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ABSTRACT
We present an overview of SAP HANA’s Native Store Exten-
sion (NSE). This extension substantially increases database
capacity, allowing to scale far beyond available system mem-
ory. NSE is based on a hybrid in-memory and paged col-
umn store architecture composed from data access prim-
itives. These primitives enable the processing of hybrid
columns using the same algorithms optimized for traditional
HANA’s in-memory columns. Using only three key primi-
tives, we fabricated byte-compatible counterparts for com-
plex memory resident data structures (e.g. dictionary and
hash-index), compressed schemes (e.g. sparse and run-length
encoding), and exotic data types (e.g. geo-spatial). We
developed a new buffer cache which optimizes the manage-
ment of paged resources by smart strategies sensitive to page
type and access patterns. The buffer cache integrates with
HANA’s new execution engine that issues pipelined prefetch
requests to improve disk access patterns. A novel load unit
configuration, along with a unified persistence format, allows
the hybrid column store to dynamically switch between in-
memory and paged data access to balance performance and
storage economy according to application demands while re-
ducing Total Cost of Ownership (TCO). A new partitioning
scheme supports load unit specification at table, partition,
and column level. Finally, a new advisor recommends opti-
mal load unit configurations. Our experiments illustrate the
performance and memory footprint improvements on typical
customer scenarios.
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1. INTRODUCTION
The SAP HANA database (referred to simply as HANA)

created a hybrid transactional and analytical processing par-
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adigm, known as translytics or HTAP, by performing effi-
ciently over the same shared data for both workloads. Per-
formance for such combined workloads is achieved by com-
bining the columnar store engine with highly optimized in-
memory processing technologies. The combination of colum-
nar store and in-memory processing optimizes performance
by providing fast columnar access while avoiding per-column
page access. HANA’s original qualities were thus HTAP,
multi-model, and performance. From the beginning, HANA’s
approach was to focus on qualities and treat features as be-
ing subservient to these desired qualities. Likewise, in cloud
processing, the qualities of a service are more important
than its features; a service with a high TCO or a low avail-
ability will fail to be adopted even if the service is feature-
rich. HANA naturally evolves and extends its focus to cloud
qualities, e.g. TCO, availability, elasticity, and automation.

HANA’s Native Store Extension (NSE) is part of this ma-
jor shift and one of the technology enhancements which re-
shapes HANA as a cloud-native database. The focus of NSE

is to give HANA a cloud-native Infrastructure-as-a-Service
cost structure with low TCO and the capability to cover a
wide range of cost and performance choices while preserv-
ing HANA’s original qualities. NSE extends HANA with a
block device oriented store without introducing a special-
ized disk engine. Instead, we have taken a hybrid approach:
the seamless extension of the in-memory store and engine.
The extension is based on having a unified persistence for-
mat for in-memory processing and for paged access. This
unified format is friendly to paging, enabling thus efficient
disk processing, e.g. using a buffer cache, touching a mini-
mal number of pages for point access and prefetching pages
when appropriate for serial scans. The content of persis-
tent pages is byte-compatible with contiguous sections of
HANA’s original in-memory columnar format. Therefore,
the disk extension brings no performance degradation.

We extended the in-memory engine at the store access
level and at the higher relational operator level. At the store
access level (the leaves of the query plan), disk processing
reuses the in-memory code within the limited scope of each
page. The relational operators of HANA’s execution engine
are pipelined whenever on-the-fly processing is possible (e.g.
for filter, project, hash probe). There are pipeline breakers
whenever the whole input must be consumed before generat-
ing results. The execution engine’s disk extension required
no change for the pipelined operators. Only the pipeline
breakers are extended with disk-based variants to limit their
processing memory footprint, keeping HANA’s in-memory
processing performance the same for loaded columns.
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2. AN OVERVIEW OF SAP HANA
HANA supports both analytical and transactional access

patterns [26, 20] and different data representations (struc-
tured, semi-structured and unstructured). HANA makes use
of modern hardware features like multi-core CPUs [31], non-
volatile memory (NVM) [6] and large main memory sizes.
With parallelization at all levels (scale-up, scale-out) and
MVCC-based transaction management [16], HANA provides
scalability for increasingly complex enterprise workloads.

