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ABSTRACT
Given a query object q, reverse k-nearest neighbor (RkNN)
search aims to locate those objects of the database that have
q among their k-nearest neighbors. In this paper, we propose
an approximation method for solving RkNN queries, where
the pruning operations and termination tests are guided by
a characterization of the intrinsic dimensionality of the data.
The method can accommodate any index structure sup-
porting incremental (forward) nearest-neighbor search for
the generation and verification of candidates, while avoid-
ing impractically-high preprocessing costs. We also provide
experimental evidence that our method significantly outper-
forms its competitors in terms of the tradeoff between ex-
ecution time and the quality of the approximation. Our
approach thus addresses many of the scalability issues sur-
rounding the use of previous methods in data mining.

1. INTRODUCTION
The reverse k-nearest neighbor (RkNN) similarity query

— that is, the computation of all objects of a data set that
have a given query object amongst their respective k-nearest
neighbors (kNNs) — is a fundamental operation in data min-
ing. Even though RkNN and kNN queries may seem to be
equivalent at first glance, they require different algorithms
and data structures for their implementation. Intuitively
speaking, RkNN queries attempt to determine those data
objects that are most ‘influenced’ by the query object. Such
notions of influence arise in many important applications.
In graph mining, the degree of hubness of a node [46] can
be computed by means of RkNN queries. RkNN queries are
also crucial for many existing data mining models, partic-
ularly in the areas of clustering and outlier detection [18,
27, 37]. For dynamic scenarios such as data warehouses and
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data streams, RkNN queries serve as a basic operation for
determining those objects that would potentially be affected
by a particular data update operation, particularly for those
applications that aim to track the changes of clusters and
outliers [1, 36, 35]. Bichromatic RkNN queries have also
been proposed, in which the data objects are divided into
two types, where queries on the objects of the first type
are to return reverse neighbors drawn from the set of ob-
jects of the second type [29, 48, 50]. Typical applications
of bichromatic queries arise in situations where one object
type represents services, and the other represents clients.
The methods suggested in [49] and [9] provide ways of com-
puting monochromatic or bichromatic RkNN queries for 2-
dimensional location data.
Virtually all existing RkNN query strategies aggregate in-

formation from the kNN sets (the ‘forward’ neighborhoods)
of data objects in order to determine and verify RkNN can-
didate objects. Some strategies require the computation of
exact or approximate kNN distances for all data objects [29,
51, 3, 44, 2, 4], whereas others apply distance-based pruning
techniques with index structures such as R-trees [17] for Eu-
clidean data, or M-trees [10] for general metric data [41, 33,
40, 43]. Although they are required for the determination of
exact RkNN query results, the use of exact kNN sets gen-
erally involves significant overheads for precomputation and
storage, especially if the value of k is not known beforehand.
In recent years, data sets have grown considerably in com-

plexity, with the feature spaces often being of high dimen-
sionality. For the many data mining applications that de-
pend on indices for similarity search, overall performance
can be sharply limited by the curse of dimensionality. For
reverse neighborhood search, the impact of the curse of di-
mensionality is felt in the high cost of computing the forward
kNN distances needed for the generation and verification of
RkNN candidates. Most practical RkNN approaches work
with approximations to the true kNN distance values. The
quality of the approximate RkNN results, and thus the qual-
ity of the method as a whole, naturally depends heavily on
the accuracy of the kNN distance approximation.
Theoreticians and practitioners have put much effort into

finding workarounds for the difficulties caused by the curse
of dimensionality. One approach to the problem has been to
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characterize the difficulty of datasets not in terms of the rep-
resentational dimension of the data, but instead in terms of
a more compact model of the data. Such models have often
(explicitly or implicitly) relied on such parameters dimen-
sion of the surface or manifold that best approximates the
data, or of the minimum number of latent variables needed
to represent the data. The numbers of such parameters can
be regarded as an indication of the intrinsic dimensionality
(ID) of the data set, which is typically much lower than the
representational dimension. Intrinsic dimensionality thus
serves as an important natural measure of the complexity
of data. For a general reference on intrinsic dimensional
measures, see for example [13].
Recently, intrinsic dimensionality has been considered in

the design and analysis of similarity search applications, in
the form of the expansion dimension of Karger and Ruhl [28]
and its variant, the generalized expansion dimension (GED)
[22]. The GED is a measure of dimensionality based on the
rate of growth in the cardinality of a neighborhood as its
radius increases — it can be regarded as an estimator of
the extreme-value-theoretic local intrinsic dimension (LID)
of distance distributions [20, 5], which assesses the rate of
growth of the probability measure (‘intrinsic volume’) cap-
tured by a ball with expanding radius centered at a location
of interest. LID is in turn related to certain measures of the
overall intrinsic dimensionality of data sets, including the
classical Hausdorff dimension [34], correlation dimension [16,
42], and other forms of fractal dimension [13]. Originally for-
mulated solely for the analysis of similarity search indices [6,
28], the expansion dimension and its variants have recently
been used in the analysis of the performance of a projection-
based heuristic for outlier detection [12], and of approxima-
tion algorithms for multistep similarity search with lower-
bounding distances [23, 24, 25]. The latter methods rely
on a runtime test condition for deciding the early termina-
tion of an expanding ring search, based on estimation of the
intrinsic dimensionality of the search neighborhood.
In this paper, we propose a filter-refinement algorithm

in which run-time tests of intrinsic dimensionality can be
used to significantly speed-up RkNN queries on high-di-
mensional data sets. The algorithm performs an expand-
ing search from the query object, in which tests of the lo-
cal intrinsic dimensionality are used to determine whether
as-yet-unvisited objects could possibly be reverse k-nearest
neighbors of the query. Compared to existing state-of-the-
art approaches, our algorithm has the following advantages:
(i) it does not rely on tree-like index structures that typically
work well only in spaces of moderate dimensionality; (ii) in
addition to early pruning of true negatives, our method is
capable of identifying true positives early; (iii) the method
is able to make effective use of approximate neighbor rank-
ings, and thus can be supported by recent efficient similarity
search methods such as [26, 15], even in high dimensional
settings; (iv) the method admits a theoretical analysis of
performance, including conditions for which the accuracy
of the query result can be guaranteed; (v) an experimental
comparison against state-of-the-art methods shows a consis-
tent and significant improvement over all approaches tested,
particularly as the data dimensionality rises.
The remainder of the paper is organized as follows. Sec-

tion 2 surveys the research literature related to reverse k-
nearest neighbor search. Section 3 provides background on
intrinsic dimensionality, as well as supporting notation and

terminology. The algorithm is presented in Section 4, fol-
lowed by its analysis in Section 5. Section 7 describes the
experimental framework used for the comparison of meth-
ods, and the results of the experimentation are discussed in
Section 8. The presentation concludes in Section 9.

