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Abstract

The rapid emergence of XML as a standard for
data exchange over the Web has led to con-
siderable interest in the problem of securing
XML documents. In this context, query eval-
uation engines need to ensure that user queries
only use and return XML data the user 1s al-
lowed to access. These added access control
checks can considerably increase query eval-
uation time. In this paper, we consider the
problem of optimizing the secure evaluation
of XML twig queries.

We focus on the simple, but useful, multi-level
access control model, where a security level
can be either specified at an XML element,
or inherited from its parent. For this model,
secure query evaluation is possible by rewrit-
ing the query to use a recursive function that
computes an element’s security level. Based
on security information in the DTD, we devise
efficient algorithms that optimally determine
when the recursive check can be eliminated,
and when 1t can be simplified to just a local
check on the element’s attributes, without vi-
olating the access control policy. Finally, we
experimentally evaluate the performance ben-
efits of our techniques using a variety of XML
data and queries.
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1 Introduction

Companies are using the Web as the main means of
information dissemination, sparking interest in mod-
els and efficient mechanisms for controlled access to
information content over the Web. In this respect, se-
curing XML documents is an important step, because
XML is rapidly emerging as the standard for data rep-
resentation and exchange over the Web.

Much of the work on XML access control to date
(see, e.g., [4, 5, 2, 10, 9, 3]) has studied models for
the specification of XML access control policies, fo-
cusing on issues such as granularity of access (e.g.,
DTD, document, element), propagation options (e.g.,
local, inherited), and conflict resolution (e.g., most
specific, mandatory). Mechanisms for the enforcement
of these XML access control policies have been studied
for the cases of document access (e.g., [9]), and docu-
ment browsing and authoring (e.g., [5, 2]). However,
despite the importance of query access to XML (see,
e.g., [7, 6]), there has been no work on enforcement
of access control policies for the case of XML query
access.

A naive two-step approach to secure XML query
evaluation is: (i) compute the query result using ex-
isting XML query processing techniques (see, e.g., [13,
16, 8, 1]), and (ii) filter the query results, using the ac-
cess control policies, in a post-processing step. While
this approach may appear attractive, it is not secure.
For example, consider the XML database of an online-
seller (the DTD is illustrated in Figure 1), which has
information about books and customer accounts. As-
sume that a specific user is allowed access to the book
information but not to any account information. If
only query results are filtered for accessibility, then
the following XQuery path expression:

/online seller[.//customer/name="‘smith’]//book

would allow the user to check the existence of customer
smith, which is clearly not the desired intent of the



access control policy. In general, secure query evalua-
tion requires the evaluation engine to ensure that user
queries only be permitted to check conditions on, and
return, XML data that the user i1s allowed to access.
In the above example, since the user is not allowed to
access account information, the query result returned
to that user should be empty, whether or not there is
a customer by that name.

This paper takes the first steps towards address-
ing the important problem of efficient, secure XML
query evaluation. For this purpose, we focus on tree
pattern (i.e., twig) queries that are the basis of many
XML query languages (see, e.g., [7, 6]). We consider
the simple, but useful, multi-level security model (see,
e.g., [11]) for XML data, where: (i) a security level
can be specified as an attribute at the granularity of
an XML element; and (ii) an element’s security level
is inherited by its sub-elements unless explicitly over-
ridden (either monotonically or non-monotonically).
Users can access elements whose security level is no
higher than their own. The DTD identifies which el-
ements must, may, or cannot specify a value for the
security level attribute. This security model elegantly
captures the key features of multiple granularity ac-
cess control specification, propagation by inheritance,
and overriding that are present in many of the XML
access control models proposed in the literature.

Our technical contributions are as follows.

e First, we show that secure query evaluation is pos-
sible for a twig query, and the multi-level security
model, by simply rewriting the query to use a re-
cursive function that computes an element’s se-
curity level by identifying the element’s nearest
ancestor (or self) where a security level attribute
is specified.

Since existing XML query processors can han-
dle such functions, this approach has the advan-
tage that secure query evaluation does not require
changes to query evaluation engines.

e In general, these added access control checks can
considerably increase query evaluation time. For
example, we observed that the query evaluation
time of a simple path query on a 30Mb XMark
benchmark data set went up from one second to
about five seconds! The key to optimizing the se-
cure evaluation is taking advantage of the DTD,
which identifies elements that must, may, or can-
not specify a value for the security level attribute.

For our second contribution, we consider DAG-
structured DTD graphs, and devise efficient algo-
rithms that optimally determine when a recursive
check can be eliminated, and when i1t can be sim-
plified to a local check on the element’s attributes,
without violating the multi-level security policy.

online_seller @
/ \
all_items @ all_accounts

| .
@ @ account

+
book

title author customer payment_info

OIS AONING
name cart @
@ *

item @

Figure 1: Example DTD Graph

e Finally, we experimentally evaluate the perfor-
mance benefits of our techniques, using XMark
and HL7 data, and a variety of twig queries. Our
results demonstrate the significant benefits of op-
timizing the secure evaluation, while keeping opti-
mization time very low, for both sparse and dense
security level annotations in the data and DTD.

2 Motivation

Before we formally define our problems, and develop
our solutions, we’d like to present a few examples that
capture the essence of optimizing the secure query
evaluation of twig queries.

