offsets is
required for the inverted_doc schema, then the table can
be created with an overflow storage area as follows:

CREATE TABLE inverted_doc ( token CHAR(20),
doc_id NUMBER, token_frequency NUMBER,
token_offsets VARCHAR(512), CONSTRAINT
pk_inverted_doc PRIMARY KEY (token, doc_id))
ORGANIZATION INDEX TABLESPACE ind_tbs
PCTTHRESHOLD 20 OVERFLOW TABLESPACE  ovf_tbs;

For such a table, the index row contains a <key, head
row-piece> pair, where the head row-piece contains the
first few non-key columns and a row identifier that points
to the overflow portion containing remaining column
values. Although this approach incurs the storage cost of
one row identifier per row, key column duplication is still
avoided.

Placement of columns into index and overflow storage
area can be controlled by two options described below.

Placement Option for Handling Variable Length
Rows

For a table with variable length rows, it is useful to allow
each row to occupy not more than certain percentage of
the index leaf block. This will ensure a lower bound on
the leaf row density and enforce uniformity across rows
as far as usage of the leaf block portion is concerned.
This tuning is made possible using a percentage
threshold parameter.

The PCTTHRESHOLD option, specified as a
percentage of the leaf block size, determines the last non-
key column that should be included in the index head
row-piece on a per-row basis. The remaining non-key
columns are stored in the overflow storage area as one or
more row-pieces. Specifically, the last non-key column to
be included is chosen such that the index row size (key +
head row-piece) does not exceed the specified threshold,
which in the above example is 20% of the index leaf
block.

Such tuning ensures a lower bound of leaf row density
which in turn limits the height of the B+-tree, thereby
providing fast access to head row-pieces for all rows.
Larger rows, however, incur the cost of additional I/Os
required to get to the tail row-pieces stored in the
overflow area.

Placement Option for Speeding Up Access to
Frequently Accessed Columns

PCTTHRESHOLD option puts a constraint on the index
row size, which may translate to different sets of columns
being included in the index for different rows. However,
many applications may benefit from allowing the same
set of columns to be included in the index for all rows in
the table. The motivation here is to speed up access to
frequently accessed columns by forcing the infrequently
accessed columns out to reside in the overflow storage
area. This is achieved by means of the INCLUDING
parameter. For example, the following CREATE TABLE
statement includes all the columns up to the
token_frequency column in the index leaf block and
forces the token_offsets column to the overflow area.

CREATE TABLE inverted_doc  . . .       . . .
ORGANIZATION INDEX TABLESPACE ind_tbs
INCLUDING token_frequency
OVERFLOW TABLESPACE  ovf_tbs;

Such vertical partitioning of a row between the index
and overflow storage areas allows for higher leaf row
density, resulting in better query performance for the
columns stored in the index. While this approach incurs
the cost of one additional block access for columns stored
in the overflow, this I/O overhead is no worse than that
of a conventional table with an index.

Note that the INCLUDING option only ensures that all
columns after the specified column are stored in the
overflow area. If this specification is such that the
corresponding index row size exceeds the specified
threshold, then the last non-key column to be included is
determined based on the PCTTHRESHOLD.

The two column placement options discussed above
allow breaking the table vertically into two partitions.
Vertical partitioning of a table enables user queries to
deal with smaller relations, which may result in a smaller
number of block accesses [NCWD84, Niam78]. General
vertical partitioning, although studied extensively, is
typically not supported in most commercial database
systems, leaving the task of generating heuristic
fragmentation and allocation schemes [HN79] to the
application designer. Note that even if such a support is
made available, that would require duplication of the key
attributes or row identifiers (tuple-ids) in the individual
fragments, which is avoided in the limited form of
vertical partitioning supported in index-organized tables.
An exception to this is the Projection Indexes in Sybase
IQ [SYB99], which only holds partitioned column
values. However, the column values are not maintained
in any index order as in index-organized tables.

2.3 Secondary Index with Guess-DBAs

Secondary indexes can be created on index-organized
tables to provide alternate access paths. Unique, non-
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unique, as well as function-based secondary indexes are
supported. However, secondary indexes on index-
organized tables differ from indexes on heap-organized
tables in several ways:

• They store logical row identifiers instead of physical
row identifiers. Thus, a table reorganization operation
does not make its secondary indexes unusable.