2.1 In-Memory Column Store
The relational capabilities of HANA are built around an

in-memory column store. Columns are internally split into a
read-optimized main fragment, handling the majority of the
column data, and a small write-optimized delta fragment.
Inserted or updated records are always appended to the end
of the delta fragment. Queries are executed independently
on both fragments and the two result sets are joined and re-
turned, with some rows removed after applying row visibility
rules. The tuples of the delta fragment are regularly merged
into the main fragment by the delta merge operation. Data
is stored using domain coding, specifically the column val-
ues are substituted by bit-packed value ids which point into
a dictionary that contains the distinct, sorted (main) or un-
sorted (delta) original column values. Reverse lookups are
accelerated by an optional inverted index. Depending on
the data distribution, the value identifier array in main frag-
ments is subject to further compaction using prefix, sparse,
run-length, indirect, and cluster compression [18]. Domain
coding, in conjunction with advanced compression, reduces
memory footprint by up to a factor of 10x. The process-
ing of queries in HANA is rapidly converging towards HEX

(HANA Execution Engine), a new state-of-the-art query en-
gine. HEX achieves great locality for queries using two fea-
tures. First, HEX is able to merge adjacent physical plan
operators and compile them into native code using LLVM.
This is useful for CPU-intensive parts of a query where as
much data as possible shall be retained in CPU registers.
Second, HEX pipes tuple batches of approximately Lx cache
size through a chain of plan operators. Compared to the tra-
ditional row-at-a-time model, pipelining amortizes operator
invocation costs and improves cache behavior significantly.

2.2 In-Memory and On-Disk Processing
HANA’s in-memory store serves many use cases well. How-

ever, database capacity is inherently constrained by the avail-
able amount of memory. As a remedy, SAP recently added
NVM as a new storage option to HANA [6]. NVM continues
to be a strategic direction, however, its size is expected to be
only factors larger than DRAM whereas disk storage is orders
of magnitude larger than DRAM. To substantially increase
HANA’s capacity and scale with the best cost/performance
ratio, we extended HANA with native disk store technolo-
gies. Our solution implements a hybrid column store ar-
chitecture which provides in-memory and page loadability
across all compression types, data types, and database ob-
jects (schema, table, and column). With this new hybrid col-
umn store, HANA does not only enable seamless migration
of data to slower storage as data volume increases, it also
retains full functionality with predictable and elastic degra-
dation of performance in resource-constrained environments
such as cloud deployments.

3. ARCHITECTURAL OVERVIEW OF HY-
BRID COLUMN STORE IN SAP HANA

HANA’s NSE adds complementary disk-based column store
features to HANA’s in-memory column store, which together
form a flexible, hybrid column store. This hybrid column
store offers in-memory processing for performance critical
operations and buffer-managed paged processing for less crit-
ical, economical data access. This hybrid capability extends
up from a unified persistence format which can be used to
load paged or in-memory primitive structures, which in turn
form paged or in-memory column store structures (data vec-
tors, dictionaries, and indexes) that are ultimately arranged
by the hybrid column store according to each column’s load
configuration. Hybrid columns can be configured to load all
in-memory structures, all paged structures, or a mixture of
both. This configuration can be manually set by the user or
application, as well as automatically set based on workload,
data access patterns, and intelligent algorithms. HANA’s
hybrid column store architecture is optimized towards in-
memory processing in that the original HANA in-memory
column store performance is preserved for in-memory con-
figurations, while paged configurations are aligned as closely
as possible to the in-memory structure to provide maxi-
mum code sharing at the top level. Fortunately, the ex-
isting set of in-memory column implementations (uncom-
pressed and compressed simple values, as well as specialized
representations for materialized hash index, persistent row
id, and spatial data type) share some common high-level
structures (dictionaries, indexes, data vectors and block vec-
tors). These pieces can be encapsulated and interchanged
with paged implementations.

