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ABSTRACT
This demonstration showcases ProvSQL, an open-source module
for the PostgreSQL database management system that adds support
for computation of provenance and probabilities of query results.
A large range of provenance formalisms are supported, including all
those captured by provenance semirings, provenance semirings with
monus, as well as where-provenance. Probabilistic query evaluation
is made possible through the use of knowledge compilation tools,
in addition to standard approaches such as enumeration of possible
worlds and Monte-Carlo sampling. ProvSQL supports a large subset
of non-aggregate SQL queries.
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1. INTRODUCTION
When evaluating a query, it is often useful to capture meta-

information about the result of a query, along with the result itself.
The meta-information may indicate where the query result comes
from, how it was computed, how many times each result was pro-
duced, what probability each result has, etc. Formal tools to capture
such meta-information are data provenance [7] and probabilistic
databases [28].

This demonstration introduces ProvSQL, an open-source and
lightweight module for the PostgreSQL database management sys-
tem that adds support for data provenance and probabilistic databases.
Many different provenance formalisms have been introduced for
relational data provenance. ProvSQL captures most of them: prove-
nance semirings [19] that generalize previous formalisms such as
why-provenance [7], lineages used in view maintenance [10], or
the lineage used by the Trio uncertain management system [6];
m-semirings [17] that extend provenance semirings with support for
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negation; where-provenance [7], not captured by semiring-based for-
malisms. In addition, ProvSQL relies on provenance annotations to
compute probabilities of query results, in the sense of probabilistic
databases.

ProvSQL is application-independent and to our knowledge the
first system supporting such a large range of provenance formalisms.
In particular, it is the first system with support of m-semiring prove-
nance and of specialization of provenance to arbitrary, user-defined,
semirings; it is also the first system that provides an uniform frame-
work to capture both semiring provenance and probabilistic query
evaluation. Existing probabilistic relational database engines such
as MayBMS [21], Trio [6], or Orion [9], as well as the Perm [18]
system for relational provenance management, are all implemented
by modifying the internals of a fixed, now obsolete, version of the
PostgreSQL DBMS, which results in code that cannot be easily
maintained or even compiled on modern operating systems. In con-
trast, ProvSQL is a lightweight extension to PostgreSQL, easily
deployable on an existing PostgreSQL installation, not entangled
with database engine code.

Perm [18] and GProM [4] are similar in scope with the non-
probabilistic part of ProvSQL: they are systems to capture the prove-
nance of queries in relational databases, with support for different
forms of provenance, but not for probabilistic data. To solve the
issues with tying Perm to a particular PostgreSQL version, GProM
is instead built as a middleware between the user and the DBMS,
rewriting queries to compute provenance annotations. The main
differences between these systems and ProvSQL are as follows:
• they do not allow computation in user-defined semirings;
• they do not support the semantics of m-semirings;
• they do not distinguish between set (DISTINCT) and multiset

query semantics in the same way as ProvSQL;
• the native provenance formalism, similar to why-provenance,

stores provenance using additional attributes and rows of the
result table – this approach is much less compact than the
provenance circuit used by ProvSQL.

2. FOUNDATIONS
We now give a brief review of the main foundations of ProvSQL:

(m-)semiring provenance, where-provenance, probabilistic databases.
For a more in-depth review of provenance in relational databases,
see [27].

A semiring (K,0,1,⊕,⊗) is a set K with distinguished elements
0 and 1, along with two binary operators: ⊕, an associative and
commutative operator, with identity 0; ⊗, an associative operator,
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with identity 1. We further require ⊗ to distribute over ⊕, and 0 to
be annihilating for ⊗. Examples of semirings include [19, 23, 20]:
• (N,0,1,+,×): counting semiring;
• ({unclassified, restricted,confidential,secret,

top secret}, top secret,unclassified,min,max):
security semiring;
• (N∪{∞},∞,0,min,+): tropical semiring;
• ({positive Boolean funct. over X},⊥,>,∨,∧): the semiring

of positive Boolean functions over X .
Fix a semiring (K,0,1,⊕,⊗) and assume that all tuples of a

database come with provenance annotations from K. Consider a
query Q from the positive relational algebra (selection, projection,
renaming, cross product, union). A semantics for the provenance
of a tuple t ∈ Q(D) is defined inductively on the structure of Q,
see [19] for details.