• The logical row identifier includes primary key
columns. Thus, a query involving indexed columns
and/or primary key columns can be satisfied by an
index-only scan.

While the above properties are desirable, there is one
drawback when compared to a secondary index with
physical row identifiers. During an index-based scan of
an index with physical row identifier, each lookup needs
just one extra I/O to fetch the base table columns. But a
similar lookup using a secondary index with logical row
identifiers requires I/O’s equal to the height of the
primary key B+-tree to fetch the base table columns. Such
primary key based lookup during index-based scan can
degrade the performance substantially.

Guess-DBAs: To mitigate this problem, a 4-byte
Database Block Address (DBA) of the primary key index
leaf block where the base table row can be found, is
stored as part of the logical row identifier. This DBA,
referred to as guess-DBA, identifies the block where the
row is most likely to be found for the reasons mentioned
below.

The DBAs are populated correctly as part of secondary
index creation. Further, DML operations implicitly
maintain the guess-DBAs for the rows affected.
Specifically, for inserts and updates that do not cause leaf
block splits, corresponding rows in the secondary indexes
are updated to contain the correct guess-DBAs. However,
DML operations may cause a set of rows in the primary
key B+-tree index to move due to a leaf block split. This
results in invalidating guess-DBAs stored in the
secondary index rows corresponding to the base table
rows that moved to a different leaf block.

An argument can be made for fixing the guess-DBAs
for the rows that moved to a different leaf block, as part
of the DML operation that caused the move. But this
scheme was rejected since it would impose an
unpredictable performance overhead on the DML. Also,
the current design retains the simplicity of traditional B+-
tree index maintenance.

If the table rows do not move, then the guess-DBA will
identify the correct leaf block. However, if the guess-
DBA is invalid, then the cost of one extra I/O is incurred
to fetch the block pointed by guess-DBA, before resorting
to a primary key based lookup.

Guess-DBA Quality: To minimize use of invalid guess-
DBAs, a statistic called guess-DBA quality is maintained
for each secondary index. It is defined as percentage of
valid guess-DBAs with respect to total number of rows in
the secondary B+-tree index.

The optimizer consults the guess-DBA quality to
decide if it should use the guess-DBA or directly fall back
to primary key based lookup to access the base table row.
This statistic is implicitly set to 100 after the index
creation. However, like other index statistics, it gets
recomputed as part of the ANALYZE index statement,
which analyzes the index and generates statistics for
subsequent use by the optimizer.

If the guess-DBA quality drops below a certain
threshold, the guess-DBAs can be fixed online using an
ALTER index statement. Note that a rebuild of the index
will also result in fixing the guess-DBAs. However,
rebuild of index is typically done when the secondary
index itself is fragmented due to large number of inserts
and deletes.

The performance of the (logical row identifier-based)
secondary index using valid guess-DBAs matches that of
the secondary index with physical row identifiers as
confirmed by experiments described in Section 4.3.
Storing guess-DBAs reduces leaf row density causing
extra I/Os for range scans. This overhead, however, is
only a small fraction of the overall cost, the larger
component being the I/Os needed, one per index row, to
access the base table columns.

2.4 Key Compression

Index-organized tables can be compressed by eliminating
common primary key column prefixes. Unlike
conventional tables, the rows in an index-organized table
are naturally clustered in the primary key order and there
is a high likelihood of finding common prefixes for the
key values.

The salient characteristics of the scheme are:

• Key compression applies to primary B+-tree with
multi-column primary key and specifically to keys in
the leaf blocks.

• A key is broken into a prefix entry and a suffix entry
at column boundary.

• Compression is achieved by sharing the common
prefix entries among all the suffix entries within a
leaf block.

Key compression can be enabled by specifying the
COMPRESS clause as part of the physical attributes of
the table, along with a prefix length (as number of
columns) that specifies how the key can be broken into a
prefix and a suffix. For example,
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CREATE TABLE inverted_doc  . . .      . .
ORGANIZATION INDEX TABLESPACE ind_tbs
COMPRESS 1 INCLUDING token_frequency;

Here, single column prefixes (that is, token column)
will be compressed in the primary key <token, doc_id>
occurrences. For the list of primary key values <‘DBMS’,
1>, <‘DBMS’, 2>,<‘Oracle’, 1>, <‘Oracle’, 2>, the
repeated occurrences of ‘DBMS’ and ‘Oracle’ are
compressed away.