Example Setting:

Consider the example DTD graph of Figure 1,
representing the XML database schema of an
online seller. The database contains informa-
tion about multiple (zero or more) accounts. Each
account is associated with an optional payment_info
(e.g., credit card number), and one or more customers
(e.g., different members of a family). Each customer
has one name and a cart that contains zero or more
items. The database also contains information about
one or more books. Each book has one title and one
or more authors. Each author has one name. These
various multiplicities are shown as edge labels of the
DTD graph (? for optionality, 1 for one, * for zero or
more, + for one or more). Note that the DTD graph
is a DAG, since the name element 1s a sub-element of
both the customer element and the author element.
Each element in the DTD can specify whether its
instances must specify a value for the SecurityLevel
attribute (i.e., it is mandatory), may specify a value
for this attribute (i.e., it is optional), or cannot specify
a value for this attribute (i.e., it is forbidden). These



are depicted in the DTD graph of Figure 1, as circles
containing a boldface M, O, and F, respectively, asso-
ciated with the element nodes. For example, specify-
ing a security level is mandatory at the all_accounts
node, optional at the account and cart nodes, and
forbidden elsewhere.

The actual values of the SecurityLevel attributes
are specified in the XML data items themselves, and
may vary from instance to instance. In our multi-
level security model, these values are from a partially
ordered domain, though our examples will use a to-
tally ordered domain (of integers in the range [1..n]
for simplicity of exposition). For example, in an in-
stance of this DTD, the (mandatory) SecurityLevel
of the all_accounts node may be 2 (medium secu-
rity). Some of the accounts may explicitly specify
a higher security level, say 3 (high security), while
others inherit the security level of 2 specified at the
all_accounts node. Assume that some high secu-
rity customers are willing to let their cart nodes
have medium security (say, to permit statistical anal-
ysis), while still preserving high security of their other
nodes. These cart nodes would need to override
the inherited security level, by explicitly specifying a
SecurityLevel of 2. This natural example of non-
monotonic overriding (from 2 to 3, and back to 2, for
nodes deeper in the XML tree) illustrates that over-
riding of security levels need not always be monotone.

Twig Queries:

Some example path and twig queries consistent with
this DTD graph are illustrated in Figure 2. Nodes are
labeled with element tags or string values; edges are ei-
ther parent-child (single edge) or ancestor-descendant
(double edge); solid edges are between elements, while
a dashed edge is between an element and a string value.
Additionally, a node may be labeled with an asterisk,
indicating that it is in the query projection list. For
now, ignore the other node labels.

Each of the queries in Figure 2 can be expressed
as a single XPath expression. For example, the path
query in Figure 2(a) can be expressed as:

//customer[./cart/item = ‘labyrinths’]

Secure Query Evaluation:

Each twig query can be evaluated securely, by addi-
tionally testing a predicate at each query element node
that compares the security level of that node (com-
puted by identifying the element’s nearest ancestor
(or self) where a SecurityLevel attribute is speci-
fied) with that of the user. We refer to this as the
recursive check, or RC. Thus, annotating each query
element node with an RC ensures secure evaluation.
While annotating each query element node with
an RC may sometimes be unavoidable, often one can
eliminate checks at some nodes (i.e., a no check, or

NC), while at other nodes one may be able to sim-
plify the check to merely examining the value of the
SecurityLevel attribute at that node (i.e., a local
check, or LC). We illustrate this behavior through a
series of examples, mainly for the case where the rel-
evant part of the DTD graph is a tree structure, and
finally one example where the DAG structure of the
DTD graph plays a role.

It is important to keep in mind that these optimiza-
tions (like all query optimizations) are performed with-
out examining the actual database instance. Only the
DTD graph and the query are examined, and hence
our reasoning needs to allow for any possible database
instance that is valid with respect to the DTD.

Optimizing Parent-Child Edges:

Consider the path query in Figure 2(a). Since secu-
rity levels are inherited in a top-down fashion, a nat-
ural strategy is to examine the query nodes in a top-
down fashion as well. One can optimize this query in
a top-down fashion as follows. At the customer node,
one needs to retain the RC annotation label, since a
customer node inherits its security level (either from
an account node, or the all_accounts node, depend-
ing on the instance). Once the customer node is de-
termined to be accessible, the only way its child cart
node may be inaccessible is if it explicitly overrides
the inherited security level. This possibility can be
checked using the local check, LC; an RC is not needed!
Finally, an item node is not permitted (by the DTD)
to explicitly specify its own security level, hence it al-
ways inherits it from its parent cart node. Thus, the
check at the item node can be eliminated, modifying
the annotation label to NC. It is easy to see that this
is optimal, in that no RC annotation label can be con-
verted to an LC or an NC, without the possibility of the
security policy being violated in some XML database
instance.

The query in Figure 2(b) is an example where all
the RC annotation labels can be converted to NC, i.e.,
no check needs to be performed. To see this, observe
that all ancestors of the book node in the DTD graph
are forbidden to specify a value for the SecurityLevel
attribute. Similarly for the author node, and the name
child of the author node. Again, the query can be
optimized in a top-down fashion.

A similar reasoning as the one applied for the query
in Figure 2(a) can be employed for the query in Fig-
ure 2(c), using a top-down strategy, examining each
parent-child edge, one at a time. More generally, if the
DTD node corresponding to a child query node can
specify the SecurityLevel attribute (either manda-
tory or optional), the annotation label at the child
query node can be simplified to LC; if the correspond-
ing DTD node is forbidden to have the SecurityLevel
attribute, the check can be eliminated (equivalently,
the annotation label becomes NC).
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Figure 2: Example Path and Twig Queries

Optimizing Ancestor-Descendant Edges:

Consider the path query in Figure 2(d). Again, let us
examine this query in a top-down fashion. As with the
path query in Figure 2(a), one needs to retain the RC
annotation label at the customer node. Now, while an
item node is not permitted to specify a value for the
SecurityLevel attribute, its security level may not
be the same as the customer node. This may have
been overridden (either by increasing or decreasing the
security level) at the (missing) cart node. To check
for this possibility, one needs to retain RC annotation
label at the item node. Again, this query is optimal,
in that the annotations identified by our technique are
necessary to ensure a secure evaluation.