2. RELATED WORK

2.1 Methods with Heavy Precomputation
The basic observation motivating all RkNN methods is

that if the distance of an object v to the query object q is
smaller than the actual kNN distance of v, then v is a RkNN
of q. This relationship between RkNN queries and the kNN
distances of data objects was first formalized in [29]. The
authors proposed a solution (originally for the special case
k= 1) in which each database object is transformed into the
smallest possible hypersphere covering the k-neighborhood
of the object. For this purpose, the (exact) kNN distance
of each object must be precomputed. By indexing the ob-
tained collection of hyperspheres in an R-Tree [17], the au-
thors reduced the RkNN problem to that of answering point
containment queries for hyperspheres. The authors of the
RdNN-Tree [51] extend this idea: at each index node, the
maximum of the kNN distances of the points (hypersphere
radii) is aggregated within the subtree rooted at this node.
In this way, smaller bounding rectangles can be maintained
at the R-Tree nodes, with the potential of higher pruning
power when processing queries.
An obvious limitation of the aforementioned solutions is

that an independent R-Tree would be required for each pos-
sible value of k — which is generally infeasible in practice.
Approaches such as [3, 44, 2, 4] attempt to overcome this
limitation by allowing approximate kNN distances (for any
choice of k up to a predefined maximum). Exact RkNN re-
sults can still be achieved if the approximate kNN distances
are guaranteed to be lower bounds of the exact distances. If
so, the method returns a superset of the exact query result
as candidates; the query result can then be isolated from the
candidate set in a subsequent refinement phase. However,
determining the final exact result requires a kNN query to
be performed for each candidate against the entire database.
Most methods for RkNN search use such lower bounding ap-
proximations.
Of these methods, the MRkNNCoP algorithm [3] is of

special interest to us, as it is the only RkNN method pre-
sented to date that implicitly uses estimation of intrinsic
dimensionality to improve the pruning power of the index.
MRkNNCoP uses a progressive refinement of upper and
lower bounds to kNN distances to the query object so as to
identify database objects that can be safely discarded. The
pruning strategy relies on the assumption that the kNN dis-
tances for query q fit a formula for the fractal dimension FD
involving the neighborhood size k: more precisely, the kNN
distance dk(q) is determined according to a relationship of
the form FD = c logk

/
logdk(q) for some constant c.

All these solutions have difficulties in handling high di-
mensional data. As the representational dimension of the
feature space grows, the R-Tree loses much of its pruning
power [47]. As a consequence, in such scenarios, the set
of candidates generated before refinement is typically very
large, and the costs of computing the set increase consider-
ably. In the case of approximate RkNN search, the quality of
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the query result decreases significantly; in the case of exact
search, the additional refinement phase is extremely costly.

2.2 Dynamic Methods
In order to avoid the inflexibility and the heavy cost as-

sociated with the precomputation of distance information,
a second class of methods for RkNN query processing ex-
plore the neighborhoods of candidate objects at query time.
As a consequence, these methods are typically more flexible
with respect to the choice of k, and are more suitable for dy-
namic scenarios in which the data changes frequently. This
flexibility is typically achieved through the use of complex
hyperplane arrangements during index traversal to quickly
eliminate search paths from consideration [41, 33, 40, 43].
The solutions in [41], [49] and [9] are designed for 2D data.
Singh et al. [40] attempt to alleviate the execution cost

of RkNN queries by abandoning exactness in SFT. Query
processing begins with the extraction of an αk-NN set (for
α ≥ 1) of the query point as an initial set of candidates.
The algorithm subsequently employs two refinement strate-
gies for the removal of false positives from the candidate set:
the outcome of local distance computations among pairs of
candidate points is first used for filtering, and the remaining
false positives are then eliminated using count range queries.
This method naturally offers support for flexible choices of k.
Generally speaking, the proportion of query answers found
by this approach is subject to the particular choice of α; if
the number of initial candidates is sufficiently large, then
the heuristic is guaranteed to retrieve all RkNNs of a given
query point. However, other than that the forward rank of
a RkNN grows at most exponentially with the representa-
tional dimension of the feature space, the relationship be-
tween α and the recall rate is not well understood.
As with previously discussed methods, TPL [43] relies on

an index supporting kNN queries. The generation and re-
finement of candidates is handled within a single traversal
of the underlying index structure. TPL discards candidates
and search paths using arrangements of perpendicular bisec-
tors between the query point and candidate objects. How-
ever, the performance of the pruning procedure rapidly di-
minishes as either the neighborhood rank k or the data di-
mensionality grows. Extensions of the TPL method include
an incremental method with pruning based on minimum and
maximum distances to bounding rectangles [30].
In general, both precomputation-heavy methods and dy-

namic methods also suffer from their explicit use of index
structures (such as the R-Tree family) that are effective only
for data of low to moderate dimensionality.

3. PRELIMINARIES

3.1 Notation
Let (Rm, d) refer to the Euclidean space of representa-

tional dimension m ∈ N (m> 0). We denote points in Rm
using bold lower-case letters. For the sake of convenience,
we identify data objects with their associated feature vectors
in Rm. Given a pair of points x,y∈Rm, recall the definition
of the Euclidean distance:

d(x,y),

(
m∑
i=1

|xi−yi|2
) 1

2

Let S ⊆Rm be a finite point set containing n> 0 elements.
For any reference point q∈Rm and positive distance thresh-
old r > 0, let

B≤
S (q, r), {x∈S : d(q,x)≤ r}

refer to the subset of points from S contained in the closed
ball of radius r centered at q. Accordingly, we define the
rank of an object x ∈ S with respect to q as the number
of points in the smallest ball that both contains x and is
centered at q:

ρS(q,x),
∣∣B≤

S (q,d(q,x))
∣∣ .

Note that when distances are tied, this definition assigns the
maximum rank to each of the objects. We use the notation
dk(q) to refer to the distance from q to its k-nearest neigh-
bor. For any reference point q∈Rm and any neighborhood
size k∈N, the set of kNNs is given by

NS(q,k), {x∈S : ρS(q,x)≤ k}
= {x∈S : d(q,x)≤ dk(q)} .

The set of RkNNs, the efficient construction of which is cen-
tral to the theme of this paper, can be defined as

N−1

S (q,k) , {x∈S : ρS(x,q)≤ k}
= {x∈S : q ∈NS(x,k)} .