The scheme used provides row-level compression as
opposed to block-level compression, which enables
index-organized tables and their key-compressed
secondary indexes to support the same degree of
concurrency as their uncompressed counterparts. Also,
our design decision to identify common prefixes at
column boundaries avoids the need to reassemble the
index row. Specifically, the scheme allows extraction of
columns directly from the prefix and suffix entries. Thus,
both exact and range scan performance of compressed
index-organized tables are comparable to those for
uncompressed counterparts as confirmed by the
experiments described in Section 4.4.

2.5 Online Reorganization

For index-organized tables, reorganization may be
needed more often than conventional tables. The data
resides in a B+-tree structure, which can get fragmented
due to large number of inserts, updates, and/or deletes. In
the event of such fragmentation, users can either
coalesce or rebuild the primary key B+-tree structure.
These operations can be performed online. Furthermore,
secondary index guess-DBAs invalidated by these
operations can be fixed online to maintain guess-DBA
based access performance. These online operations are
discussed below.

Coalesce operation on the primary key B+-tree
coalesces (merges) leaf blocks within the same branch.
This is an online operation that locks a few blocks at a
time, and quickly frees them as soon as the coalesce on
those blocks is completed. For example, the following
command will coalesce the primary key B+-tree index for
the inverted_doc table.

ALTER TABLE inverted_doc COALESCE;

Rebuild (also termed move) operation on the primary
key B+-tree results in creating a new tree. By default, the
table is not available for other operations during the
move. However, the logical nature of secondary indexes
makes the reorganization window smaller for index-
organized table when compared to a conventional table,
because the secondary indexes do not have to be updated.
This will help in environments which can afford a
limited downtime for database maintenance. However,
for applications requiring 24x7 availability, the online
move is supported which allows DML and query

operations during the actual move operation. For
example, the following command rebuilds the
inverted_doc table online.
ALTER TABLE inverted_doc MOVE ONLINE;

Key-sequenced tables in Non-Stop SQL also support
online move and coalesce operations [Troi96]. However,
the analogous operations on index-organized tables differ
in their handling of secondary indexes, due to presence of
guess-DBAs. In our case, the guess-DBA quality is set to
0 as part of the move operation. This ensures that the
optimizer resorts to primary key-based access for rows
identified by the index scan, giving a performance
comparable to that of key-sequenced tables. However,
users can fix the guess-DBAs of the secondary index
online by issuing an ALTER index statement. Thus, for
index-organized table, the secondary index-based scan
performance temporarily falls back to primary key-based
access (see Figure 5(a) in Section 4.3) as result of move
but improves back to the performance of valid guess-
DBA based access (Figure 5(b)) after the online guess-
DBA fix-up operation completes.

3 Index-Organized Table Applications
The superior query performance and storage savings of
index-organized tables (and primary B+-tree like
structures, in general) have traditionally made them ideal
for OLTP applications. However, index-organized tables
are equally useful in several new domains. The table
below summarizes the applicability of index-organized
tables, especially its novel aspects:

App. Idx C-Pl. S-Idx K-Cmp O-Reorg
E-Order √ √ √
I-Search √ √ √ √
I- Portals √ √ √ √
E-Catalog √ √
D-Ware √ √ √ √
T-Series √ √
D-specific √ * * * *

Table 1: Applicability of Index-Organized Table features ( Idx:
Index-Organization, C-Pl: Column Placement, S-Idx:
Secondary Indexes, K-Cmp: Key Compression, O-Reorg:
Online Reorganization, *indicates that applicability is
domain-specific)

3.1 Electronic Order Processing

Electronic order processing is quite similar to the scheme
described in the TPC-C benchmark [TPCC93]. For
example, in an online store such as Amazon.com, an
order-entry transaction accepts the order for a book or
CD, assigns the order a unique order_id and inserts the
order into an orders table with the status as ‘confirmed’.
The delivery transaction retrieves the order entry by
order_id, processes the order by validating if all
parameters of the order such as payment, shipping
address, etc. are satisfactory, and updates the status of
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this order entry as ‘processed’. The fulfillment
transaction retrieves all processed orders by order_id and
status, and ships the item, changing the status of the
order as ‘fulfilled’. Fulfilled orders are periodically
moved into a data warehouse. Apart from these state
changing DML operations, an order tracking system may
also make queries against the table to determine the
status of an order.