Insufficiency of Top-down Amnalysis:

The twig query in Figure 2(e), with ancestor-
descendant edges, is our first example that illustrates
the insufficiency of a simple top-down analysis. A top-
down analysis would determine, as in the case of Fig-
ure 2(d), that each of the two item nodes should re-
tain their RC annotation labels. However, this is sub-
optimal! To see this, note that an item node has to
inherit its security level from its (parent) cart node.
Since a customer node has only one cart node, both
item nodes are guaranteed to have the same security
level, independent of its actual value. For this reason,
one of the two RCs can be eliminated, as depicted in
Figure 2(e).

We will show later that a simple forward pass, where
query nodes are examined in a topological order and
state information is maintained about visited query
nodes, suffices to infer the optimal security check an-
notations for the secure query evaluation.

Note that while the query in Figure 2(f) appears
similar to the one in Figure 2(e), there is a crucial
difference. The two item nodes here may inherit their
security levels through different cart nodes, each of
which has the ability to independently specify its own
value for the SecurityLevel attribute. This forces
both item nodes to retain their RC annotation labels.

Dealing with Existential Checks:

Consider the twig query in Figure 2(g). This can be

expressed as the XQuery expression:

//all_accounts[.//name]//payment_info

Intuitively, this query returns all accessible
payment_info nodes, provided that its ances-
tor all_accounts node is accessible, and this

all_accounts node has an accessible name descen-
dant. Since payment_info and name nodes both
inherit their security levels through account nodes,
one may be tempted to infer that both nodes need
to retain their RC annotation labels, as was the case
in Figure 2(f). However, this would be sub-optimal.
The key observation is that for any given accessible
payment_info node, the DTD guarantees that its
(parent) account node will have at least one (descen-
dant) name node (the path in the DTD graph from
account to name has edge labels from the set {1,+}),
and this name node will have the same security level
as the payment_info. As a result, replacing the RC
check at name by an NC does not violate security.
Now, consider the symmetric case in Figure 2(h),
where the query returns all accessible name nodes in-
stead. In this case, however, one cannot eliminate or
simplify either of the RC checks. Essentially, the DTD



graph does not guarantee (because of the 7 edge label
between account and payment_info) that there is a
payment_info node with the same security level as an
accessible name node.

Dealing with a DAG DTD:

Finally, we hint at the kinds of issues created when
dealing with DTD graphs that are not trees, but
DAGs. Consider the path query in Figure 2(i). Tt sim-
ply checks if there is an accessible name node in the
database with content smith. Such a name node, if it
exists, might be the name of an author, or the name
of a customer. By not performing an RC check, one
might mistakenly determine that name nodes that are
descendants of inaccessible account nodes are accessi-
ble. For this reason, the RC check needs to be retained
at name.

If, however, the query in Figure 2(i) did not test
the content of the name node, but merely checked for
the presence of an accessible name node, its existence
and accessibility are guaranteed by the DTD (since
the online supplier has at least one book, which has at
least one author, which has one name, all of which are
accessible).

In the sequel, we shall use the intuitions developed
in this section to present efficient algorithms for deter-
mining the optimal security check annotations for any
twig query, for the case of tree-structured and DAG-
structured DTD graphs.

3 Security Model and Semantics

In this section, we describe the security model, the
class of queries we consider, security check annota-
tions, and the semantics of secure query evaluation.
We assume the reader is familiar with XML.

3.1 DTDs and Queries

Essentially, a DTD is an extended context-free gram-
mar describing the structure of elements in terms of
required and possible subelements, and attributes that
may be attached to the element. In this paper, we fo-
cus on DTDs that can be represented as a (directed)
graph defined as follows.

Definition 3.1 [DTD Graph] A DTD graph is a fi-
nite node-labeled and edge-labeled directed graph D =
(V, E), such that: (i) each node in V is labeled by an
element tag, and (ii) each edge has a label from the
set {+,*,7,1}. O

It should be clear that the set of edges leaving a
node labeled A and entering, say B, C, D, define el-
ement A as composed of subelements B, C, D. Fur-
thermore, edge labels indicate the frequency of subele-
ments to be expected: +,*,7, 1 meaning, respectively
“one or more”, “zero or more”’, “zero or one”, and

“exactly one”. DTDs also permit a description of at-
tributes that may be attached to an element’s opening
tag. Attributes are easily accommodated in the above
definition of a DTD graph. For convenience, we as-
sume an attribute is accessible to a user whenever its
parent element 1s. This assumption can be easily re-
laxed by treating attributes like subelements.

The next question i1s what kind of queries? While
various query languages have been proposed for XML
and, of those, XQuery is essentially emerging as a
standard, the basic paradigm in XML query evalua-
tion is finding all matches for a given pattern tree.
Indeed, XPath expressions (restricted to child and
descendant axes), which are borrowed into XQuery,
essentially correspond to (somewhat restricted) pat-
tern trees. We call these kinds of pattern tree queries
as twig queries. We gave several examples of twig
queries in Section 2. We define them formally next.

Definition 3.2 [Twig Query] A twig query is a rooted
node-labeled and edge-labeled tree such that (i) its
nodes are labeled by element tags, with the excep-
tion that its leaves may be labeled by tags or values,
(ii) its edges are labeled pc (for parent-child) or ad
(for ancestor-descendant), and (iii) a subset of nodes
is marked distinguished. O

In our examples, we use double lines for ad-edges
and single lines for pc-edges. Leaf labels could be
string values such as “cosmicomics” or values of any
other base types such as int, etc. Distinguished nodes
(DNs) correspond to elements returned as query an-
swer. XPath allows exactly one DN in a query, but we
don’t make this restriction. We refer to the list of DNs
of a twig query as its projection list.

