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1. OVERVIEW
We demonstrate data indexing and query processing tech-

niques that improve the efficiency of comparing, correlating,
and joining data contained in non-convex regions. We use
computational geometry techniques to automatically char-
acterize the region of space from which data are drawn, par-
tition the region based on that characterization, and create
an index from the partitions. Our motivating application
performs distributed data analysis queries among federated
database sites that store scientific data sets from the Chesa-
peake Bay. Our preliminary findings indicate that these
techniques often reduce the number of I/Os needed to serve
a query by a factor of five—depending on the geometry of
the query region.

Our approach automatically extracts the structure of the
region to facilitate data organization and query processing.
We use an approximate medial axis transform to discover
and describe the region. The medial axis is generated using
a constrained Delaunay triangulation [3]. We represent the
medial axis as a tree and enumerate the nodes of the tree to
generate the labels for our spatial index. The index defines
a linear order on the Delaunay triangles. Data from each
triangle are then placed on disk in index order, e.g. using
a B+-tree. When using this index, structures (in our case,
estuaries, rivers, and bays) occupy contiguous regions of the
index, which makes the data from these regions contiguous
on disk.

We will demonstrate an interactive application in which
the user can select from a variety of shape files, including the
Chesapeake Bay, other estuaries, and artificial shapes. The
demo will show the generation of an index, including the De-
launay triangulation and medial axis transform. The user
will then select query regions in the space and the demo will
show both the portions of the index associated with these re-
gions and, for the Chesapeake Bay, the data layout on disk
for multiple data sets. The demo will compare the index
regions and data layout among our medial axis index and
regular spatial decompositions, such as region trees, tessel-
lations, and space filling curves.
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1.1 Design Goals
Our original goal was to find a spatially-derived data-

independent decomposition suitable for the Chesapeake
bay. We need a data-independent decomposition of the re-
gion so that the organization of the region is uniform across
all data sets. With a data-independent decomposition, data
may be indexed at different sites, at different times, and in-
crementally, and the indexes may be used to join data, find
nearest neighbors, etc. In contrast, data-derived indexes,
e.g. k-d trees, R-trees, Voronoi diagrams, give irregular de-
compositions so that separate indexes of data drawn from
the same region are incomparable. Data-independent de-
compositions are particularly important in federated data
systems, in which different data sets are stored and man-
aged independently, or when data are too large to build a
single index for all data, e.g. in parallel database systems.

The need for a more complex spatial decomposition be-
comes clear with estuarine data. Available data-independent
decompositions tend to be regular, e.g. space-filling curves,
and region trees [6], which either divide a region into a se-
ries of regular polygons or recursively divide the region into
squares (in 2-d). Estuaries are long and skinny and exhibit
a large number of winding, tendril-like tributaries, which are
not likely to be wholly encapsulated by the cells of a regular
decomposition. The distribution of tributary fragments will
not conform to the regular indexing of the spatial partition
and the data will be spread across non-contiguous regions of
the disk and database indexes. For example, Figure 1 shows
how a Hilbert curve, one of the most-frequently used space-
filling curves, performs very poorly in clustering the region
of space associated with the Potomac River (shaded). The
Hilbert curve breaks up data from the river into many dis-
joint regions in the index: the linear ordering following the
curve. In contrast, we would like to maintain the data from
contiguous spatial regions contiguously on disk. We need
to preserve this property at multiple scales, because estuary
data are self-similar in addition to being non-convex.

Our techniques are applicable beyond estuaries. Any data
set drawn from a non-convex region will realize performance
benefits. Examples include medical applications (the circu-
latory system), manufactured systems (road networks and
indoor air systems), and other natural systems (turbulent
structure and flow in porous media). At present, we sup-
port two-dimensional spatial data and are pursuing three-
dimensional data. However, the medial axis becomes more
difficult to work with in that the 3-d medial axis consists of
complex unions of surfaces and curves.
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Figure 1: Example of a Hilbert curve ordering ap-
plied to the Chesapeake Bay.