An index-organized table is an ideal storage structure
for the ‘orders’ table, where the query and DML is
predominantly primary-key based. Further, the heavy
volume of DML operations is bound to fragment the
table, requiring frequent table reorganization. An index-
organized table can be reorganized without invalidating
its secondary indexes, and moreover, this reorganization
can be done online as described in section 2.5, thereby
reducing or eliminating the window of non-availability of
the orders table. Furthermore, the guess-DBAs
invalidated during reorganization of the base table can be
fixed online.

3.2 Internet Search Engines

Internet search engines use web crawlers to index
contents of the web and provide full-text search
capability. The majority of the current search engines and
full-text searching in text databases do not employ
database technology [Ber+98]. We believe that future
systems will be DBMS driven, since they can implicitly
benefit from the high availability and scalability
characteristics of DBMS.

The fundamental component of a search engine is an
inverted index, which can be modeled using an index-
organized table as shown in section 2. The example
shown maintains one entry per <token, doc-id> pair, that
is, the unit of inversion is a document. Since the token
occurrence data can be of variable size, we can limit the
amount that is stored in the index using the
PCTTHRESHOLD column placement option, and
thereby ensure a lower bound on the leaf row density.
This capability is even more desirable when the unit of
inversion is a set of documents or the entire collection. In
such cases, the occurrence data can be huge, especially
for popular tokens. For a given token, the corresponding
inverted index entry can be reached by just traversing the
primary B+-tree. In most cases, only a single physical I/O
is needed to get to the inverted index row, since the
branch blocks will be cached.

The inevitable fragmentation of the inverted index
structure due to the huge volume of insertions will
mandate frequent reorganization, which means downtime
- which is highly undesirable for web sites. Index-
organized tables, owing to their support for online
reorganization, are suitable for such situations since they
can help reduce, or eliminate, downtime.

Although most popular Internet search engines can
effectively index content stored in files, they still do not
index the vast amounts of information tucked away in
databases. Database search engines such as Jungle
[BBD99] access and advertise databases on the web.
Similarly, Infoseek’s JavaSeek Search Server [JSEEK]
provides full-text search capability for any field in an
Oracle database, and uses index-organized tables to store
the full-text index.

3.3 Internet Portals

A majority of web sites, including portals, foster online
communities. Arsdigita Community System (ACS) is an
open source toolkit, based on Oracle8 RDBMS, that can
be used to build and manage online communities
[Gre99]. One critical function of this toolkit is to track
user activity. For example, the User/Content Map module
tracks which users have read which pieces of web
content. The table holding user/content map is modeled
as an index-organized table with <user, page_id> as the
primary key. In general, we believe that the toolkits such
as ACS, used for building and managing web sites, will
have a significant number of database tables with
primary keys, which can be best modeled as index-
organized tables.

Web applications such as portals and auction sites
maintain a database of users. These user tables can be
based on index-organized tables. Since only a part of the
user information is accessed more frequently than the
rest, the flexible column placement options provide the
ability to push infrequently accessed data to the overflow
storage area.

For queries requiring alternate access paths (based on,
for example, zipcode, credit_card_id, etc.), secondary
indexes built on these columns perform as well as
indexes on conventional tables. This is because the base
tables are typically non-volatile and hence help retain the
validity of guess-DBAs in the secondary indexes.
However, inserts can still cause splits leading to
invalidation of guess-DBAs. In such an event, the
indexes can be fixed online as described in Section 2.3.

The popularity of Yahoo’s directory-like structure
among portals confirms that organizing web content
hierarchically by categories is, and will remain, the de-
facto standard. Index-organized tables are ideal for
storing the multi-column primary keys, composed of the
category attributes which represent the hierarchy, along
with the URL and any additional information. Such
tables can also benefit from key compression.