3.2 Generalized Expansion Dimension
Karger and Ruhl [28] proposed a measure of intrinsic di-

mensionality supporting the analysis of a similarity search
strategy. The execution cost of their method depends heav-
ily on the rate at which the number of discovered data ob-
jects grows as the search progresses. Accordingly, the au-
thors restricted their analysis to point configurations satis-
fying the following smooth growth property.

Definition 1 (Smooth Growth Property [28]).
Let S be a set of objects in a space equipped with a distance
measure d. S is said to have (b,δ)-expansion if it satisfies∣∣B≤

S (q, r)
∣∣≥ b=⇒

∣∣B≤
S (q,2r)

∣∣≤ δ · ∣∣B≤
S (q, r)

∣∣ ,
for any reference point q ∈ Rm and any distance threshold
r > 0, subject to the choice of minimum ball size b∈N.

The expansion rate of S is the minimum value of δ, such
that S has (b, δ)-expansion. Karger and Ruhl [28] chose a
minimum ball size of b∈O(logn).
The expansion rate was introduced in order to support

the analysis of the complexity of search indices that rely
on the triangle inequality of Euclidean space; the upper-
bounding arguments used require that the outer sphere have
double the radius of the inner sphere [28, 6]. More generally,
however, expansion can be revealed by any two concentric
ball placements of distinct, strictly positive radii.
In its more general form, the expansion rate can be related

to the dimensionality of the underlying space. To motivate
this, we consider the situation in Euclidean space, as follows.
Let B≤

S (q,r1) and B≤
S (q,r2) be two spheres centered at q∈

Rm with 0<r1<r2. The volumes of these balls are

Vi,
∫
B

≤
S

(q,ri)

dx=
πm/2

Γ
(
m
2

+1
)rmi for i∈{1,2}.

Solving for the dimension gives

m=
log(V2/V1)

log(r2/r1)
. (1)

Equation 1 is not in itself immediately useful, as the repre-
sentational dimension m of a feature space is almost always
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known. However, under a distributional point of view in
which the dataset S is regarded as having been produced
by a statistical generation process, the formulation of Equa-
tion 1 leads to a measure of the intrinsic dimensionality
(ID) of S. The ratio of the volumes V2/V1 of the neighbor-
hood balls B≤

S (q, ri) can be substituted by the ratio of the
probability measures associated with the two balls. Under
this substitution, with appropriate assumptions on the con-
tinuity of the distribution of distances with respect to q, as
r2→ r1→ 0, m tends to the local intrinsic dimensionality
(LID) [20, 5], which can be defined as follows:

LID , lim
r→0+

lim
ε→0+

log(F ((1+ε)r)/F (r))

log(1+ε)
,

where F (r) represents the probability measure associated
with the ball centered at q with radius r. Local intrinsic
dimensionality has been shown to have an interpretation in
terms of extreme value theory, as the LID value coincides
with the scale parameter describing the rate of growth in
the lower tail of the distance distribution [21, 5]. This rela-
tionship holds true for any distance measure (not just Eu-
clidean) for which the continuity assumptions are satisfied.
The ratio of the probabilities associated with the neigh-

borhood balls B≤
S (q,ri) is equal to the ratio of the expected

number of points of the data samples contained in these
balls. For sufficiently small values of r1 and r2, an estimate
of the LID can thus be obtained by substituting V1 and V2

by the numbers of points of S contained in the respective
balls. Denoting these numbers of points by k1 and k2, re-
spectively, we arrive at an estimator of the LID referred to
as the generalized expansion dimension of S [22, 5]:

Ged
(
B≤
S (q, r1),B≤

S (q, r2)
)
,

log(k2/k1)

log(r2/r1)
.

For the special case of r2 = 2r1, we have the expansion di-
mension as originally proposed by Karger and Ruhl [28].
Note that as the GED can be regarded as an estimator of
LID, its use is not restricted to the Euclidean distance.
The choices of neighborhood balls B≤

S (q,r1) and B≤
S (q,r2)

determine two distance-rank pairs, (r1,k1) and (r2,k2), that
together allow an assessment of the dimensional structure of
the data points in the vicinity of q. In general, we consider
Ged

(
B≤
S (q, r1),B≤

S (q, r2)
)
to be a dimensional test value as

determined by B≤
S (q,r1) and B≤

S (q,r2). Varying the neigh-
borhood balls is likely to impact the value of a dimensional
test; however, in [22] the authors discuss how an aggregation
of the results of multiple tests over a range of ball sizes can
produce a representative estimate of the intrinsic dimension
in the vicinity of individual query locations.
The analysis presented in Section 5 of this paper makes

use of an upper bound on estimates of the local intrinsic di-
mensionality generated throughout the search. Accordingly,
for a set of points S and a target neighborhood size k∈N, we
define the maximum generalized expansion dimension (max-
imum GED, or MaxGed) as
MaxGed(S,k), max

q∈S,
k<s≤|S|

dk(q)6=ds(q)

{
Ged

(
B≤
S (q,ds(q)),B≤

S (q,dk(q))
)}

Note that this definition differs slightly from the one pro-
posed in [23] for lower-bounding distance search.
Previously, models of intrinsic dimension, such as expan-

sion rate [28] and aspect ratio [11], have typically been used
to support a posteriori analyses of the performance of differ-
ent similarity search structures. In the following section, we

Algorithm 1 Our algorithm for processing reverse k-
nearest neighbor queries centered at q, with respect to a
data set S. The algorithm requires an index I supporting
(incremental) forward nearest-neighbor queries. It also ac-
cepts a non-negative scale parameter t governing the trade-
off between time and accuracy. Shading is used to indicate
those operations involving witness sets.
1: procedure rdt(q, k, t, I)
2: Initialize the upper bound ω at ∞.
3: Initialize an empty filter set F and result set R.
4: Initialize the neighborhood size s at 0.
5: repeat
6: Using the supplied index I, retrieve the next

neighbor v∈S of q.
7: Let s← ρS(q,v). //Lemma 1.
8: Initialize the witness counter W (v)← 0.
9: for x∈F do
10: if d(q,x)>d(v,x) then
11: Increment the witness counter W (v).
12: end if
13: if d(q,v)>d(v,x) then
14: Increment the witness counter W (x).
15: end if
16: if W (x)<k and d(q,v)≥ 2d(q,x) then
17: Insert x into R.
18: end if
19: end for
20: Insert v into the filter set F .
21: if s>k and d(q,v)> 0 then //Theorem 1.
22: Update ω←min

{
ω, d(q,v)

(s/k)1/t−1

}
.