3.2 Multi-level Security and Authorization

We assume a set of security levels, which may
be any finite partially ordered set. For sim-
plicity of exposition, we use total orders in all
our examples. For instance, in a military envi-
ronment, 1t is common to use the security lev-
els S = {unclassified, confidential, secret, top secret},
with the ordering unclassified < confidential <
secret < top secret. The security levels used in a com-
mercial application may vary, and depend on the or-
ganization’s policy.

The basic idea behind multi-level security is that
each resource/object (e.g., XML element) is poten-
tially assigned a security level, as is each user/subject
that is authorized to access objects in the space (e.g.,
a collection of XML documents). Here, “user” might
include an application or a human. A subject may
only access an object if the security level assigned to
the subject is no less than that assigned to the object.
In general, separate security levels may be associated
depending on the kind of access action (e.g., read or
write). Since our focus is query processing, we only



consider read actions, and thus leave them implicit.
Thus, a subject whose security level is “secret” can
access (i.e., read) objects with security level “secret”,
“confidential”, or “unclassified”.

In the context of XML data trees, security levels are
assigned to objects (elements) by associating a sep-
arate attribute called, say SecurityLevel. Thus, a
DTD needs to permit such attributes in addition to
the usual content of elements. Since XML 1s tree struc-
tured, the security level of an element, if not speci-
fied, can be inherited from its closest ancestor. On the
other hand, security level defined at an element al-
ways overrides the inherited one. This overriding can
be monotone, in that security levels defined at subele-
ments are never less than those defined at their parent,
or non-monotone where no such restriction is imposed.
Clearly, non-monotone overriding is more expressive in
that it permits a broader class of applications. For this
reason and for brevity, in the sequel, we only consider
non-monotone overriding.

3.3 Security Model

It can be tedious, and even unnecessary, to have to
specify a value for the SecurityLevel attribute at ev-
ery element’s opening tag. To alleviate this burden,
and to offer some flexibility, we assume the DTD dis-
tinguishes elements (i.e., nodes of DTD graph) into
three types:

¢ mandatory: all instances of such an element in
a data tree must specify their security level. In
practice, the DTD may specify a default value,
which an instance is free to override, an issue that
need not concern us.

e optional: instances of such an element in a data
tree may (but don’t have to) specify their security
level.

e forbidden: instances of such an element in a data
tree are not allowed to specify their own security
level, i.e., it must be inherited, or if it cannot be
inherited (e.g., it is the root of a data tree), then it
will be assumed to be accessible to every subject.

In Figure 1, we gave an example of a DTD where
nodes are classified into one of these three types. We
refer to a DTD as dense if many of its nodes belong
to either the mandatory or optional class and sparse
if many belong to the forbidden class. The purpose
of this classification is to experimentally explore and
understand for what kind of DTDs, optimizing secure
query evaluation will result in most savings.

Before leaving this section, we point out that while
XML documents are trees, the DTD graphs we con-
sider may be DAGs. Thus, at the level of a DTD,
an element may inherit its security level from multi-
ple ancestors. This is the case for the element name in

Figure 1.1

4 Secure Query Evaluations and Our
Problem

Given a twig query against a collection of XML docu-
ments with assigned security levels, how can we eval-
uate the query so that exactly those answers that the
user is supposed to see are returned? In Section 2,
we introduced the notion of checking additional predi-
cates potentially at every data tree node that matches
a twig query node, by examining the value of the
SecurityLevel attribute in the data. These are RC
(recursive check), LC (local check), and NC (no check).
We call these security check annotation labels (SC an-
notation labels). In this section, we make them more
precise and suggest an implementation of these checks
using XQuery. Finally, we give a formal statement of
the problem studied in this paper.

LC merely amounts to checking the value of the
SecurityLevel attribute at a given node, while NC
is a no-op. RC, on the other hand, involves recursively
checking the value of this attribute at every node start-
ing from the given node until a nearest ancestor is
reached where the attribute is defined. Consider the
following function definition in XQuery:

DEFINE FUNCTION
self-or-nearestAncestor (element $e)
RETURNS integer{
IF $e/0@SecuritylLevel THEN
RETURN $e/@SecuritylLevel
ELSE RETURN self-or-nearestAncestor($e/..)

}

This function computes the value of the
SecurityLevel attribute at the nearest ancestor
of the current node where it is defined. We can now
implement LC at a node by adding the predicate
[6SecurityLevel < $usl OR NOT @SecurityLevel]
to the label of the node. Notice that in a twig
query, each node label, i.e., an element tag ¢, or
value v, really stands for the predicate tag = ¢, or
content = v. By adding the additional predicate
corresponding to SecurityLevel above, we really are
taking a conjunction of the two predicates. In the
same way, we can implement RC at a node by adding
the predicate [self-or-nearestAncestor(.) <
$usl]. As an example, the query of Figure 2(g), with
SC annotation labels incorporated, corresponds to the
XPath expression all _accounts[@SecurityLevel
< $usl OR NOT @Securitylevel] [//name]
//payment_info[self-or-nearestAncestor(.) <
$us1]. Thus, every twig query with SC annota-
tion labels added can be expressed as a query with
function calls added for local and recursive checks

Tt turns out all ancestors on one of the paths from root to
name are forbidden to specify their security level, but that is an
aside.



and evaluated using the same evaluation engine. To
formulate the optimization problem, we define the
following:

Definition 4.1 [SC Annotated Query] Let @ be a
twig query. A security check annotation of ) is es-
sentially @@ with each of its nodes associated with
one of the SC annotation labels RC, LC, NC. Define
NC < LC < RC, reflecting the complexity of performing
these checks in general. Let () be a twig query and
Qq, @p any two security check annotations of (). Then
define Q, < @Qp provided for every node u of @), the
SC annotation label associated with u by @, is < that
associated by (p. O

The intuition behind the above definition is that a
security check annotation @, is dominated by (i.e., is
no more expensive to evaluate than) another security
check annotation @ provided on a node by node basis,
the SC annotation label associated by @, is dominated
by that associated by .