3.4 Electronic Catalogs

Electronic catalogs are essential components of E-
commerce. A typical procurement process involves
product selection, source selection, negotiation of price,
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ordering, order fulfillment and finally payment [AK97].
Two types of catalogs are usually needed:

Manufacturer’s Catalog: Manufacturers supply several
products which might have different sets of attributes,
whose diversity can make the task of catalog
management very challenging. [Dan98] suggests that the
product descriptions be modeled as rows in a table with
<product_id, attribute_name, attribute_value> such that
there would be one entry per attribute per product. This
generalized scheme can easily support addition of
entirely new products or addition of new attributes to
existing products.

Retailer’s Catalog: A retailer selling items  from
multiple manufacturers needs to group the products into
different (buyer-friendly) categories, which may have
sub-categories depending on how the vendor wants to
present the products. The retailer can either poll all the
manufacturers and build a catalog (Table 2) or the
catalog can be a "virtual" one which is dynamically
constructed from the manufacturer’s catalogs [AK97].
Additionally, the retailer might want to "materialize" the
virtual catalog for better performance.

Category Sub-Category ItemName Price
Book Technical Oracle8 Tuning 45
Book Science Fiction Time Machine 20
… … … …

Table 2: A retailer’s catalog constructed by polling
manufacturer’s catalogs

Assuming a database driven catalog, the resulting
structure (Table 2) will have a set of category columns
(determined by the retailer) in addition to the attributes
retrieved from the manufacturer’s catalog. An ideal
storage organization should hierarchically cluster these
entries on the category columns.

An index-organized table can be used to store these
manufacturer catalogs, indexed on <product id, attribute
name>, will cluster all attributes of a product together.
Similarly, for the retailer’s catalog, an index-organized
table with a multi-column primary key matching the
hierarchy of these categories is a natural fit. Key
compression can be used to avoid  same <product_id>
and <category, subcategory> column value repetitions in
the manufacturer’s and retailer’s catalogs, respectively.

3.5 Data Warehousing

The efforts to speed up data warehousing applications
have focused on two areas: supporting ad-hoc queries,
and supporting known or expected set of queries. For
example, [OQ97] discusses how ad-hoc style queries can
be efficiently evaluated using index and clustering
techniques, whereas [JLS99] deals with known or given
workloads, specifically with the problem of finding
optimal ways to cluster records of a fact table to

minimize I/Os. We believe that index-organized tables
(or other similar primary B+-tree structures) can be used
to implement fact tables for the latter class of
applications.

Consider a warehouse application illustrated in
[JLS99] with relations:

location(state, city, lid)
jeans(type, gender, jid)
sales(lid, jid, sale)

A typical OLAP query is:

SELECT SUM(sales) FROM sales, location, jeans
WHERE  sales.lid = location.lid AND sales.jid
= jeans.jid AND   location.state = NY AND
jeans.type = ‘LEVI’;

Implementing the fact table (‘sales’) as an index-
organized table with primary key <lid, jid> will yield
better performance than a conventional table with a
primary key index. The join result of <location, jeans>
after applying the corresponding filters is used to look-up
for <lid, jid> pair in the sales table. This fact table look-
up will result in an index-based scan for a conventional
table, whereas an index-only scan is sufficient for index-
organized table (for  the performance characteristics see
Section 4.1). The data warehouse applications will also
benefit from various novel aspects as indicated in Table 1
with similar reasoning as in Section 3.3.

Support for summary tables and materialized views in
Oracle [Bel+98] are being implemented for index-
organized tables, and bitmapped secondary indexes will
also be available in a future Oracle8 release.

3.6 Time-Series

A time-series is a set of time stamped rows belonging to a
single item, such as stock price. Data is accessed through
an item identifier such as stock symbol and timestamp.
By defining an index-organized table with primary key
<stock symbol, timestamp>, the Oracle8 Time Series
Data Cartridge [OTS97] is able to efficiently store and
manipulate time-series data. Repeated occurrences of the
item identifier (e.g., stock symbol) key can be
compressed, leading to additional storage savings.