Using this inductive definition of semiring provenance, one can
use different semirings to compute different meta-information on
the output of a query:
counting semiring: the number of times a tuple can be derived;
security semiring: the minimum clearance level required to get a

tuple as a result;
tropical semiring: minimum-weight way of deriving a tuple (as

when computing shortest paths in a graph);
positive Boolean functions: Boolean provenance as in [22, 27].

Semiring provenance can only be defined for the positive frag-
ment of the relational algebra, excluding non-monotone operations
such as difference. However, some semirings can be straightfor-
wardly equipped with a monus operator 	 [17], that must verify
some compatibility properties with ⊕ [2], capturing non-monotone
behavior. This is the case for the Boolean function semiring, which,
equipped with the monus operator a	b = a∧¬b, forms a semiring
with monus, or m-semiring for short. Once such an m-semiring is
defined, provenance of the full relational algebra can be captured in
that m-semiring.

One notable provenance formalism that was introduced early
on [7] is where-provenance. The where-provenance is a bipartite
graph that connects values in the output relation to values in the
input relation to indicate where a specific value may come from in
the input. [8] showed that where-provenance cannot be captured
by semiring provenance: there is no semiring for which semiring
provenance allows reconstructing the where-provenance of a query.

Assume that every tuple t of a database D come with an inde-
pendent probability Pr(t) of being true (the simple model of tuple-
independent databases [16, 11] that has been widely studied). In
such a model, every subdatabase D′ ⊆ D (called a possible world)
is assigned probability Pr(D′) := ∏t∈D′ Pr(t)×∏t∈D\D′(1−Pr(t)).

By definition, the probability of a tuple t to be in the result of a
query Q over this database is the sum of the probabilities of all sub-
databases D′ such that t ∈ Q(D′). It was first observed in [20] (see
also [28]) that, to compute this probability, one can first compute
a provenance annotation for Q as a Boolean function (in the m-
semiring of Boolean functions), and then compute the probability of
this Boolean function. There are various approaches for this latter
part such as direct enumeration of all possible worlds or Monte-
Carlo sampling.

However, a more general approach is to resort to general knowl-
edge compilation techniques [14]. Knowledge compilation is the
problem of transforming Boolean functions of a certain form into
another, more tractable, form. Over the years, a wide variety of
techniques, results, heuristics, and tools have emerged from the
knowledge compilation community. In particular, tools such as
C2D [13], DSHARP [26], and D4 [24] compile arbitrary formulas in
conjunctive normal form into deterministic decomposable negation

normal forms (d-DNNF [12]), which are Boolean function represen-
tations on which probability computation can be done in linear-time.
The use of knowledge compilation in a probabilistic database system
is a novel contribution of ProvSQL.

3. TERM ALGEBRA CIRCUIT
One original idea of ProvSQL, which allows it to indifferently ob-

tain semiring provenance, m-semiring provenance, where-provenance,
and probabilities, is to compute the provenance circuit associated
with a query in what we call the provenance term algebra, using the
standard setting of term algebras [5]. The provenance term algebra
is a generalization of the universal semiring of [19] and the universal
m-semiring of [17]: we simply represent operations performed to
obtain a query result as free terms over the following operators:
• ⊗ for cross product, as in semirings;
• ⊕ for union and duplicate elimination, as in semirings;
• 	 for set difference, as in m-semirings;
• Π for projection, used for where-provenance;
• = for selection equality between columns, used for where-

provenance.
Other query operators (such as selections comparing a column to
a constant) are not represented, as they do not impact provenance
in any of the provenance formalisms. Provenance terms contain
enough information to reconstruct any provenance formalism, or
to compute probabilities of query results. Instead of representing
these free terms as formulas – the usual approach [19, 28] – we
represent them as (arithmetic) circuits, as in [15]. Usually, the
circuit representation can be more compact than formulas [30, 1].
ProvSQL thus maintains a provenance term algebra circuit and
performs all operations on it, as explained next.

4. THE PROVSQL SYSTEM
We now briefly describe the ProvSQL system. ProvSQL is an

open-source software implemented in SQL, PL/pgSQL (the procedu-
ral programming language of PostgreSQL), C, and C++, freely avail-
able at https://github.com/PierreSenellart/provsql/ and
as a Docker container at inriavalda/provsqldemo.

