enTrans: A System for Flexible Consistency
Maintenance in Directory Applications

Anandi Herlekar, Atul Deopujari, Krithi Ramamritham Shyamsunder Gopale, Shridhar Shukla

Dept. of Computer Science and Engg., I.I.T. Bombay

{anandi, atuld, krithi}@cse.iitb.ac.in

1 enTrans: What and Why?

Directories were designed for data-intensive applica-
tions where reads are more frequent than writes and
they were primarily meant for the standard white and
yellow page applications. LDAP (Lightweight Direc-
tory Access Protocol) is an open industry standard
for accessing directory-based information. Due to its
natural way of representing data in hierarchical form,
efficient read access, and support for heterogeneous
data, LDAP is being used for more demanding ap-
plications, such as policy enabled networks and iden-
tity and access management. While the early LDAP
applications mostly involved reads, as directory ap-
plications mature, the need for updates is increasing
and updates typically are spread across data reposito-
ries which store user profiles in a decentralized fashion
[XNS02]. For example, the information critical to the
functioning of networked services is being stored in
directories; the data includes DNS data, certificates,
AAA services and application configuration data and
a part of this information is updatable. These up-
dates need transaction support to maintain integrity
of the information stored across multiple data reposi-
tories under continuous updates.

Unfortunately, LDA P supports only atomic updates
at the individual entry level and, today, the applica-
tions are forced to take ad-hoc measures to maintain
consistency across multiple data repositories. A sys-
tematically developed transaction support for consis-
tent updates across multiple data repositories is there-
fore imperative. The directory applications increas-
ingly involve long duration activities and hence the
traditional OLTP transaction support is inadequate.
Thus the transaction support should support advanced

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

Persistent Systems Pvt. Ltd., Pune
{shyam, shridhar}@persistent.co.in

transaction models, as well; or, at least, should have
primitives to facilitate implementation of the advanced
model with little effort. The success of LDAP can, in
part, be attributed to its simplicity and ease of use and
it is only natural for users to expect the transaction
support for LDAP to be as simple to use as are LDAP
primitives.

With these compelling motivations, we have de-
veloped enTrans, a highly flexible and customizable
transaction support facility that works with any off-
the-shelf LDAP server. The enTrans framework pro-
vides advanced transaction support for LDAP appli-
cations and a mechanism to define and enforce appli-
cation specific integrity constraints. The rest of this
section describes the specific features of enTrans.

Predefined Trigger Action Protocol (PTAP)

Predefined Trigger Action Protocol (PTAP) is a cus-
tomizable advanced transaction support protocol for
LDAP applications. It works as an active functional-
ity layer on top of LDAP and provides basic APIs for
flexible transaction support to an LDAP user. Figure 1
presents an architectural overview of PTAP. PTAP
includes support for the standard transaction model
and some of the advanced transaction models (e.g.,
Nested Transactions, Sagas and its variants, and Co-
Operating Transaction) for applications that are long
running. A user can either choose one of the transac-
tion models supported or can use the primitives pro-
vided by PTAP to implement the transaction model
that best suits her application.

The features of PTAP include: (a) The transaction
support is provided through simple APIs with minimal
changes to the standard LDAP APIs to maintain the
interface user friendly. (b) The APIs cover all the func-
tionality required to implement an advanced transac-
tion model efficiently. (c¢) The APIs allow transactions
to be started on different LDAP servers with differ-
ent dependencies (e.g., commit, abort, group, start-
on-commit) between them. These dependencies are
automatically maintained, without requiring the user
to expend any extra effort. (d) The transaction sup-
port is provided as a plug-in component that will work

I 1
1 1
| LDAP Client | PTAP Server Component
1 Component 1--1-1-> __)=
Standard T 1 Listener LDAP
LDAP <+ Requests
APl =1 ""|LDAP Standard AP} - 1-{--|
Interface I | Transaction A& |
1 1 related ! !
1 ‘ 1 requests ! v
| LDAPExtended * '
1 APIs ! \:/ 1 Transaction LDAP Server
! PTAP Client ! Descriptors (Remote/L ocal
! Component ! I mplementation of TOPTAP)
1 Client 1 Transaction | transaction
1 | 1 Manager APIs & primitives
| nterface : ‘ = L_1-] LDAP
| Idap_add t : v | L _| | Requests
Idap_del_t !
: Idi_moaify t : L ock Manager
X qi Object Descriptors
PTAP's --= Idap_txn_begin ! Perjmit Deﬁcrzgtors b
— Idap_txn_end | : ' ODBC
Transactio | Idap_dependency : — : ' APIs
API Interface Idap_pemit ! ! log transaction ! !
: |dap_delegate : ' operations -V :
I | callback APIs | I Logger | . ODBC
1 1 log_begin DB
1 IC 1 log_end "ODBC —
I Manager I log_operation APls
1 callBack_preOpn 1 get_txn_operations
1 callBack_postOpn 1 delete_txn_operations
1 1 delete operation -
Client ! !
Application: Client Libraries : PTAP Server communicating with L DAP server

Figure 1: PTAP Design Overview

with any LDAP server.