In our experience, individual rows are small in size
and hence column placement options are not needed.
Data is inserted at the end of subgroups, for example,
adding new values for each stock symbol that
monotonically increase with time. Deletions are rare.
Thus, the primary B+-trees do not tend to fragment, and
hence reorganization is usually not required. The use of
secondary indexes is also not very common.

3.7 Domain-Specific Indexing

Oracle8i introduces the Extensible Indexing Framework
[SMSAD00], through which users can add a new access
method to the RDBMS engine. Typically, domain-
specific indexing schemes need some storage mechanism
to hold their index data. Index-organized tables are ideal
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candidates for such domain index storage. Oracle8
interMedia Text Cartridge [OIMT99] has implemented
domain-specific indexing schemes that use index-
organized tables for storing their index data.

4 Performance Study
This goal of this study is to validate the clustering
benefits of primary B+-tree, to illustrate the effect of
overflow, to show the effect of logical row identifiers
containing guess-DBA, and to illustrate the benefits of
key compression.

All the experiments (except key compression) are
conducted using Oracle8i, Release 8.1.6 configured with
4K database block size, 16MB of database buffer cache
on a SunOS 5.6, single CPU Ultra-60 Sparc with 256MB
of main memory. The order_line table of TPC-C
benchmark [TPCC93], which models a product sales and
distribution business, is used as the reference table.

CREATE TABLE order_line ( ol_o_id NUMBER,
ol_w_id NUMBER, ol_d_id NUMBER, ol_number
NUMBER,  ol_i_id NUMBER, ol_supply_w_id
NUMBER, ol_quantity NUMBER,  ol_amount
NUMBER(6), ol_delivery_date DATE, ol_dist_info
CHAR(24),
CONSTRAINT pk_orderline PRIMARY KEY (ol_w_id,
ol_d_id, ol_o_id, ol_number));

4.1 Performance of Index-organized Table without
Overflow

Query and DML execution times are measured for data
sizes varying from 100MB (~1.75 million rows) to
500MB (~8.74 million rows). The average and maximum
standard deviation (s.d) over 10 iterations are reported.
Data for the order_line table is generated in random
order. The time for bulk-load into an index-organized
table is more than that for the heap-organized table (for
example, 28 minutes vs. 17 minutes for 200MB). This
can be attributed to larger sort overhead due to inclusion
of non-key columns in the sort entries in the case of
index-organized table.

Storage requirement for index-organized table is less
than that for heap-organized table (for example, 268MB
vs. 344MB for 200MB data). The additional storage
needed for heap-organized tables can be attributed to
duplication of key columns in the table and the primary
key index. For the heap-organized table, the primary key
index storage required 93MB and the actual table storage
required 251MB for 200MB data.

Query Performance

In order to compare the query performance for random
and range access, total time taken to access 1000 random
order_line rows and the total time for selecting 100,000
consecutive order_line rows are measured.

The index-organized table shows superior query
performance for both random and range scans. The
random access on the 100MB table took 0.92 seconds for

index-organized table as compared to 1.16 seconds for
the heap-organized table (See Figure 2). The same
performance is observed for larger data sets. The faster
random access for the index-organized table results from
finding both key and non-key columns in the primary key
index leaf block. The range scan query performance is
consistently faster for index-organized tables (See Figure
2). For the 100MB table, a range-scan on index-
organized table took 1.20 seconds as compared to 4.35
seconds for the heap-organized tables. Similar
performance is observed for larger data sets. The speed-
up can be attributed to the fact that the rows are clustered
in primary key order for index-organized tables, plus an
additional random I/O per row is avoided.
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Figure 2: Random and Range Scan Time

DML Performance

Time taken for inserting, updating, and deleting 2000
order_line rows are measured and compared for the two
organizations. The update statement involved
modification of the delivery_date field. Overall, while
insert and update performance of the two table
organizations are comparable, delete performs better for
index-organized tables (Figure 3). The anomaly in the
200MB case (Figures 3(a) and 3(b)), is because of a
larger B+-Tree height for the index-organized table as
compared to that for primary key index on heap-
organized table (4 vs. 3). Compared to updates where
only an extra I/O is incurred, this difference in time is
larger for inserts due to branch block splits in the
additional level.