ProvSQL is implemented as a module of the PostgreSQL database
management system1, which means it can be deployed in a straight-
forward manner on top of an existing installation of PostgreSQL.
ProvSQL has been tested with versions PostgreSQL 9.5, 9.6, and 10
(inclusive), under Linux and MacOS X.

ProvSQL functions by adding a separate column, provsql, to
all ProvSQL-aware tables of the database, which contains prove-
nance tokens. Provenance tokens are 128-bit universally unique
identifiers (UUIDs) that are generated using the uuid-ossp Post-
greSQL module. These provenance tokens are identifiers of gates in
a provenance circuit that is constructed and maintained by ProvSQL.
Provenance tokens on base ProvSQL-aware tables are fresh UUIDs
and correspond to input gates of the circuits. ProvSQL generates
new provenance tokens for results of queries on ProvSQL-aware
tables, which identify inner gates of the provenance circuit. UUIDs
are assigned in a reproducible manner, so that results to two identical
queries are assigned identical provenance tokens.

ProvSQL consists of two distinct parts, presented next in detail:
a query rewriting module that automatically computes the prove-
nance of query results as gates of a provenance circuit; user-defined
functions (UDFs) that introduce provenance annotations to existing
tables and allow computation of various forms of provenance and
probabilities from the provenance circuit.

1https://www.postgresql.org/
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Query Rewriting Module. PostgreSQL provides hooks [25]
at different stages of the query execution engine that modules can
use to change the behavior of the software. ProvSQL uses one such
hook, planner hook, to perform query rewriting after the query
has been parsed and before it is sent to the query planner.

The query rewriting module only operates for queries that refer-
ence one or more ProvSQL-aware tables. Such a query is rewritten
in two steps: first, all direct references to the provsql column are
ignored – this column is not meant to be directly manipulated by
the user; second, a new provsql column is generated for the query
result: the values contained in this column are provenance tokens
identifying gates of the provenance circuit that encode all operations
performed to produce this result, in the provenance term algebra.

SQL is a very rich language, and the structure of the query parsed
by PostgreSQL reflects this richness. This means that the rewriting
needs to take into account every possible feature of the SQL lan-
guage. The following types of SQL queries are currently supported
by ProvSQL:
• simple SELECT ... FROM ... WHERE queries, i.e., conjunc-

tive queries with multiset semantics;
• JOIN queries (regular joins only; outer, semijoins, and anti-

joins are not currently supported);
• SELECT queries with nested SELECT subqueries in the FROM

clause;
• GROUP BY queries (without aggregation) – we note that ag-

gregation support would require moving from semirings to
the semimodules of [3], which has not yet been implemented
to the best of our knowledge;
• SELECT DISTINCT queries (i.e., queries with set semantics);
• UNION’s or UNION ALL’s of SELECT queries;
• EXCEPT of SELECT queries.

User-Defined Functions. User-defined functions provide a
SQL interface to the ProvSQL system, defined within a separate
provsql schema [29]. In particular, the following user-defined
functions are available:
add provenance(table ): turns a regular PostgreSQL table into

a ProvSQL-aware table, with a provsql attribute containing
fresh provenance tokens.

provenance(): returns the provenance token encoding the prove-
nance of the current query.

create provenance mapping(mapping,table,column ):
constructs a provenance mapping as a new mapping table,
mapping the provenance tokens of table table to the values
within the column column of that table; provenance map-
pings are used by further UDFs to assign an elementary value
to input provenance tokens.

view circuit(token, mapping ): provides a PDF visualization
of the subcircuit rooted at token of the provenance circuit,
using mapping to label input gates.

semiring (token, mapping ): a different UDF is defined for dif-
ferent (m-)semirings, which returns the result of the evaluation
of the subcircuit rooted at token of the provenance circuit in
the corresponding m-semiring, using mapping to map input
provenance tokens to (m-)semiring elements.

where provenance(token ): returns a textual representation of
the where-provenance for the provenance token token.

probability evaluate(token, mapping, method, a ):
computes the probability of the provenance token token , us-
ing mapping to map input gates to probabilities; method and
a specify the method used to evaluate the probability (enumer-
ation of possible world, Monte-Carlo sampling, knowledge
compilation to a d-DNNF) and additional arguments specify-

Table 1: Table Personnel for the personnel of an intelligence
agency, used as a running example (from [27])

id name position city classification

1 John Director New York unclassified t1
2 Paul Janitor New York restricted t2
3 Dave Analyst Paris confidential t3
4 Ellen Field agent Berlin secret t4
5 Magdalen Double agent Paris top secret t5
6 Nancy HR Paris restricted t6
7 Susan Analyst Berlin secret t7

ing the number of iterations or the knowledge compiler used
(c2d [13]2, d4 [24]3, or dsharp [26]4).