2. IMPLEMENTATION
We implemented index generation and query processing in

the Chesapeake Bay Environmental Observatory (CBEO):
a platform for the data exploration of more than 15 Chesa-
peake Bay data sets. The CBEO makes the output of hydro-
dynamic and water-quality models available alongside obser-
vational data from buoys, cruises, shallow water monitor-
ing, satellites, and overflight. Exploring correlations among
these disparate data sets enables new types of discovery in
hydrology and environmental engineering [1].

We programmed the indexing routines and query eval-
uation in C++, using the Cgal [2] computational geom-
etry algorithm library. These routines have also been in-
tegrated into Microsoft SQL Server—the platform for the
CBEO testbed—as user-defined functions. The maps are
pre-computed from ArcGIS shape files and loaded into SQL
Server as dynamic libraries. The demonstration software
has been implemented in Objective-C that calls the C++
indexing and query routines directly.

2.1 Index Generation
We use computational geometry techniques to generate

our spatial index from a region. We begin by looking at the
outline of our region, a simple, closed polygon (Figure 2(a)).
(The demo does not support polygons with holes. It requires
the medial axis to be a tree. More complex medial axes
could be simplified using the minimal spanning tree.) Next,
we generate a triangulation of the region (Figure 2(b)). We
use a constrained Delaunay triangulation (CDT) [3] to pro-
duce a triangulation that partitions the entire region exactly,
i.e. without including portions of space outside the region’s
boundary. The triangulation is constrained in that the edges
that form the perimeter of the shape must be included. The
constraints results in non-Delaunay triangles in the output.
At this point, we compute the medial axis by generating a
tree connecting the centers of the circumcircles of all trian-
gles (Figures 2(c) and Figure 2(d)).

We assign unique, incremental, index addresses to each of
the triangles through a traversal of the medial axis. Fig-
ures 3(a) and 3(b) show the resulting map. The medial axis
forms a tree for two-dimensional objects with no holes.

(a) Original outline (b) Basic triangulation

(c) Medial axis (d) Circumcircles

Figure 2: Delaunay triangulation of a polygon con-
strained by outline segments.

(a) Gray-scale render-
ing of the index

(b) With actual index
number

Figure 3: Index for our example polygon.

The order in which we traverse the medial-axis can result
in quite different indexes. Figure 4(a) shows the medial-axis
computed on the Chesapeake Bay. Figures 4(b) and 4(c)
shows two different orderings of index addresses. We start
the traversal of the medial axis at the Nansemond River, the
southern most tributary of the bay. Any randomly chosen
extrema will work well; starting at a central node partitions
a central structure into two parts. These two renderings of
the index-space are generated by traversing the medial axis
with with respect to the weight of the subtree, i.e. sum of
the area of the descendant triangles. Figure 4(b) traverses
the smallest area subtrees first, which gives a smoother in-
dexing of the shape, including all of the micro-structure on
the sides of each tributary. Figure 4(c) traverses the greatest
area subtrees first, which gives us a consecutive “main stem”
of the bay and each of the tributaries, but the small struc-
tures are entirely disjoint in the index space. The preferred
ordering depends on the application’s data distribution and
access patterns. For example, scientists studying hydrody-
namics are mostly concerned with deeper water and prefer
to keep the main stem of the bay as contiguous as possible.
Scientists looking at nitrogen are concerned with how shal-
low and deep water interact and would want small structures
to be contiguous to nearby larger structures.
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(a) (b) (c)

Figure 4: Renderings of the Chesapeake Bay: (a) shows the medial-axis, (b) and (c) are gray-scale images of
the index generated by traversing the medial-axis by smallest and largest area subtrees first.

The centerlines of river networks have long been used in
the field of hydrology for feature extraction [5]. This idea
was extended to the medial-axis transform by McAllister
and Snoeyink [4] to further characterize rivers, e.g. match
shores, calculate width, and estimate volume. However, they
do not apply the medial axis to the physical organization of
data or indexing.

2.2 Query Evaluation
The medial axis spatial index cannot be used directly for

query evaluation. The index encodes spatial locality in a
linear ordering of the Delaunay triangulation and defines an
organization on disk based on that linear ordering. However,
it does naturally associate points in space with that index.