Single row updates in both heap and index-organized
tables involve finding the target row via primary-key
index and then modifying a single structure (table or
index, respectively), so it is easy to argue that
performance of such updates will be comparable. We
focus instead on performance of updating multiple rows
with consecutive primary-key values. When compared to
just the primary key index of a conventional table, the
number of index blocks accessed for selecting the rows
that satisfy the where-clause is higher for an index-
organized table, since inclusion of non-key columns
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makes the size of its index rows larger than that of
primary-key index rows. However, due to guaranteed
clustered placement of consecutive rows, the number of
disk block I/Os for accessing and modifying target base
table rows is significantly lower, since heap-organized
tables generally lack such clustering. The latter reduction
in number of blocks is usually sufficient to offset the
earlier increase. This is reflected in our results (Figure
3(b)) which shows comparable update performance for
index-organized and heap-organized tables. Index-
organized tables will usually have better delete
performance because only a single structure (index)
needs to be modified as opposed to modifying two
structures (index and table) for heap-organized tables.
This is reflected in our results (See Figure 3(c)).
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Figure 3: Insert, Update, and Delete Time: without overflow.

4.2 Performance of Index-organized Table with
Overflow

This experiment compares the performance of order_line
table with column ol_dist_info pushed out to overflow
storage area, with that of the table without overflow. Two
types of Queries and DML statements were used against
500MB of data: (1) those accessing only index-resident
columns, that is, columns that have not been pushed out
to the overflow, and (2) those accessing the overflow-
resident column.

Query Performance

Pushing the column ol_dist_info to the overflow results
in higher leaf row density as less number of column
values per row needs to be stored in the index.

Accessing only index-resident column(s) : Higher leaf
row density achieved through the use of overflow leads to
improved performance for any query that accesses only
index-resident columns. This improvement is particularly
evident in the case of range access as less number of
index leaf blocks needs to be accessed (Figure 4: 0.98 sec
each for exact match, 1.21 sec. vs. 1.01 sec for range
scan).

Accessing overflow-resident column(s) : Access to
overflow-resident columns requires access to the index
leaf block followed by an access to the appropriate
overflow block, which in fact is similar to block access
sequence needed for heap-organized tables. Thus, in this
configuration, both random and range access query
performance deteriorates from 0.98 sec to 1.31 sec and
from 1.43 sec to 4.75 sec, respectively, which are
comparable to query performance for heap-organized
table (1.24 sec and 4.78 sec, respectively). The range
access query performance for accessing an overflow-
resident column improves to 2.09 sec if it follows a table
rebuild, since the rebuild clusters overflow row-pieces in
primary key order.
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Figure 4: Time for random and range query accessing index-

resident column(s) in 500MB index-organized tables.

DML Performance

Insert : Insert performance improves from 12.14 sec to
11.61 sec, mainly because reduction in index row size
lowers the frequency of splits during insertion into the
B+-Tree.

Delete : Delete performance however, deteriorates from
4.17 sec to 11.03 sec (approaching delete performance
for heap-organized table which takes 12.62 sec) as two
structures, index and overflow, need to be modified for
deleting the target base table rows.

Update : Higher leaf row density achieved through the
use of overflow leads to improved performance for any
update that modifies only index-resident columns. On the
other hand, any update that modifies an overflow-
resident column performs worse because it requires
accessing the target index leaf block and also the
appropriate overflow block.
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4.3 Performance of Secondary Index

This experiment compares the performance of secondary
index on a 500MB order_line table, created with index
and heap organization. The secondary index is created on
the ol_i_id column.

Guess DBA Usage: The guess-DBA is stored in the
logical row identifier improves the performance of a
secondary index-based scan by avoiding the primary key
traversal when possible, as confirmed by this experiment.
Index-based scan using valid guess-DBAs matches the
performance of secondary index- based scan on heap-
organized tables (Figure 5(b)). The following query is
used for this test, and it returns 8000 rows:

Q1: SELECT SUM(ol_amount) FROM order_line
WHERE ol_i_id BETWEEN 100001 AND 100050;
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Figure 5: Time for index-based scan

,QGH[�$YDLODELOLW\��A table reorganization renders the
secondary index of a conventional table unusable.
Subsequent to the reorganization, this would cause
queries (for example, Q1 stated above) that originally
required an index-based scan to incur the cost of a full-
table scan. However, when an index-organized table is
rebuilt, its secondary index remains usable (albeit with
invalidated guess-DBAs), thereby allowing an index-
based scan for such queries. Thus, for index-organized
tables the time for index-based scan after reorganization
is significantly better (5.07 sec for index-organized table
vs. 74.98 sec for heap-organized table).