5. DEMONSTRATION SCENARIO
Our demonstration scenario will use three different databases:
• the example Table 1 (taken from [27]), the list of personnel

from a fictitious intelligence agency, small and simple enough
to be easily understandable in a demonstration setting;
• a synthetic large probabilistic graph, used to demonstrate the

difference of performances between various methods;
• a real-world database of a large public transport network5

(involving several tables, with more than 10 million tuples)
used to showcase realistic examples.

Most of the demonstration is done within PostgreSQL’s psql

command-line client; a special Web-based GUI is provided for visu-
alizing where-provenance, and circuit visualization uses an external
PDF viewer.

We will illustrate the features of ProvSQL on Table 1 using the
following example queries, also from [27], as well as variations
thereof:
• A monotone query Q1 that asks for cities with at least two

persons in the agency:

SELECT DISTINCT P1.city

FROM Personnel P1 JOIN Personnel P2

ON P1.city = P2.city

WHERE P1.id < P2.id

• A non-monotone query Q2 that asks for cities with exactly
one person in the agency:

SELECT DISTINCT city FROM Personnel

EXCEPT

SELECT DISTINCT P1.city

FROM Personnel P1 JOIN Personnel P2

ON P1.city = P2.city

WHERE P1.city = P2.city AND P1.id < P2.id

The user will also be free to write her own queries, helping her
get familiar with ProvSQL’s features and limitations.

First, we will show how to use the add_provenance UDF to add
provenance support to an existing table, assigning fresh provenance
tokens to all tuples, and the create_provenance_mapping UDF
to create provenance mappings that will be used in further queries.
Basic SQL queries will be run to show that every query results is
annotated with provenance annotations.

2http://reasoning.cs.ucla.edu/c2d/download.php
3http://www.cril.univ-artois.fr/KC/d4.html
4https://bitbucket.org/haz/dsharp
5https://opendata.stif.info/explore/dataset/
offre-horaires-tc-gtfs-idf/table/
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Second, we will show the result of executing Q1 or Q2 on the table,
as a table with new provenance tokens. Using the view_circuit
UDF, we will display the provenance circuit corresponding to these
provenance tokens, and will also show how this circuit is stored in
the database. We will then illustrate how this circuit can be used to
compute provenance annotations in any provenance semiring (or,
for the case of the non-monotone query Q2, in any m-semiring):
specifically, we will show how to compute, for instance, the security
level needed to access each tuple in the result of Q1, or how to get
a Boolean formula expressing how the result of Q2 depends on the
presence or absence of individual tuples in the input, using UDFs
defined for each provenance (m-)semiring. If the user so decides,
we can also demonstrate implementing a new semiring (such as
the tropical semiring) by writing the corresponding UDF. Finally,
we will ask ProvSQL to display the where-provenance of query
results using the where_provenance UDF, through a Web-based
interface: when the user hovers over a value in a query result, the
system highlights values in the input that produced this data value.

Third, we will move to probabilistic query evaluation, modify-
ing the input table to add probability values onto individual tuples.
Using the probability_evaluate UDF, we will show how the
probability of individual query results can be computed by different
approaches: naive enumeration of possible worlds, Monte-Carlo
sampling (with a parameter specifying the number of samples used),
and knowledge compilation using either c2d, d4, or dsharp. Prob-
abilistic query evaluation on the synthetic probabilistic graph will
illustrate the difference of performances between these methods.

Last, we consider realistic examples. On the transport network
dataset, queries can be run, for instance, to compute all stations
reachable with at most one transfer from some station. After the
computation is performed, the provenance of the result can be used
to obtain different kinds of meta-information, without rerunning
the query: Is the station reachable for a wheelchair user (using
evaluation in the Boolean semiring and accessibility attributes on
lines and stations)? What is the probability to encounter a failure on
a route given failure probability on each line?

A 12-minute video preview of part of the demonstration is avail-
able at https://youtu.be/iqzSNfGHbEE?vq=hd1080.
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