23: end if
24: until d(q,v)>ω or s≥min

{
n,
⌊
2tk
⌋}

25: for v∈F \R do
26: if W (v)<k then
27: if dk(v)≥ d(q,v) then
28: Insert v into the result set R.
29: end if
30: end if
31: end for
32: Return R.
33: end procedure

demonstrate how outcomes of tests of the generalized expan-
sion dimension can be used to guide algorithmic decisions in
processing reverse k-nearest neighbor queries.

4. ALGORITHM
This section is concerned with the main contribution of

the article, a scalable heuristic for answering Reverse k-
nearest neighbor queries by Dimensional Testing (RDT ).
More specifically, we propose an algorithm that, given a data
set S ⊆ Rm, a query object q ∈ S, and a target neighbor
rank k ∈N, returns an approximation to the set of reverse
k-nearest neighbors N−1

S (q,k).
We designed our algorithm to easily integrate into any

existing framework that supports (forward) k-nearest neigh-
bor queries. The algorithm requires only that it be provided
with some auxiliary index structure that can efficiently pro-
cess incremental nearest neighbor queries with respect to
S. Assuming these requirements are fulfilled, our algorithm
does not impose any significant additional storage cost in
the processing of RkNN queries, and any computational
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overheads incurred are independent of the data set size n.
Furthermore, our method supports dynamic insertion and
deletion of data points, in that no additional costs are in-
curred other than those due to changes made to the auxiliary
“forward kNN” index structure.
The algorithm, a formal description of which is provided

as Algorithm 1, aims to locate reverse k-nearest neighbors
in S using a filter-refinement approach. In order to facili-
tate processing of RkNN queries, the algorithm also accepts
a scale parameter t> 0 controlling the tradeoff between ap-
proximation quality and execution cost: increasing the value
of t will eventually lower the number of false negatives to
zero, at the expense of additional computation. In Algo-
rithm 1, processing of a query located at q ∈ Rm begins
with a filtering step (lines 2–24) that discovers a set F of
candidate points from S. The subsequent refinement phase
of the algorithm (lines 25–32) eliminates false positives from
F and returns the remainder as the query result.

4.1 Filter Phase
The discovery of potential reverse k-nearest neighbors in

the filter phase is facilitated by means of a search expanding
outwards from the query q. The expansion process is even-
tually interrupted by a termination condition, the dimen-
sional test, which uses distance and rank information within
the neighborhood of q in order to judge whether any other
reverse k-nearest neighbor objects remain to be discovered
(line 24). The test makes use of distance and rank infor-
mation within the neighborhood, as well as a user-supplied
estimate of the maximum local intrinsic dimension in the
form of the scale parameter t. The test uses this information
to deduce whether an undiscovered reverse k-nearest neigh-
bor could exist without violating the heuristic assumption
that t is an upper bound on the intrinsic dimension; if the
test succeeds, the algorithm deems that no undiscovered re-
verse neighbors exist, and the execution terminates. Larger
choices of t tend to increase the quality of the query result
at the expense of execution time. The dimensional test im-
plicitly assesses the order of magnitude of the neighborhood
growth rate, and not the local density. Dimensional testing
thus allows the algorithm to dynamically adapt its behavior
to data regions of varying density. A rigorous analysis of the
termination criterion is provided in Section 5.
By expanding on a technique used in [40], our algorithm

avoids unnecessary computation of forward kNN sets by
maintaining partial lists of the neighborhoods for each of
the candidate points. Let x,y ∈ F be two distinct points
discovered in the filter phase. We refer to y as a witness of
x if d(y,x)<d(q,x). In particular, for each candidate point
x ∈ F , our algorithm tracks the number of witnesses of x,
defined as W (x), |{y∈F : d(x,y)<d(x,q)}| . If the num-
ber of witnesses of x ever reaches or exceeds k, then x can
be eliminated as a reverse k-nearest neighbor of q, without
needing to perform an expensive verification of the forward
k-nearest neighborhood of x.

Assertion 1 (Lazy Reject). Let F be a candidate
set generated by Algorithm 1. Any point x ∈ F satisfying
W (x)≥ k cannot be a member of N−1

S (q,k).

Assertion 2 (Lazy Accept). Let x ∈ F have query
distance d(q,x). If W (x)< k, and if the expanding search
progresses to a distance greater than 2d(q,x), then x must
be a member of N−1

S (q,k).

Assertion 1 follows from the observation that the existence
of k witnesses implies that the query point q is outside of
the k-nearest neighbor ball of x with respect to S. Accord-
ingly, x cannot be a reverse k-nearest neighbor of q. Con-
versely, if the expanding search progresses to a distance of
2d(q,x) without producing at least k witnesses for x, then a
neighborhood of x of size W (x)+1≤k has been completely
searched, and the query point q would be contained in it.
In other words, x is a reverse k-nearest neighbor of q.
The set of witnesses of any point x∈F is updated when-

ever a new candidate enters the set F . The total cost of
these updates is bounded from above by

(
s
2

)
, where s is the

number of candidates discovered during the filter phase. Al-
though the cost of maintenance is quadratic in the size of
the candidate set F , the use of witness sets can significantly
accelerate the refinement phase.

4.2 Refinement Phase
Individual members of the candidate set F discovered dur-

ing the filter phase may satisfy neither of the assertions
stated above. In Algorithm 1 the treatment of such points
is delayed until the refinement phase (lines 25–32). For any
such candidate x∈F , the refinement phase executes a (for-
ward) k-nearest neighbor query located at x. A candidate
x ∈ F is only retained in the result set R if it is verified
to satisfy dk(x)≥ d(q,x). Generally speaking, the cost of
neighborhood verification is the most expensive operation
in our algorithm.

4.3 Candidate Set Reduction
In Algorithm 1, many unnecessary verification operations

can be avoided through the use of witnesses. However, as
the number of candidates increases, the cost of maintain-
ing witnesses can become too expensive, particularly when
the dataset size or dimensionality is large. To overcome
this problem, we introduce the following heuristic variation,
which we refer to as RDT+: in order to reduce the costs
associated with witness operations, any newly-retrieved ob-
ject v that accumulates k or more witnesses in its first cycle
through the witness procedure (Lines 8-19 of Algorithm 1)
is excluded from the filter set. More precisely, Line 20 is not
executed unlessW (v)<k. The rationale is that objects that
have been excluded as potential reverse k-nearest neighbors
are themselves unlikely to be decisive witnesses for the re-
jection of other objects. The exclusion criterion prevents
a significant number of false positives from increasing the
witness sets of other candidates, at the risk of a drop in pre-
cision in the query result. The criterion is not applied to
the first k candidates, as it is impossible for them to imme-
diately reach the rejection threshold of W (x)≥ k. It should
be emphasized that even when an item is excluded as a wit-
ness by RDT+, it is still eligible for lazy rejection if its own
witness count reaches k.
At any given stage of the search, the asymptotic execution

time taken by the witness procedure of RDT and RDT+ is
quadratic in the size of the filter set (that is, O(|F |2)). In
the theoretical worst case, |F | can be linear in n; however,
in practice |F | can be expected to be much lower.