Index-Only Scan versus Index-Based Scan: The
following query performs an index-only scan, and returns
200000 rows:

Q2: SELECT COUNT(*) FROM order_line WHERE
ol_i_id BETWEEN 100001 AND 100500;

In this experiment, the leaf row density of the
secondary index for the index-organized table is lower,
owing to its maintaining the 4-column primary key,
when compared to the index on the conventional table.
The resulting increase in leaf block fetches explains its
poorer performance of index-only scan when compared to

an index on a conventional table (0.7 sec for heap-
organized table vs. 1.0 sec for index-organized table).

However, for a query that involves accessing the
secondary key and the primary key columns, such as:

Q3: SELECT COUNT(*) FROM order_line WHERE
ol_i_id BETWEEN 100001 AND 100500 AND
ol_d_id=10;

(which fetches 20000 rows), a secondary index-only scan
is sufficient for index-organized tables because the
column ol_d_id is available as part of the index row. For
a heap-organized table, this would require a secondary
index-based scan. This results in significant performance
benefit for a secondary index on index-organized table
(0.1sec for index-organized table vs. 156.3 sec for heap-
organized table).

4.4 Performance of Key-Compressed Index-Organized
Table

This experiment compares the performance of a 500MB
order_line table with and without compression. The
experiment is conducted with Oracle8i, Release 2 on a
dual CPU Ultra-60 Sparc with 512MB of main memory
For the four column primary key, three column prefixes
are compressed. The data set typically has the same
prefix for 10 order lines. The compression resulted in
12% storage reduction in the primary key index leaf
blocks.

Time taken to access 1000 random order_line rows and
for selecting 100,000 consecutive order_line rows is
measured for the index-organized table with and without
compression. The random lookup query took 0.71 and
0.73 seconds for compressed and uncompressed
configurations respectively. The additional CPU
overhead to process compressed index-organized table
did not have any significant impact on the random scan
performance.

Range scan query took 0.77 seconds and 0.74 seconds
for compressed and uncompressed configurations. For
range scan, 12% fewer blocks are needed for the
compressed organization when compared to the
uncompressed organization. However, the savings in I/Os
is offset by the additional CPU overhead incurred to
extract the columns from the compressed table. This
resulted in comparable range scan performance.

5 Conclusions and Future Work
The primary B+-tree structure, with row data in leaf
blocks, is an ideal storage organization for primary key
access intensive applications. Traditionally, use of such
structures has been limited to OLTP applications.
However, we argue that an index-organized table with its
support for several additional features, is equally useful
in several new domains. Specifically, we discuss its use
in Electronic Order Processing, Internet Search Engines,
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Internet Portals, Electronic Catalogs, Time-Series, and
Data Warehouse applications. The applicability and
performance of index-organized tables is enhanced by
support for column placement control, use of logical row
identifiers with guess-DBAs in the secondary indexes,
key compression, and online reorganization.

The performance study demonstrates the superior
query performance for both random and range scans for
index-organized tables and comparable DML
performance to heap-organized tables. The experiment
on the effect of overflow demonstrates the benefit of
controlling placement of columns between index and
overflow storage areas. Secondary indexes on index-
organized tables with valid guess-DBAs showed
matching query performance with those on heap-
organized tables. The key-compression experiment
illustrates the storage savings can be achieved without
degradation in query performance.

We also plan to support bitmap indexes on index-
organized tables to increase its applicability to data
warehousing domain. For applications with large primary
keys that require several alternate access paths, the
current scheme of using primary key based logical row
identifiers in secondary indexes is not suitable. For
handing such applications, we are investigating an
alternate scheme that can optionally fall back to physical
row identifiers.
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