We use an additional lookup table to determine the tri-
angle(s) associated with a point or region of space. We gen-
erate the lookup table by rasterizing the region onto a low-
resolution pixel structure. For each pixel, we store a list of
the triangles that intersect the square region covered by that
pixel. The table is generated once for each shape; it too is
data independent.

The size of the lookup table needs to be chosen with con-
sideration and depends on the geometric complexity of the
region. Choosing too fine a pixelation produces an overly
large lookup table, which consumes cache space and, in the
extreme, cannot fit in memory. Choosing too coarse a pixe-
lation results in many triangles intersecting each pixel, which
slows query evaluation. For the Chesapeake Bay, we choose
a resolution of 350 by 500 so that there are no more than 38
triangles intersecting any pixel and an average of 2.3 trian-
gles per pixel.

Index Lookup: The basic operation finds the index value
for a coordinate location. This is used when ingesting data
into a database to generate the index labels or primary
keys for records. It is also the first step in nearest-neighbor
queries, because it identifies where in the index to start the
nearest neighbor search.

To identify a coordinate’s index, we map that coordinate
to a pixel in our lookup table and retrieve the list of triangles
at that pixel. Then, we iterate over the list of triangles to
determine which triangle contains the point.

Alternatively, this query may be implemented using other
spatial partitioning techniques, e.g B-trees, BSP-trees, etc.
We chose to use a lookup table for ease of implementation
and acceptable performance on our data.

Range Query: Euclidean distance range queries are pro-
cessed by identifying candidate triangles that might con-
tribute data because they intersect the query range. To do
so, we consult the lookup table to find pixels that overlap
the range. For pixels entirely inside the query range, their
triangles intersect the query range and must be included.
For pixels that intersect the range boundary, their triangles
may or may not intersect the range. We evaluate these tri-
angles individually for intersection. Then, we obtain the
requested data by joining the candidate indexes with the
data tables and applying a filter to eliminate data outside
the query range.

3. DEMONSTRATION
Our demonstration allows the user to both interact with

the construction of medial axis spatial indexes and to visu-
alize the benefits of the technique through a graphical-user
interface. The user first selects a shape file from among the
Chesapeake Bay, other estuaries and rivers (e.g., the Cor-
pus Christi bay, the Charleston river, the Camargue), and
geometric shapes. The demo generates the corresponding
spatial index. The user can visualize this process by adding
and removing layers, including the triangulation, map, me-
dial axis, and circumcircles (Figure 5(a)).

The user then explores and visualizes how the region and
range queries relate to the index. The user selects a query
region with the mouse and the demo displays the portions
of the index that intersect the selection (Figure 5(b)).
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(a) Triangulation (b) Index space (c) Data

Figure 5: Screenshots of the demo showing (a) the triangulation used to generate the medial axis index, (b)
the regions of index space needed to resolve a range query and (c) the data covered by a range query.

For the Chesapeake Bay, the user can perform queries on
sample data sets. The demo will show the sites on the map
inside the query region that hold data and display the loca-
tion of that data (Figure 5(c)). The interface uses color to
indicate which data are stored contiguously and can be read
in a single I/O. For the same query region, the data lay-
out often differs substantially from the index, because some
index regions have little data whereas other index regions
have lots. Disjoint sub-regions in the index reflect the local
geometric complexity of the query region in the medial axis,
whereas the data layout is data dependent and reflects the
amount of information in each disjoint region. Large sim-
ple regions have simple medial axes and may contain lots
of data, whereas small tributaries with complex medial axes
may have little data. We have several data sources available,
including subsets of measured and modeled environmental
data from the Chesapeake Bay.

Finally, the demo allows users to compare the effectiveness
of the medial axis spatial index with regular decompositions
by selecting an indexing strategy in a drop down listbox.
For a selected query region, the user can toggle between, for
example, the medial axis index and a Morton-order space-
filling curve and witness the relative contiguity in the index
or of the data on the disk.
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