5. ANALYSIS
We present a formal analysis that derives conditions under

which Algorithm 1 is guaranteed to return an exact query
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x v
d(x,v)

B(x,d(x,v)) B(v,d(v,x))

B(v,2d(v,x))

Figure 1: Visualization of the ball placements used
in the proof of Lemma 1. The forward rank ρ(x,v)
and the reverse rank ρ(v,x) are determined by the
number of data points from S captured by the cor-
responding balls.

result. The theoretical result will be seen to imply a re-
lationship between the scale parameter t and the intrinsic
dimensionality of the data set. The analysis will be seen
to hold for any distance metric; that is, any distance mea-
sure for which the triangle inequality holds. We begin the
analysis by demonstrating a useful relationship between the
forward and reverse ranks between any two given points, in
terms of maximum generalized expansion dimension.

Lemma 1 (Reverse Rank Bound). Let S be a set of
points and let x,v be a pair of distinct points from S, such
that ρS(x,v) =k for some k∈N. Let t be an upper bound on
the maximum generalized expansion dimension MaxGed(S,k).
The forward rank ρS(x,v) is bounded from above by 2tρS(v,x).

Proof. In the following, we consider certain placements
of neighborhood balls within the framework of generalized
expansion dimension. An illustration of the specific ball
placements relevant to the proof is given in Figure 1.
Under the metric distance assumption, given x,v∈S, we

note that B≤
S (v,2d(v,x)) is the smallest ball centered at v

that completely covers the ball B≤
S (x,d(x,v)). By assump-

tion the maximum generalized expansion dimension of S is
no greater than t. This implies that

t≥Ged
(
B≤
S (v,2d(v,x)),B≤

S (v,d(v,x))
)

=
log
∣∣B≤

S (v,2d(v,x))
∣∣− log

∣∣B≤
S (v,d(v,x))

∣∣
log(2d(v,x))− logd(v,x)

=
log
∣∣B≤

S (v,2d(v,x))
∣∣− logρS(v,x)

log2
.

Rearranging the above inequality, we obtain

t log2≥ log

∣∣B≤
S (v,2d(x,v))

∣∣
ρS(v,x)

. (2)

Recall that by construction B≤
S (v,2d(v,x)) completely en-

closes B≤
S (x,d(x,v)). Therefore, the number of points cap-

tured by the enclosing ball satisfies∣∣B≤
S (v,2d(v,x))

∣∣ ≥ ∣∣B≤
S (x,d(x,v))

∣∣ = ρS(x,v).

Accordingly, substituting the above into Equation 2 gives

t log2≥ log
ρS(x,v)

ρS(v,x)
.

We conclude the proof of Lemma 1 by exponentiating and
solving the above inequality for ρS(x,v):

ρS(x,v)≤ 2t ·ρS(v,x) .

q

ds(q)

x

d(q,x)

B(x,d(x,q))

B(x,d(x,q)+ds(q)) Progression of search

Figure 2: Visualization of the ball placements used
in the early termination criterion applied in Algo-
rithm 1. The situation illustrates a reverse k-nearest
neighbor query located at q in which the expanding
search has progressed to a distance of ds(q). The
object x∈S is a reverse neighbor that has yet to be
discovered by the search.

The remainder of this section is concerned with an anal-
ysis of the quality of the query results returned by Algo-
rithm 1. In particular, we show that the algorithm will
report every reverse k-nearest neighbor whose distance to
query q falls below a threshold that depends on the termi-
nation parameter t, the neighbor rank k, and the (k+1)-
nearest neighbor distance to q; by increasing the value of
t, the minimum RkNN threshold distance also increases.
Given a choice of t, a guarantee on the quality of the result
can therefore be determined in advance of the query simply
by calculating the (k+1)-nearest neighbor distance to q. In
addition, if t is chosen to be at least as large as the maxi-
mum generalized expansion dimension MaxGed(S∪{q},k),
the accuracy of the entire query result is guaranteed. The
analysis is formalized in the following theorem.

Theorem 1. Let q ∈ Rm be a query and let k ∈ N. Let
R ⊆ S denote the set of query answers returned by Algo-
rithm 1. Any reverse k-nearest neighbor x ∈N−1

S (q, k) not
contained in R must have distance to q satisfying

d(x,q)>
dk+1(q)(
s
k

) 1
t −1

≥ dk+1(q)(
n
k

) 1
t −1

,

where s= |F |∈N is the number of data objects discovered be-
fore the expanding search in Algorithm 1 terminates. More-
over, if the scale parameter t is no less than
MaxGed(S∪{q},k), then R=N−1

S (q,k).

Proof. We prove Theorem 1 by analyzing the individ-
ual situations that can result in the termination of Algo-
rithm 1. From the loop invariant in line 24, either s ≥
min{n,2tk} or ds(q)>ω must hold at termination.
Case 1. (s= min{n,2tk} at termination.)

If the minimum is determined by n, the expanding search
has explored the whole data set, and therefore F must con-
tain all reverse k-nearest neighbors. If instead s= b2tkc, we
use Lemma 1 to conclude that the (forward) rank ρS(q,x)
of any reverse k-nearest neighbor x ∈ S cannot exceed s.
Accordingly, independently of how the minimum is deter-
mined, all reverse k-nearest neighbors must be contained in
the candidate set F , and therefore N−1

S (q,k)⊆F .
Case 2. (ds(q)>ω at termination.)

First, observe that the particular (finite) value of ω at ter-
mination must have been realized in some iteration s̃, where
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k < s̃≤ s. Accordingly,

ω=
ds̃(q)(
s̃
k

) 1
t −1

.

Suppose now that there exists a reverse k-nearest neighbor
x∈N−1

S (q,k) that had not been reached by the expanding
search at the time of termination. Any such point must have

d(x,q)>
ds̃(q)(
s̃
k

) 1
t −1

Grouping rank and distance-related terms, this becomes(
s̃

k

) 1
t

>
ds̃(q)+d(x,q)

d(x,q)
.

By taking the logarithms and simplifying, we obtain
1

t
(log s̃− logk)> log(ds̃(q)+d(x,q))− logd(x,q).