Before optimizing security check annotations, we
need to characterize what is a safe evaluation of
a query. Suppose ) is a twig query with nodes
(w1, ..., ug), posed by a user with user security level usl.
Let DB be a database of XML documents with secu-
rity levels assigned to their elements. Answers to twig
queries are obtained by finding matchings. A match-
ing 1s a function that maps @’s nodes to data tree
nodes such that all node predicates are satisfied and
further whenever nodes u and v in @ are related by
a pc-edge (resp., ad-edge), their images are related by
a parent/child (resp., ancestor/descendant) relation-
ship. A matching  : @ — DB binds each node u;
to a data tree node z;. We call the resulting tuple of
bindings (z1, ..., z;) a binding tuple. A binding tuple
(21, ..., z) is safe provided the security level of every
component z; is no more than usl. The safe answer
to the above query @) 1s obtained from the set of safe
binding tuples and projecting that set onto the set of
nodes appearing in the projection list. More precisely,
let S be the set of safe binding tuples of query @, and
let {w;,,...,u;,, } C {u1,...,ux} be the projection list
of Q. Then the set of safe answers to @ is the set
Tuiy, i, (S)

For a query @, we say an SC annotation @), of @ is
correct provided the set of answers returned by eval-
uating @, normally (i.e., as a regular twig query) is
equal to the set of safe answers to () defined above.
First, note that there is a trivial way to make sure
we get exactly the safe answers: annotate all query
nodes with RC. This guarantees the evaluation of )
never accesses nodes the user with security level usl 1s
not allowed to. However, this can be very expensive
and we seek to optimize SC annotations. More pre-
cisely, given a twig query, we seek to find an optimal
SC annotation of @, i.e., an SC annotation @, such
that: (i) @, is correct, and (ii) there is no correct SC

annotation @), such that @’ < @,. This is the central
problem we address in this paper.

5 Tree-Structured DTD Graph

In this section, we consider optimizing SC annotations
of twig queries for the case the DTD graph is a tree. In
the next section, we briefly deal with DAG-structured
DTD graphs. We approach the problem of optimiza-
tion in the following stages. First, we consider queries
containing only pc-edges and then consider queries
containing both pc- and ad-edges.

5.1 Parent-Child Queries

Call a twig query a pc-query provided it contains no
ad-edges. Intuitively, it should be simple to optimize
SC annotations on these queries, since it does not in-
volve examining arbitrarily long paths in the DTD.
First, we settle the optimal annotation label for the
query root and then determine how the remaining
nodes should be optimally annotated. It turns out
this kind of separation still allows us to preserve the
global optimality of the annotation of the query as a
whole.

Root Annotation Label:

Let n be the query root and n’ be the correspond-
ing DTD node (which need not be the DTD root). If
node n’ is classified as mandatory by the DTD, then
clearly n’s annotation label can be LC. Suppose this is
not the case. Then n'’s status is optional or forbid-
den. In this case, examine every path from the DTD
root to node n'. If there is any path p such that there
is a node v’ (# n') on it whose status is mandatory
or optional, then we have no choice but to perform
a recursive check at node n, i.e., its annotation label
must be RC in any correct query annotation. This is
because in a data tree, n may or may not have its
SecurityLevel defined and hence it may need to be
inherited from a nearest ancestor where it is defined.
Suppose there is no such path p satisfying the above
condition, i.e., all nodes on such paths have a forbidden
status in the DTD. In this case, the status of n’ deter-
mines the optimal annotation label for n: if n’’s status
is optional, then it is LC, while if n’’s status is for-
bidden, it is NC. The correctness of these assignments
should be self-evident. We deal with other nodes in
the query tree next. Procedure rootSCA in Figure 3
is the pseudocode for the procedure just described.

Annotation Labels for Other Nodes:

Let # be any node in the query tree, other than the
root. Let z’ be the corresponding node in the DTD.
Whenever the status of ' in the DTD is optional or
mandatory, we set the annotation label of x to be LC;
otherwise we set it to be NC.



procedure rootSCA
Input: query root n
Output: node n with its SC annotation
let n’ be the DTDgraph node corresponding to n;
if (mandatory(n')) { set LC(n); return };
if (3 a DTDpath p from DTDroot to n’, 3 node U’(;ﬁ n'
on p s.t. (mandatory(v') or optional(v'))) set RC(n);
else {
if (optional(n')) set LC(n);
if (forbidden(n')) set NC(n); }
end procedure

Figure 3: Procedure rootSCA

5.2 General Queries

In this section, we develop an algorithm for optimiz-
ing SC annotations of arbitrary twig queries, for the
case of tree-structured DTD graphs. The reasoning in-
volved in determining optimal SC annotations for this
case is quite non-trivial, even though we assume the
DTD is tree-structured. First, we observe that the op-
timal SC annotation of the query root can be done in
a way 1dentical to what we did for PC queries,; i.e., call
procedure rootSCA (Figure 3).