The hybrid column store (Figure 1) is built on the concept
of primitive building blocks. A primitive hides the memory
or paged nature of those parts behind standard APIs. As an
example, the most widely used in-memory primitive in the
HANA column store is the n-bit compressed data vector,
which provides a compressed representation of dictionary-
encoded values in contiguous memory, while the paged coun-
terpart provides the same compressed byte compatible rep-
resentation in paged memory. Both primitives provide the
same API but different memory footprint and performance
characteristics. HANA’s Data Definition Language SQL has
been extended to allow the specification of load unit hints
for database objects. A load unit hint declares the preferred
access type (either paged or fully in-memory) of a database
object. Load unit specifications allow for flexible multi-level
table partitioning options, where all or selected table parti-
tions can be declared with a given load unit tag such that
the columns on the main fragments of the specified parti-
tions follow a given load unit. New DDL statements are
also provided for the efficient conversion of legacy database
objects (originally created without NSE’s unified persistence
format) into the unified persistence format. An elastic buffer
cache is provided to manage paged memory efficiently within
a configurable size limit of the total memory allocated to the
HANA database server. This limit is dynamically adjustable,
and it works in tandem with the memory resource manager
to ensure resources using paged memory do not interfere
with memory resources allocated for in-memory objects.

An NSE Load Unit Advisor utility is provided to assist
users with configuring the load unit for the database ob-
jects accessed by a given workload. The Load Unit Advisor
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Figure 1: HANA’s Hybrid Column Store Architecture

provides a heuristics-based engine that interprets data us-
age patterns collected by the hybrid column store to make
recommendations on load unit changes; for example, that a
table or column should be page loadable. These recommen-
dations are aimed at placing smaller and frequently accessed
database objects fully in memory while allowing larger and
less frequently accessed objects in paged memory, balancing
memory footprint with performance. Our contributions are
presented as follows:

• We introduce the unified persistency (Section 4) which
is consumed by the pageable primitives (Section 5), de-
signed to integrate well with in-memory column store.

• We present the design of our new buffer cache (Sec-
tion 6) and its integration with new execution engine
(Section 7).

• We present metadata and online dynamic load unit
conversion at column, table, and partition granulari-
ties (Section 8).

• We present the design of recommendation engine that
provides hints for load unit conversion (Section 9).

• We share experimental results (Section 10) demon-
strating memory footprint reduction and performance
impact in end-to-end evaluation on large workload in
difference scenarios.

4. UNIFIED PERSISTENCY FORMAT
Piecewise columnar access for read-optimized main frag-

ments was previously introduced to HANA [29]. This paged
access was designed to achieve minimal memory utilization
as a complement to the high-performance data access al-
gorithms developed and optimized for fully memory resi-
dent columns. This paged access empowered several use
cases that relied on clear resolution of the load unit in ad-
vance. The configuration of load unit had to be done ex-
plicitly by the application expert who knows the data ac-
cess patterns and knows the tradeoff between the memory
consumption and performance. One of the use cases was
data aging, where recently added data is considered hot,
and configured to use in-memory load unit, while older data
is considered warm and is configured to use paged load unit.
When data is aged, hot data is converted to warm data by
a lengthy persistence change from memory resident to page

loadable. Once a column is chosen to be in either format,
it will remain so throughout its life cycle. An explicit load
unit conversion can change a column’s persistency format
(Section 8.2). However, the format conversion is slow, as it
changes the format for every subcomponent of a column, i.e.
the data vector, the dictionary, and any index present. With
the introduction of a common persistence format, referred
to as unified persistence in this paper, we bridge the gap be-
tween the two representations and avoid expensive format
conversions when the load unit changes.