Noting that the metric assumption guarantees that the ball
B≤
S (x,ds̃(q)+d(x,q)) contains at least s̃ points, solving for

t yields

t<
log s̃− logk

log(ds̃(q)+d(x,q))− logd(x,q)

≤Ged
(
B≤
S (x,ds̃(q)+d(x,q)),B≤

S (x,d(x,q))
)

<MaxGed(S∪{q},k).

This, however, violates the assumption that t is an upper
bound on the maximum generalized expansion dimension.
Therefore, no reverse k-nearest neighbor x∈N−1

S (q, k) can
have been missed by the expanding search.

6. SCALE PARAMETER ESTIMATION
From the analysis in the previous section, one may be

tempted to conclude that the most effective way of choosing
values for the scale parameter t in practice is by estimating
MaxGed. However, estimation of MaxGed is extremely
impractical due to the potentially infinite number of query
locations over which the maximum GED value is to be es-
timated. Moreover, MaxGed is an extremely conservative
and loose upper bound on the intrinsic dimensionality in
the vicinity of the query. Instead, a more favorable trade-
off between accuracy and execution time may be achieved
through the direct estimation of the intrinsic dimension it-
self, and not through an upper bound on GED estimates.
For this purpose, we precompute estimates of the intrin-
sic dimensionality for the entire dataset using existing es-
timators for other expansion-based models: the maximum
likelihood estimator (MLE) for the local intrinsic dimen-
sionality (LID) [5], and two estimators of the correlation
dimension (CD), the Grassberger-Procaccia algorithm [16]
and the Takens estimator [45, 42]. With these estimators
guiding the choice of t, the RDT termination criterion based
on Theorem 1 is no longer a guarantee but a heuristic re-
quiring experimental validation.
An overall measure of ID can be obtained by averaging

LID values over a sufficiently large sample of points drawn
from the dataset S. For this purpose, we chose the MLE
(Hill) estimator described in [5], due to its relative stability
and convergence properties:

IDx =−
(

1

n

n∑
i=1

ln
xn
w

)−1

,

where x1...xn are observations of a random distance vari-
able X taking values in the range (0,w]. The experimental

results of [5] show that a neighborhood set size of n= 100
is generally sufficient for convergence. The runtime of the
estimator scales linearly.
The Grassberger-Procaccia (GP) algorithm [16] estimates

the dimension in terms of the proportion of pairwise distance
values falling below a supplied small threshold r > 0:

C(r) =
2

N(N−1)

∑
i<j

H(r−‖xi−xj‖),

where H is the Heaviside step function that is 0 for values
below 0, and 1 for values greater or equal to zero. The
correlation dimension is then defined as:

CD = lim
r→0

logC(r)

log r
.

In practice, the limit is estimated by fitting a straight line
to a log-log curve of C(r) versus r, over the smallest values
of r. The slope of this line is then the estimate of CD.
The Takens estimator of correlation dimension is given by

v(r) = 1
/
〈log(rij/r)〉 ,

where the angle brackets denote the average over all pairwise
distances rij which are less than a supplied small threshold
value r > 0. The Takens and GP estimators both compute
values for all pairs of distances taken from the supplied In-
dex I, leading to a quadratic runtime.

7. EXPERIMENTAL FRAMEWORK

7.1 Comparison to Prior Work
The evaluation begins with an in-depth comparison of

RDT and RDT+ with competing methods chosen from those
reviewed in Section 2. In particular, we compare against
the approximate SFT heuristic [40], the MRkNNCoP algo-
rithm [3], the RdNN-Tree [51], and a variant of TPL based
on k-trim and a Hilbert heuristic [43]. For the approxima-
tion methods (RDT, RDT+ and SFT ), we generate time-
accuracy tradeoff curves by executing each method over a
range of choices of their respective tuning parameters. We
also show the performance of RDT+ for fixed values of the
scale parameter t as determined using the three different es-
timators of intrinsic dimensionality described in Section 6.
These results will be depicted in the plots in Section 8 as
RDT+(MLE), RDT+(Takens) and RDT+(GP).
All methods in the experimental study were implemented

in Java using the ELKI data mining framework [39].
Excluding the cost of maintaining the index supporting

forward kNN queries, the asymptotic storage cost of the
algorithms is dominated by the number of candidates gen-
erated throughout the execution. As explained in Section 4,
the number of candidates generated depends on the input
parameters t and k, and is linear in n in the worst case.
The estimators of correlation dimension were implemented

by adapting the source code1 used in [19]. To produce the fi-
nal averaged estimate of local intrinsic dimensionality, MLE
estimation was performed over a random sample of size equal
to ten percent of each dataset; for each estimate, 100 near-
est neighbors were used. Back-end support for incremental
kNN queries can be provided in a great variety of ways.
For our experimentation, we chose as examples two differ-
ent methods: the Cover Tree [6], and straightforward se-
quential database scan. For all datasets except for MNIST
1www.ml.uni-saarland.de/code/IntDim/IntDim.htm
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and Imagenet (described below), the Cover Tree was found
to perform substantially better than sequential scan. Thus,
for these two sets, all experimental results were reported us-
ing sequential scan, while for the remaining sets, the results
reported are for the Cover Tree. So that our method could
be tested against competitors that require it, the Euclidean
distance was used for all experiments.
In the literature on RkNN search, experimentation usu-

ally targeted combinations of datasets and queries of low
scale in terms of the reverse neighbor rank k, as well as the
dataset size and representational dimension. We based the
first group of experiments on the following collection of pub-
licly available datasets of low to medium scale, selected so
as to span a variety of potential target applications. From
among the objects contained in each dataset, we extracted
100 randomly chosen points to serve as query objects for
RkNN queries using k∈{10,50,100}.

• The Sequoia dataset contains a total of 62,174 loca-
tions of interest from within California2. Individual
locations in the dataset are represented by a normal-
ized pair of latitude and longitude values.

• The Amsterdam Library of Object Images (ALOI ) [14]
consists of 110,250 images of physical objects taken
under varying lighting conditions. Each element is de-
scribed by a vector spanning 641 features, including
texture and color histograms. Details regarding the
feature generation process are available in [8].

• The Forest Cover Type (FCT ) dataset [7], available as
part of the UCI Machine Learning Repository2 [32],
describes the topographical features of 581,012 forest
cells, each 900m2 in area. The 53 attributes contain in-
formation on the elevation, slope and vegetation cover
types within the cell. We normalized each feature to
standard scores.

• The MNIST Database of Handwritten Digits contains
70,000 recordings of hand-written digits by 500 distinct
writers. The digits are normalized to a 28 × 28 grid,
resulting in a total of 784 feature dimensions [31].