Nodes of the twig query Q) are traversed top-down
in some topological order. If the current node ns is the
query root, it is dealt with as above. Otherwise, let
ny be the node in the DTD graph corresponding to nsy
(i.e., it has the same tag). Let ny be the parent of ny in
@ and let n be the corresponding DTD graph node.?
If there is no path p from n} to nf, containing a node
v}, different from nf, n%, whose status is mandatory or
optional, then ny cannot inherit its security level from
an ancestor, so if the status of n}, is either mandatory
or optional, we can set its annotation to LC, and other-
wise to NC. The more difficult case is when there is such
a path p. In this case, if the status of n/, is mandatory,
again, we can set its annotation to LC. If it is optional,
then depending on whether there is a unique node in
the DTD that specifies the security levels for all data
tree instances of n), under the data tree instance of nf,
we set the annotation of ns to a tentative label, which
may subsequently change. These intricacies are best
illustrated with examples.

First, consider Figure 1(d). Tt is easy to see the
root’s annotation label must be RC. Consider the item
child of the root. Since the DTD path from customer
to item contains cart which is optional, the current
node must get an RC. This is an optimal annota-
tion. Next, consider the only slightly different Fig-
ure 1(e). Suppose the topological order used is the
root customer, followed by the right item, followed
by the left. The annotation labels of the root and
its two children are determined exactly as before, and
are set to RC. However, when the second item child is
processed, we notice that it must inherit its security
level from an intermediate cart node in the DTD path

2Note that the edge (n1,72) might be an ad-edge.

from customer to item, and all edges on the path seg-
ment from customer to cart (there is only one!) are
not labeled * or +, so all item children must inherit
from a unique cart node. This means the previously
processed item node can act as an existential witness
for the second item node, whose annotation label can
thus be replaced by an NC. By contrast, for the query of
Figure 1(f), which looks identical in structure to that
of Figure 1(e), we cannot do this, since the DTD path
from account to cart (the node with a non-forbidden
status), has one edge labeled 4, which destroys the
uniqueness property mentioned above.

To illustrate yet another intricacy and subtlety,
consider yet another identical looking query of Fig-
ure 1(g). Initially, all three nodes get an RC. In
particular, suppose we visit node name before node
payment_info, there is no way to know the final anno-
tation label. However, we can reason that in the DTD,
the name node, being of forbidden status, must inherit
its security level from the ancestor account. So, if the
payment_info node in the query has an RC on it (as it
does), it would ensure an accessible account ancestor.
Since the DTD path from the account node to name
node is free from edges labeled ? or *, we know there
is guaranteed to be a name descendant, which must be
accessible, since its security level is inherited from the
account ancestor, which 1s accessible. So, in the query,
the name node’s annotation label can be changed to an
NC. We leave it to the reader as a simple exercise to see
why in yet another similar query, Figure 1(h), none of
the child labels can be changed from an RC.

Algorithm ForwardPassTree of Figure 4 presents
pseudo-code for optimizing SC annotations of arbi-
trary XML twig queries, for the case of tree-structured
DTD graphs. By using case analysis, we can show the
following result.

Theorem 5.1 (Optimality of ForwardPassTree)

Let @@ be an arbitrary XML twig query, and
D be any tree-structured DTD graph. Algo-
rithm ForwardPassTree correctly optimizes the
SC' annotations of Q on D. Further, it is optimal
n that if Q4 1s the SC annotation of @ computed by
Algorithm ForwardPassTree, then /A SC annotation

Qb(# Qa) of Q such that Qy < Qa.

6 DAG-structured DTD-graphs

In extending our ForwardPass algorithm to deal with
DAG-structured DTDs, we need to allow for the fact
that an element in the DTD graph may inherit its
security level from any one of a number of different
elements, because multiple DTDpaths are possible be-
tween the same pair of nodes. For example, the DTD
graph of Figure 1 shows that there are two paths be-
tween online _seller and name elements in the DTD.
If the book elements, for example, were permitted to



o H

G|
1

Algorithm ForwardPassTree

Input: query @

Output: query @ with SC annotation

for (n € topological order of nodes(Q)) {
if (queryroot(n)) rootSCA(n);
else nonrootSCA(n);

end Algorithm

procedure nonrootSCA
Input: non-query root node no
Output: node ny with its SC annotation
let nl2 be the DTDgraph node corresponding to nga;
let n1; = parent(nz) in @, and n'l be its DTDgraph node;
/* edge between m; and ny could be anc-desc */
if (3 a DIDpath p from n} to n,, I node vi(# ni, nj)
on p s.t. (mandatory(vll) or optional(v’l))) {
if (mandatory(n,)) set LC(n2);
else if ((7, setIh(né)) is not in ListIh) {
set RC(n3); /* this may change later */
if (‘forbidden(n;) and (uniqueIhNode(n'l,n;) or
(existentialWitness(nsy)))) {
add (ng,TLl) to canWit;
else if (optional(ng) and uniqueIhNode(nll,n;)) {
add (ng,TLl) to canWit; } }
else {
if (uniqueIhNode(n' 7n;)) {
if (forbidden(n,)) set NC(ngz);
if (optional(n;)) set LC(nso);
set simplified(ngz); }
else if (existentialWitness(nz)) {
for ((mg, setIh(né)) in ListIh) {
if (‘forbidden(n;) and iswitness(mg,n;)) {
set NC(ng2); set simplified(ng); }