Unified persistence is achieved by providing an identi-
cal byte-compatible representation for each columnar data
structure. This is achieved by composing primitives to con-
struct a page loadable equivalent of any data structure of
each column. If a subcomponent of a column needs to be
fully loaded in memory for optimal performance, instead
of needing a persistency format change, we switch the ac-
cess mode for each data structure and primitive by allo-
cating contiguous memory which is populated quickly and
efficiently by copying data from temporary loaded pages (in
the buffer cache) to memory. This step can be performed
independently for each of the used primitives. When a sub-
component is small enough, e.g. less than the minimum page
size, it can be co-located with other such subcomponents of
the same column on the same page chain and it will always
be loaded in memory directly and independently.

The unified persistency enables a new class of use cases by
reducing the total cost of ownership for both in cloud and on-
premise installations. Not only there is no need to perform
a conversion between the two representations, but also we
can dynamically load a column in either load unit type and
perform this for each of its subcomponents. If needed, the
applications can still provide a load unit type hint at table,
partition or column level. However, this is entirely optional
as the NSE Load Unit Advisor (Section 9) can analyze the
workload of the application and provide the load unit type
hints. Moreover, to achieve an optimal cost/performance
ratio, a strategy can keep the most frequent used substruc-
tures of selected columns in memory and the others in paged
format residing in a less performant media. This is mainly
because the cost of switching from one load unit type to an-
other is minimal (there is no persistency format conversion
to switch load unit).
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5. PAGEABLE PRIMITIVES
Most of the common data structures of a column (i.e. data

vector, dictionary, and inverted index) are implemented in
HANA with the help of one or more compressed in-memory
vectors. Vectors were chosen intentionally to store these
data structures in contiguous memory. This enables op-
timized processor cache access to any element in constant
time. This contiguous representation also enables optimized
parallel scan operators that are fine-tuned to take advan-
tage of multi-core vectorized processing [31]. The architec-
ture of the native store extension is based on the unified
persistency format and the ability for transient paged and
in-memory structures to load from it efficiently. This re-
quires not only to provide byte-compatible representation
across in-memory and page loadable representation of every
data structure, but also to employ identical algorithms to
process classic and page loadable pieces of a column. This
brings two key challenges: to provide paged counterparts
of memory resident data structures, and to adapt existing
algorithms to work seamlessly with either format without re-
gressing HANA’s column store performance. To achieve this,
we introduced the concept of paged primitives. Primitives
are key enabler of the unified persistency in NSE. We moti-
vate the idea of composing primitives to support compressed
pageable columns, as well as advanced memory reduction
features, and remark on our performance enhancement.

5.1 Primitives
Paged primitives provide a uniform interface with their

in-memory counterparts to read-write algorithms. This al-
lows our code base to seamlessly operate on either format
with minimum adaption, hiding the details of operating on
data in native store extension. Furthermore, these prim-
itives are composable and can be enriched with auxiliary
and performant search structures and indexes.

5.1.1 Multi-page Vectors
A large vector can be stored on a single page chain with

fixed size pages. Having a fixed number of objects per page
simplifies identifying the page that has the content for a
given vector position [29]. For NSE, we enriched this primi-
tive with the possibility of storing more than one vector on
each page chain (Figure 2), with each vector having its own
metadata. Once a vector is sorted, each multi-page vector
can be extended with a helper structure to facilitate search
and to avoid loading pages that are guaranteed not to have
a value that does not satisfy the search.

5.1.2 Paged Mapped Vectors
Unlike multi-page vectors, we may need to store many

small vectors on a single page chain, and to have perfor-
mant access to these small vectors. This is required by sev-
eral compression schemes and features (Section 5.2 and 5.3).
Such vectors can fit within a single page. During scans,
a small vector is created directly pointing to memory of a
loaded page, so it does not need to be copied, therefore re-
ducing memory consumption.

5.1.3 Arbitrary Sized Items
Some data items are variable sized in nature, e.g. geomet-

ric objects (Section 5.3.1). Paging of such items requires a
primitive to store blocks of variable size. A block is fully
stored on a single page. The number of blocks stored on
a page depends on block sizes. For data items larger than
the page size, data is internally divided into multiple blocks.
This primitive provides a key to its consumers when a new
item is added. The key can be used to later retrieve the
stored object.