7.2 Efficacy of Lazy Acceptance and Lazy Re-
jection Criteria

As noted in Section 2, the execution time of individual
RkNN queries is typically dominated by the cost of calcu-
lating k-nearest neighbor distances within the refinement
phase of Algorithm 1. Consequently, the savings from ac-
cepting or rejecting a candidate based on Assertion 1 or 2
can potentially improve the overall execution cost signifi-
cantly. In fact, the generation of a larger number of candi-
dates during the filter phase can potentially provide more
opportunities for the lazy rejection of individual candidate
points; at the same time, unfortunately, the cost of main-
taining the witness counts would also increase. These con-
flicting influences could produce considerable variations in
the tradeoff between time and accuracy of the method, po-
tentially confusing the contributions of lazy acceptance and
lazy rejection. We therefore recorded the proportion of can-
didates affected by each criterion separately. We present our
findings in Section 8.2.

2http://archive.ics.uci.edu/ml

7.3 Scalability
In this part of our experimentation, we investigate the per-

formance of the individual methods for applications at scales
larger than those targeted by prior work (see Section 2). The
competing methods tested in this section are the MRkNN-
CoP algorithm [3] and the RdNN-Tree [51]. We evaluate
the performance of the individual methods on choices of
k ∈ {10,50} and report the mean performance of a sample
of 100 queries drawn uniformly at random from within the
data points of the data set. The dataset used in this second
batch of experiments is described as follows.
The Imagenet dataset [38] consists of 1,281,167 images

collected from flickr and other image databases3. Every im-
age was labeled with the absence or presence of objects from
1000 categories. For each image, 4096 high-level features
were extracted using a 19-layer deep convolutional network.
Note that the RdNN-Tree is based on the R∗-tree index

structure, whose performance is known to severely deteri-
orate for data with representational dimension of roughly
20 or more [47]. This significantly affects the preprocess-
ing costs of the RdNN-Tree. To illustrate this effect we
investigate the rate at which the performance of the com-
peting methods diminishes when considering subsamples of
various sizes drawn from Imagenet. We downsized the full
dataset by uniform random selection to subsets of 100,000
(Imagenet100), 250,000 (Imagenet250) and 500,000 (Ima-
genet500) objects. For all experiments on these sets, we
limit our comparison to those methods whose preprocessing
computation time is less than one week (168 hours).

8. EXPERIMENTAL RESULTS

8.1 Comparison to Prior Work
In Figures 3–6 we present the result of our comparison

of RDT and RDT+ with their competitors TPL, MRkNN-
CoP, SFT and the RdNN-Tree. The figures show the re-
spective results for k ∈ {10,50,100} on the Sequoia, FCT,
ALOI and MNIST datasets. On all these sets, among the
exact methods, the query times of TPL are not competi-
tive with MRkNNCoP and the RdNN-Tree, particularly for
larger values of k; however, TPL had the smallest prepro-
cessing cost of all methods studied. At the other end of
the spectrum, on most of the execution runs, the RdNN-
Tree and MRkNNCoP achieved the smallest query times.
However, this performance comes at an enormous cost in
preprocessing time, many orders of magnitude higher than
those of the heuristic methods studied. The RdNN-Tree also
has the deficiency that a new tree must be constructed for
each value of k tested.
Of the three heuristic methods, in terms of tradeoff be-

tween speed and accuracy, RDT+ strictly outperforms RDT,
which in turn outperforms SFT, over all but the smallest
datasets studied. On the FCT dataset, SFT has a slight
edge over RDT+ and RDT for certain values of k. This
can be explained by the extremely fast kNN query support
provided by the Cover Tree. While the computational over-
heads due to their lazy accept and lazy reject mechanism re-
duce the competitiveness of RDT+ and RDT for the smaller
datasets, for the larger sets these refinement strategies give
them a distinct advantange over SFT.

3http://www.image-net.org/challenges/LSVRC/2012
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Figure 3: Comparison of recall rates and query times achieved by the competing algorithms on the Sequoia
dataset for k∈{10,50,100}. The curves for RDT, RDT+ and SFT were generated by varying the parameters
t and α, respectively. We also show a comparison of the query and precomputation times on a log scale.

Figure 4: Comparison of recall rates and query times achieved by the competing algorithms on the ALOI
dataset for k∈{10,50,100}. The curves for RDT, RDT+ and SFT were generated by varying the parameters
t and α, respectively. We also show a comparison of the query and precomputation times on a log scale.

However, for these relatively small-scale datasets, the im-
provements in query response time are within one order of
magnitude for any given level of recall. The mean recall
rates achieved by RDT+, RDT and SFT grow monoton-
ically with the choices of the respective parameters t and
α; unsurprisingly, as the numbers of candidates generated
in the filter phase of all three algorithms is increasing. As
observed in Section 7.2, the conflicting influences between
increased costs of maintaining pruning information and low-
ered numbers of kNN verifications can be expected to lead to
fluctuations in the overall query execution times. In fact, we
observe such execution time fluctuations to varying extents
across all the performance curves in Figures 3–6.
When the choice of the reverse neighbor rank k is low and

the dataset is very small (Sequoia),the heuristic methods
outperform their exact competitors as recall rates approach
100%. For experiments in which k is high, the query perfor-
mance of MRkNNCoP becomes quite competitive across all
datasets, outperforming RDT and RDT+ easily on some.
For the sets of medium scale (FCT, ALOI, MNIST ), we
observe that the advantages of MRkNNCoP diminish, as it
is generally outperformed by RDT+ for the sets of lower
intrinsic dimensionality (ALOI and FCT). This trend can
be explained by the advantage that MRkNNCoP gains by
using precomputed upper bounds on the k-nearest neigh-
bor distances of the data points, allowing earlier pruning of
potential search paths in the underlying M -tree index.
Figures 3–6 indicate that automatic determination of the

value of the scale parameter t is effective, particularly when
the datasets are small. For the variants of RDT+ in which
estimators of intrinsic dimensionality are used to determine
the value of the scale parameter t, this estimation is shown
to be effective, particularly for the estimators of correlation
dimension (Takens, GP), and particularly when intrinsic di-
mensionality of the dataset is relatively small (ALOI, FCT ).
For the MNIST dataset, the intrinsic dimension is overesti-
mated by MLE, leading to high query times with virtually

Table 1: The intrinsic dimensionality of each data
set as estimated by the different estimators used
in our experiments, together with their representa-
tional dimensions (D). The average execution times
(in minutes) of the estimators are shown in paren-
theses. The execution times of the Takens estimator
are not explicitly shown here, as they are extremely
close to those of the GP algorithm.
Data Set D MLE GP Takens
Sequoia 2 1.84 (0.01) 1.79 (1.65) 1.78

FCT 53 3.54 (1.08) 3.87 (562.19) 3.65
ALOI 641 7.71 (3.12) 1.98 (75.00) 2.16

MNIST 784 12.15 (10.05) 4.39 (119.08) 4.68

exact query results. Overall the estimators of correlation di-
mension seem more suitable, as they provide a single, global
estimate of the intrinsic dimensionality (see Table 1).