I
else set RC(n2); }
} else {
if (mandatory(n') or optional(ng)) set LC(n2);
if (forbidden(n,)) set NC(nz); }
/* update reallh and ListIh */
if (‘forbidden(n;)) set realIh(n;) = setIh(n;);
else set reallh(nl) = {n;},
add {n}, reallh(n,)) to ListIh;
/* check candidates for modification to SC annotation */
if (!(simplified(nz2))) {
for ({m2,m1) € CanWit) {
if (uniqueIhNode(m'l,m;) and
(setIh(mg) = realIh(n;))) {
if (optional(m;)) set LC(m2);
if (‘forbidden(m;)) set NC(ms3);
remove (mg,m1> from CanWit; }
else if ((existentialWitness(mo)) and
‘forbidden(m;) and isHitness(n;,m;)) {
set NC(ma3);
remove (mg,ml) from CanWit; } }

end procedure

function uniquelhNode

Input: DTD nodes n'l,n'2

Output: checks if there is a unique node that specifies
security levels for all no under a given n;

for (v' € setIh(n;)) {
if (3 a DTDpath p; from n'l to v', and 3 edge e on pi1,

s.t. (label(e) = ‘4’ or label(e) = ‘x’)) {
return FALSE; } }
return TRUE;
end function

function isWitness
Input: DTD nodes n;,lm; ,
Output: checks if m, is a witness, given an n,

if (‘v’u'1 € realIh(n;), 3 a DTDpath p; from u'l to m;, s.t.

((V nodes ’Ul2 (ﬁm’;) on pi1, forbidden(v;)) and
([define Ug on path p; as the lowest node from which
nl2 and rnl2 branch] (all edges on the path from ’Ug
to m; satisfy (label(e) = ‘4’ or
label(e) = “1°))))) { return TRUE; }

turn FALSE;
d function

Figure 4: Algorithm ForwardPassTree

have security levels, different name elements in the
database may inherit their security levels from either
book elements or account elements.

In this section, we highlight the key differences
between dealing with tree-structured and DAG-
structured DTD-graphs.  First, since the inheri-
tance sets, setIh, of different elements may par-
tially overlap, it does not suffice to check (in Pro-
cedure nonrootSCA) whether or not an element n’s
setIh(n') is present in ListIh; one needs to use con-
tainment and overlap tests instead. Second, it is pos-
sible that a query element n’s SC annotation can be
optimized when a set of other elements are present in
the query, but cannot be optimized in the presence of
any subset of these elements. This happens, for ex-
ample, when each member of the inheritance set of n’
is a unique node; in this case n’s SC annotation can
be simplified if, for example, each of the nodes in this
inheritance set is matched in the query. Third, for a
query element n to be an existential witness to an ele-
ment ny, n would need to be an existential witness to
ng for each of the possible DTD paths along which ns
may be instantiated.

The task of incorporating these changes into the
ForwardPass algorithm is simplified because the ba-
sic logic of the various procedures and functions in
Figure 4 are already specified in terms of members of
setIh, and conditions that need to hold along some
path and nodes/edges along this path, or along all
paths. We omit a detailed presentation of the algo-
rithm for reasons of space.

7 Experimental Results

7.1 Experimental Setup

We ran our experiments over the XMark
benchmark  dataset and the HL7  clinical
dataset. The DTDs of XMark and HL7 are

found at  http://monetdb.cwi.nl/xml/ and
http://www.hl7.org, respectively. We constructed
two very different DTD access specifications for
XMark: one in which only 3 element types are per-
mitted to have a security level (we call this a sparse
DTD); in the other DTD, half of the element types
are permitted to have a security level (a dense DTD);
all are optional, none are mandatory.

Two XMark synthetic datasets were created based
on these DTDs; all elements with an optional secu-
rity level were assigned values for their SecurityLevel
attribute. The HL7 dataset was designed so that
25% of the patient elements have a “secure” secu-
rity level, and the other 75% are “unsecure”. For
these unsecure patients, the observation elements
are divided equally into “secure” and “unsecure”
security levels. The user is designated as “unse-
cure”. For query evaluation we used XALAN, found at
http://xml.apache.org, because of its support for
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Figure 5: Queries Used in the Experiments

external functions, which is needed for evaluating our
security check annotations. Our optimizer was imple-
mented on top of XALAN.

Our experiments were run on a lightly loaded Unix
machine with 128 MBytes of memory. In all experi-
ments, time 1s reported in seconds.

7.2 Queries

We used the queries of Figure 5. The query e, and
e, are provided by XMark. The synthetic queries,
e@3 and e@4 for HL7 are created. ey and eQ3 are
path queries with only parent-child edges, and eQs
and eQ)4 are branching queries with both parent-child
and ancestor-descendant edges.

In the case of XMark, the dense DTD specifies that,
of the elements mentioned in e@q and e, the el-
ements people, person and open_auction can have
values for the SecurityLevel attribute, while the
sparse DTD specifies that only the element people can
have such values. When the dense DTD is used, the
optimal e is that people and person are annotated
LC and others are annotated NC, and the optimal e@-
is that people and open_auction are annotated LC,
and others are annotated NC. With the sparse DTD,
in the optimal query e@;, people is annotated LC and
others are annotated NC, and the optimal query eQs 1s
that people is annotated LC and others are NC.

In the case of HL7, the elements patient and
observation (both mentioned in the queries) can have
values for the SecurityLevel attribute. The optimal
query e@s is that patient and observation are LC
and others are NC, and in the optimal eQ)4, patient is
LC, observation_seg is RC, and others are NC.

7.3 Impact of Our Optimization

We varied the size of datasets from 5MB to 30MB.
The size of the secure answer for each query is the
same over varying datasets.

Figures 6(a), (b) and 7(a) report query evaluation
times. The graphs of Figures 6(a) and (b) are the
results of XMark and report four curves each: the op-
timal e@; (resp., eQ2) for the dense DTD and the
sparse DTD and non-optimal (with RC annotations at
all nodes) eQ; (resp., eQ2) for the dense DTD and the
sparse DTD. Figure7(a) is the result of HL7 and re-
ports two curves: the optimal and non-optimal (with
RC annotations at all nodes) eQs. The result of eQ4

was very similar, and we omit the results for reasons
of space.