Though advanced transaction models have been
around for a long time [Elm92, BP95, BDG"94], not
many robust system implementations have been de-
ployed, perhaps due to the lack of compelling applica-
tion scenarios. We believe that with directory based
applications becoming more prevalent and their consis-
tency becoming more critical, efficacy of flexible trans-
action systems such as enTrans needs to be showcased
to practitioners.

Integrity Constraint Manager (ICM) of PTAP

Integrity Constraint Manager (ICM) of PTAP facil-
itates defining and enforcing application specific in-
tegrity constraints. It allows a user to specify user-
defined functions for integrity checking, before and/or
after the invocation of an enTrans update primitive.
Any new ICM tailored for a specific application can
be plugged-in without adding a new API specific to
that application.

enTrans - Integration of PTAP with enQuire

We have integrated PTAP with enQuire, Persistent’s
virtual directory product [Per01]. enQuire Virtual
Directory is an LDAP v3 compliant directory server

providing an on-line LDAP view built from multiple
data stores on the network. With enQuire, disparate
user databases can be exposed as parts of a single
LDAP hierarchy. An administrator-supplied config-
uration that maps data store schema to object classes
and attributes is used by enQuire server to gener-
ate directory hierarchies on-the-fly. PTAP’s integra-
tion with enQuire enables consistent propagation of
changes made to directory entries to the data stores —
in a manner that conforms with the transaction needs
of the application.

2 Motivating Example

In order to motivate the need for advanced transac-
tions in LDAP, in this section we present a generic ap-
plication involving employee information. Consider a
typical organization in which the employee information
directory is distributed across different departmental
data repositories like HR (personal information, ad-
dress, designation, etc.), Accounts (salary, travel al-
lowance, etc.) and Security (login, password, etc.).
The travel office of the organization accesses informa-
tion about trains, flights and hotel availability from
different data repositories. A typical travel plan of an
employee can be viewed as a long duration transaction
comprising of following activities:

i. Accessing HR repository: The transaction queries
the HR data repository to determine the designa-
tion dependent travel privileges of the employee.

ii. Booking a ticket for the forward journey: The
transaction tries to book an air ticket; if the
expenses exceed the travel allowance, either the
manager’s consent is sought or a train ticket is
booked. This involves updates to air and/or rail-
way reservation repositories and to the accounts
database.

iii. Booking a hotel room: If the hotel accommoda-
tion is not available, the employee either cancels
her travel plan and the transaction needs to undo
the forward journey reservation or the employee
goes ahead with the travel plan (reaching the des-
tination is a must and accommodation and return
journey can be managed somehow).

iv. Booking a ticket for the return journey: If return
journey ticket is not available, either the employee
cancels her travel plan and the transaction has
to undo the forward journey reservation and the
hotel reservation or the employee goes ahead with
the travel plan (return journey can be managed
somehow).

The travel plan has different constraints which can
be implemented using different transaction models;
For example:

(a) Travel only if all the bookings are successfully
done: This can be implemented using the Saga
model.

(b) Travel even if forward reservation is done but ho-
tel and return reservations are not done. The
journey could be done either by air or by train.
This can be implemented using a combination of
the nested transaction model and the contingency
transaction model.

This example illustrates (a) data consistency require-
ments across multiple repositories and (b) workflow
and business logic found commonly in enterprise and
service provisioning systems. Such requirements are
also becoming increasingly common in the web service
infrastructure, as it relies on uniform and consistent
access to a user’s identity which is split across multiple
data repositories. Figure 2 sketches how the above
travel plan can be implemented using the primitives
provided by enTrans. The transaction APIs provided
by PTAP are shown in bold.

3 enTrans Design: Issues and Approach

This section describes some of the design issues from
users’ point of view and justifies our decisions.

e One way to realize PTAP is to implement it as
a plug-in library that provides transaction func-
tionality. This needs the LDAP server to make
calls to the functions in this library for transac-
tion related requests. Other approach is to imple-
ment PTAP as a server that intercepts the calls
to LDAP server and serves the transaction re-
lated requests; for normal LDAP requests, it calls
LDAP functions. As the later solution does not
need any changes to the backend LDAP server
and can work with any LDA P server, we have im-
plemented PTAP as a server.

e The callback functions implemented by the ICM
component of the PTAP make it easy for the end
user to implement complex operations like those
in the travel plan in a single LDAP update call
(like 1dap_add_t/ldap_delete_t) and the trans-
action properties of the updates are ensured by
the callback functions of the ICM. This reduces
efforts of the end user in writing her own transac-
tion model.

e One way to enable a user to start dependent trans-
actions across multiple LDAP servers is to allow
her to establish two different connections with two
different LDAP servers, start the transactions on
these servers and then form dependencies among
them. But this requires a lot of work from the
user’s part. Also, since the user can start trans-
actions in any order on any server, all transac-
tions involved in the dependency need to be val-
idated. The validity information gathered may
not be consistent at a given point due to net-
work delays in the distributed transactions and
distributed checking. We avoid this validation
by adding the host and port as parameters to
ldap_txn_begin API and making a restriction
that all the dependent transactions should be ini-
tiated through a single LDA P server to which the
client connects for the first time.