8.2 Lazy Acceptance and Lazy Rejection
We next examine the efficacy of the acceptance and rejec-

tion mechanisms within RDT and RDT+, which are based
on the outcome of local distance computations. Figure 7
shows the proportion of candidate points that are treated
by either of the aforementioned techniques. Throughout
the range of values of t, the proportion of candidates ac-
cepted due to Assertion 2 remains relatively small (yet still
significant). For low values of t, when the number of pro-
cessed candidates is low, we see that the explicit verification
mechanism accounts for a relatively large proportion of the
cases. However, for larger choices of the scale parameter
t, as the search expands further into the dataset and more
candidates are discovered, RDT is given more opportuni-
ties to apply Assertion 1 to eliminate true negatives. The
lazy reject mechanism, which represents a fundamental dif-
ference between RDT and SFT, incurs only constant-time
overheads. With this in mind, the significant performance
improvements of RDT over SFT can be explained by the ob-
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Figure 5: Comparison of recall rates and query times achieved by the competing algorithms on the FCT
dataset for k∈{10,50,100}. The curves for RDT, RDT+ and SFT were generated by varying the parameters
t and α, respectively. We also show a comparison of the query and precomputation times on a log scale.

Figure 6: Comparison of recall rates and query times achieved by the competing algorithms on the MNIST
dataset for k∈{10,50,100}. The curves for RDT, RDT+ and SFT were generated by varying the parameters
t and α, respectively. We also show a comparison of the query and precomputation times on a log scale.
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Figure 7: Comparison of the proportion of lazy accepts, lazy rejects and explicitly verified candidates per-
formed by RDT+ as a function of the scale parameter t, for a fixed reverse neighbor rank of k = 10. The
dashed line represents the achieved levels of recall. The values represent averages across all 100 queries.

Figure 8: Comparison of the performance curves of RDT+ with those of its competitors on subsets of the
Imagenet dataset. The curves were generated by varying the scale parameter t> 0 for choices of the reverse
neighbor rank k∈{10,50}. We also compare initialization and query times.

servation that for increasingly large numbers of candidates,
the majority of points are rejected by this mechanism.

8.3 Scalability
Our final set of experiments is concerned with demonstrat-

ing the scalability of the competing methods on the larger,
higher-dimensional Imagenet dataset outlined in Section 7.
In contrast to the experimentation for datasets of small to
medium scale, here we only show the performance of the
RDT+ method — SFT and RDT are excluded from the
presentation as both are variants of RDT+ whose perfor-
mance turned out to be consistently worse on those datasets

where the Cover Tree can not be used for refinement. The
precomputation times required by the exact RdNN-Tree and
MRkNNCoP methods rendered them totally impractical for
Imagenet : for both methods the estimated precompution
time, which we derived after precomputing a small portion
of the full set, would exceed two months. In contrast, pre-
processing for RDT+ required only 11 seconds.
To demonstrate how the precomputation time scales with

database size and dimensionality, we downsized the Ima-
genet dataset as described in Section 7. As can be seen
from Figure 9, for the smaller samples (Imagenet100 and Im-
agenet250), RdNN-Tree and MRkNNCoP still outperform
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Figure 9: Comparison of the number of queries that
can be processed in the time required by RdNN-
Tree for precomputation, for the Imagenet100 and
Imagenet250 datasets with reverse nearest neighbor
rank of k= 10.

RDT+ in terms of their query performance. However, as
the sample size is increased, the precomputation time for
both methods rises and quickly becomes prohibitive — from
approximately 60 hours for Imagenet250 to more than two
weeks for Imagenet500. For this reason, MRkNNCoP and
the RdNN-Tree were excluded from the experimental com-
parison for Imagenet500 and the full Imagenet dataset. For
the full set we are unable to compute true positives in rea-
sonable time by any method. Therefore we show the query
time of RDT+ for the value t = 10, for which we expect
(based on the results for the smaller samples) an average re-
call rate of roughly 0.90. So as to give an impression of how
enormous the precomputation times of MRkNNCoP and the
RdNN-Tree can be, in Figure 9 we show for Imagenet100 and
Imagenet250 the number of queries for each method that can
be performed during the same amount of time required for
the precomputation of the RdNN-Tree.

9. CONCLUSION
In this paper we proposed the RDT heuristic for finding

reverse k-nearest neighbors in large data sets of high di-
mensionality. The quality of the approximations provided
by our filter-refinement strategy is subject to the choice of
scale parameter t. RDT is the first algorithm whose perfor-
mance has been directly related to the intrinsic dimension-
ality of the data, in that RDT is guaranteed to return an
exact query result whenever t exceeds the maximum gener-
alized expansion dimension of the data set. To the best of
our knowledge, our proposed algorithm is the first method
to provide non-trivial theoretical guarantees on the perfor-
mance of approximate reverse k-nearest neighbor queries.
The parameter α used by SFT (the other approximation

method in our study), and the parameter t used by our
method RDT, both determine the number of candidates to
be processed. If this number of candidates is the same, then
the two methods would return the same query result set.
However, whereas SFT expresses this target number only
as a multiple (α) of k, our method is sensitive to the distri-
bution of distances encountered as measured from the query
point q. As shown in Theorem 1, our algorithm is guaran-
teed to find all reverse k-nearest neighbor distances within a
distance threshold that is a function of k, t, and the forward
(k+1)-nearest neighbor distance from q.
We also developed a heuristic variant RDT+ that is capa-

ble of handling data of large size and high dimensionality. To
our knowledge, RDT+ is the first method able to efficiently
handle datasets of this scale. The estimators of intrinsic
dimensionality described in Section 6 allow the automatic

determination of the scale parameter t at a useful level of ef-
ficiency. We provided experimental results which show that
with automatic determination of the scale parameter value,
RDT+ is competitive with state-of-the-art methods even for
sets of low to moderate size, with the important advantage of
requiring much less precomputation time. For future work,
it would be interesting to study the behavior of RDT and
RDT+ when the value of t is dynamically adjusted during
the execution of individual queries.
RDT and RDT+ are both main-memory indices, and as

such do not target applications of extreme scale. It is an
interesting and challenging open problem to develop efficient
parallelizable solutions for reverse k-NN search that can cope
with the extreme requirements of ‘big data’ applications.
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