5.2 Compressed Pageable Columns
HANA extensively uses advanced compression algorithms

to reduce the memory footprint of columnar data and to
achieve performance [18]. With the introduction of page-
able columns [29], we mainly focused on supporting pag-
ing of data vectors compressed using uniform bit packing.
While plain domain encoding provides good compression
rate for data vectors, it could not exploit the increased sav-
ings achieved by the compression techniques that HANA uses
for in-memory columns [18]. Consequently, the applications
had to choose between an uncompressed pageable or com-
pressed in-memory format. This restricts the data vector
space that could benefit from the unified persistency (Sec-
tion 4) to domain-coded columns. To tackle this limitation,
we provide pageable counterparts to all compression formats
supported by HANA. Beyond the obvious reduction in disk
and memory footprint together with increased performance,
this closes the gap between the page loadable and in-memory
column and enables fast load unit conversion. In this sec-
tion, we briefly overview three compression techniques and
describe their page loadable counterparts.

5.2.1 Pageable Run-Length Encoding
The Run-Length Encoding (RLE) technique is suitable for

a data vector with regions of repeated values (runs). It re-
duces this redundancy by representing each run by a pair of
value identifier and frequency. In HANA we trade off some
compression and prefer to store the start position of each
run instead of the frequency. Therefore, a compressed data
vector with RLE compression stores two vectors: the inte-
ger vector containing the identifier of values per run, and
the start position of each run. Both vectors can become
pageable by using paged mapped vectors. With RLE, we
trade disk space with performance. The performance im-
pact can be prohibitive when we want to access the value
given a row position r; a brute force approach would load
many compressed pages to locate the runs corresponding to
r. To mitigate this problem, we introduced a compact mem-
ory resident helper structure that contains the last value
recorded in each of the start positions vector pages and do
binary search on this memory resident structure to narrow
the number of pages loaded to two pages.

2050



5.2.2 Pageable Sparse Encoding
When the value distribution of a column contains one very

frequent value, in a simplified form, the compressed data
can be represented by two vectors: an integer vector (the
original vector with the most frequent value removed) and
a bit vector with bits set at the positions where the most
frequent value is observed. Pageable sparse encoding uses
the multi-page vectors for storing the reduced data vector
and a simplified multi-page vector for storing the bit vector
that represents the position of the most frequent value.

5.2.3 Pageable Indirect Encoding
This encoding scheme can save more space by finding

blocks in a data vector that have few distinct values. The
compressed data vector is represented by an integer vector
that keeps the block dictionaries and the uncompressed data.
We store a vector of compressed blocks containing a pointer
to the individual values and metadata. Pageable indirect
encoding uses a multi-page vector to encode the integer vec-
tor that stores one dictionary per block. Each dictionary
contains the distinct values observed per block. Each com-
pressed block is stored using a small integer vector (a paged
mapped vector) which can be loaded on-demand from the
underlying pageable storage. We also store a vector of page
logical pointers for each block (null pointer if a block is not
compressed) followed by a vector of offsets in the value vec-
tor (one offset per block) using paged mapped vectors and
arbitrary size items, respectively.

5.3 Advanced Memory Reduction Features

5.3.1 Paging of Geo-Spatial Columns
Geo-spatial columns typically store large data sets and

can easily require large amounts of memory when loaded.
Users are forced to choose between expensive hardware for
hosting all of their geo-spatial data or to manage only a
subset of the data. Paging of geo-spatial columns allow full
HANA functionality over smaller memory footprints. Geo-
spatial columns store one cell per block using the arbitrary
sized items primitive (Section 5.1.3) and a block can span
multiple pages when needed. The block address for each
cell is stored separately using the multi-page vector prim-
itive (Section 5.1.1). To scan a value for a row position,
the multi-page vector primitive is used to retrieve the corre-
sponding block address. Further, the block address is used
to load the specified page using the arbitrary sized items
primitive. Without paging, geo-spatial columns are loaded
as a vector of reference counted objects. Each object points
to corresponding geometry data, has size information, and a
reference count which determines the life cycle of the data.
Similarly, a paged geo-Spatial column cell is represented as
a reference counted object where the object points directly
to the geometry data in the corresponding page. The object
also holds a handle to the underlying page to manage the
page’s life cycle.