PTAP has server and client side components. The
server side component of PTAP implements the trans-
action APIs. All the requests to LDAP server go
through the PTAP server component and it consists
of Transaction Manager (TM) that uses Logger func-
tions to log the operations executed in a transaction.
The logs are used to bring the directory in a consis-
tent state by undoing appropriate transactions after a
failure.

The client side component of the PTAP provides
APIs for transaction initiation and termination and for
specifying dependencies among them. It also includes
the ICM that defines the callback functions; the ICM is
a plug-in component with the default implementation
returning LDAP_SUCCESS for each callback function.

travel_plan = ldap_txn_begin(0) // travel_plan is ID of type LDAP_TXNID for a new transaction

forward_res = ldap_txn_begin(travel_plan) // forward_res executes as a sub-transaction of travel_plan
ldap_formDependency(travel_plan, forward_res, GC)
// group commit (GC) dependency is formed between the two that
// aborts both of the transactions even if one of them fails
ldap_permit(travel_plan, forward_res)
// travel_plan permits forward_res to perform conflicting operations on objects that are locked by it
Idap_search(travel_allowance)
// search the accounts directory for the travel_allowance of the employee
if(expensesForAirRes < travel_allowance)
ldap_add _t(forward_res, flightDetails)
// This adds an entry with details of the flight reservation to the directory that stores
// the reservation information. This is done as a part of the forward_res transaction
ldap_modify _t(forward_res, expDetails)
// modify the account information of the employee in the accounts directory as part of forward_res
else
ldap_add _t(forward_res, trainDetails)
// This adds an entry with details of the train reservation to the directory entry that stores
// the reservation information. This is done as a part of the forward_res transaction
ldap_modify _t(forward_res, expDetails)
ldap_delegate(forward_res, travel_plan)
// forward_res delegates to travel_plan the responsibility for operations performed by it
ldap_txn_end(forward_res)
hotel_res = 1dap_txn_begin(travel_plan)
ldap_formDependency(travel_plan, hotel_res, AD)
// forms an Abort Dependency (AD) with travel_plan that aborts hotel_res if travel_plan fails
ldap_add_t(hotel_res, hotelDetails)
// This adds an entry with details of the hotel booking
// This is done as a part of the hotel_res transaction
ldap_modify _t(hotel_res, expDetails)
ldap_txn_end(hotel_res)
return_res = ldap_txn_begin(travel_plan)
ldap_formDependency(travel_plan, return_res, AD)
// the AD aborts return_res if travel_plan fails
// similar code as the one for forward_res
ldap_txn_end(return_res)
ldap_txn_end(travel_plan)

Figure 2: Implementation of travel plan using primitives provided by enTrans

4 Summary [BP95] Roger S. Barga and Calton Pu. A practical
and modular implementation of extended transaction
The support provided by enTrans can be employed models. In Proc. of the VLDB, pages 206-217, 1995.
by users to realize long running activities with trans- [Elm92] Ahmed K. Elmagarmid, editor. Database Trans-
action properties — where the activities access one or action Models for Advanced Applications. Morgan
more LDAP servers. The philosophy underlying en- Kaufmann, 1992.
Trans allows us to use any standard LDAP server. It [HDRO2] Anandi Herlekar, Atul Deopujari, and K. Ra-
also provides for a pluggable and hence customizable mamritham. ~ Advanced transactions in LDAP.
integrity constraint manager. A detailed description Technical report, Indian Institute of Technol-
of PTAP implementation can be found in [HDRO02]. ogy, Bombay, Janaury 2002. Available at
www.cse.iitb.ac.in/krithi/papers/enTrans.ps.gz.
[Per01] Persistent Systems Pri-

vate Limited. Enquire Directory Server, 2001. Avail-
able at http://www.persistentdata.com/documents/
EnquireWhitePaper.pdf.

[XNS02] XNS Public Trust Organization. An Introduction
to XNS, the eXtensible Name Service, January 2002.

References

[BDG'94] A. Biliris, S. Dar, N. Gehani, H. Jagadish, and
K. Ramamritham. ASSET: A system for support-
ing extended transactions. In Proc. of the SIGMOD,
pages 44-54, 1994.