There are two significant points worth noting. Con-
sider Figure 6(a), i.e., evaluation times for eQ;. First,
the benefits of our optimization are substantial. For
example, for the 30Mb dataset, the unoptimized se-
cure evaluation (i.e., with RCs at each node) for the
sparse DTD took 5s, whereas the optimized secure
evaluation took only 1.25s, a savings of 75%! Further,
since query evaluation without performing any secu-
rity checks took 1s, the optimized secure evaluation
did not add too much overhead. Second, the bene-
fits of our optimization are more for the case of sparse
DTDs than for the case of dense DTDs. The reason for
this 1s as follows. The unoptimized secure evaluation
is more expensive when the data is sparsely annotated
than when it is densely annotated, since (in the sparse
case) each recursive check has to traverse more par-
ent pointers, on the average, to reach a node at which
the SecurityLevel attribute specifies a value. How-
ever, the optimized secure evaluation is cheaper for
sparse DTDs, since our optimization algorithm infers
that many more nodes can be annotated with NC and
LC than in the dense case. A similar behavior is also
observed for the twig query e@s in Figure 6(b).

The dataset of HL7 contains many branch instances,
compared to XMark dataset, resulting in the higher
overall evaluation times. However, the trends in terms
of the benefits due to our optimization technique are
similar to the XMark dataset.

It is important to note that we used the unmodified
XALAN query evaluation, for our experiments, relying
solely on query rewriting, outside the evaluation engine
to implement our optimization strategy.

7.4 Optimization Overhead

The second experiment measures the actual optimiza-
tion time. We ran the two queries e)1 and e@5, addi-
tionally varying the number of nodes from 10 to 30 in
the queries. We ran these queries over the sparse and
dense XMark DTDs. Figure 7(b) shows the optimiza-
tion times in these cases.

The first thing to note is that the optimization time
for the e@; family of queries, involving just parent-
child edges, depends only on the number of nodes in
the query, and 1s independent of the type of the DTD,
since all decisions about SC annotations are purely lo-
cal. For this reason, we plot just a single curve for
this parent-child case in Figure 7(b). For the case of
the eQ)» family, which has ancestor-descendant edges,
the DTD type matters. The sparse DTD took a bit
more time than the dense DTD, essentially because
our query optimization algorithm had to traverse more
edges in the DTD graph to locate the first node that
had the SecurityLevel attribute defined. (In the case
of paths where the attribute is not defined, our algo-
rithm had to touch each edge on the path.) More im-
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portantly, though, the optimization times are a very
small fraction of the query evaluation time. Even for
queries with 20-30 nodes, the optimization time was

under 0.00025s.

8 Related Work

Several ideas for supporting access control on the
Web have been recently proposed. Research on XML
security is mainly divided into two complementary
branches: (i) modeling and the development of so-
phisticated access control models and mechanisms in
order to support different security requirements and
multiple policies; (ii) lower level features such as en-
cryption and digital signatures. At the same time,
the security community is tending toward represent-
ing authorization-based or role-based access control
using XML syntax and DTD by making use of the ex-
pressive power of XML for representing complex tree-
structured and heterogeneous data.

Recent work by [10, 9, 2, 3] has proposed
authorization-based access control, and all models as-
sume that the system either authorizes the access re-
quest or denies it. In particular, Damiani et al. [10, 9]
proposed an access control model for XML documents
and schema, which is an extension of their early work
that defines positive and negative authorization and
authorization propagation on object-oriented database
concepts. In particular, they develop an approach for
expressing access control policies using XML syntax.
The semantics of access control to a user 1s a particu-
lar view of the documents determined by the relevant
access control rules. They provide a novel algorithm
for computing the view using tree labeling. However,
these view definitions can often be quite complex and
expensive to compute and maintain. The work in [2, 3]
is similar, and is implemented in the Author-X proto-
type.

In the same framework, [12] stressed richer autho-
rization decisions by incorporating the notion of pro-

visional authorization model into traditional autho-
rization semantics. The provisional model provides
XML with a sophisticated access control mechanism.
It presents an XML access control language (XACL)
that integrates security features such as authorization,
non-repudiation, confidentiality, and an audit trail for
XML documents.

Our focus in this paper is finding optimal and safe
rewritings of queries that ensure secure evaluation
given a DTD graph of the database of XML docu-
ments. The rewriting is accomplished by means of
adorning query tree nodes with security check annota-
tion labels that infer the security level applicable to a
given node. Thus, our contributions are different from,
but complementary to the body of work on access con-
trol models and policies above.

In [14, 15], the authors proposed query rewriting in
XML or semi-structured data using a DTD. In partic-
ular, [14] presented an algorithm, based on generaliz-
ing containment mappings, the chase, and unification,
from a given semistructured query and a set of views.
The goal of these papers was to find minimal equiva-
lent queries by eliminating query tree nodes. By con-
trast, the goal of query rewriting in this paper is to
minimize the number of and kinds of security checks
that need to be performed at evaluation time thus op-
timizing secure query evaluation.

9 Conclusions

In this paper, we have considered the problem of se-
cure evaluation of XML twig queries, for the simple,
but useful, multi-level security model. Our main con-
tribution is an efficient algorithm that determines an
optimal set of security check annotations with twig
query nodes, by analyzing the subtle interactions be-
tween inheritance of security levels and the paths in
the DTD graph. We experimentally validated our al-
gorithm, and demonstrated the performance benefits
to optimizing the secure evaluation of twig queries.
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Ours 1s the first work in this important area of se-
cure evaluation of XML twig queries, and establishes
the foundation for additional work in this area.
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