5.3.2 Paging of RowID Column
HANA uses a persistent RowID column to uniquely identify

rows across delta merges and similar operations which phys-
ically reorder rows for optimal storage. The RowID column
is stored in compressed format where consecutive 1, 024 val-
ues are compressed together to form a block. We store such

word boundary aligned blocks on the page chains. Align-
ment ensures that the blocks can directly be accessed from
pages when needed without requiring them to be copied into
some aligned temporary memory. The start position of each
of the blocks is also stored at the end of the page chain,
the so called block address vector. We use the multi-page
vector primitive (Section 5.1.1) to store the block address
vector. Considering the maximum number of rows per par-
tition (2 billion), the block address vector is guaranteed to
be not very large. During load of the column, the block
address vector is fully loaded into memory from the pages.
A frequent operation in HANA is to determine the position
of a row containing a given RowID. This can be determined
by using the block address vector to identify the page where
the RowID is and its offset. Only the specified page is loaded
and the blocks are accessed using the page mapped vectors’
API (Section 5.1.2).

5.3.3 Paging Dictionary
In [29], we introduced on-demand dictionary access struc-

tures for variable size data types (e.g. VARCHAR). For fixed
size data types (e.g. INTEGER) a sorted dictionary for the
main fragment of a column is represented as a vector of fixed
size values. There are two key operations on a column dic-
tionary: 1) materialization of the value corresponding to the
value identifier observed in a data vector at a desired row
position, and 2) probing of the dictionary to perform reverse
mapping (i.e. from value to its identifier in the data vector).
For fixed size data types, we designed the paged dictionary
using a variant of the multi-page vector primitive. To ma-
terialize a value, the primitive can provide a single page ac-
cess guarantee. This is because each page can hold a fixed
number of values. To probe a sorted dictionary, however,
a binary search is required which may load many pages to
locate the single page that contains the probed value. To
mitigate this problem, we introduced a compact memory res-
ident sorted vector (helper for dictionary). The last value
on each dictionary page is stored in the helper. The probe
operation can perform binary search on the helper and load
a dictionary page only if there is a match.

5.3.4 Paging Hash-based Indexes
The hash-based indexes are unique multi-column indexes

created over the table. Being unique, the dictionary is the
major space consuming subcomponent of these indexes. We
implemented a two-pronged approach to reduce the memory
footprint. First, we replaced the dictionary in the hash in-
dexes with a hash function and functionality for paging the
row position mapping is provided through a hybrid hash col-
umn implementation. A variant of multi-page vector prim-
itive (Section 5.1.1) is used to abstract paging. The hash
values stored for the indexes are hidden and almost never
projected through the user queries. Owing to this pecu-
liarity of the hash-based index, the amount of index data
accessed while executing a query is reduced. This removes
the need to do page accesses for the dictionary lookup.

5.4 Remark on Performance Optimization
Paged primitives can be slower than in-memory counter-

parts, because of the requirement to access unloaded pages.
Paged primitives are constructed for the main fragment of a
column (the read-only, but large piece) as opposed to delta
fragment. Large scans are typical on the main fragment.
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To mitigate the natural impact of I/O latency when access-
ing paged primitives, a combination of optimization tech-
niques can be used. First, as will be described in Section 7,
HANA’s execution engine can provide prefetch hints to the
buffer cache for sequential scans that expose patterns when
accessing primitives. Second, page pinning can prevent a
trip to the buffer cache, by storing page handles in the con-
text of the operator’s stack to ensure repeated access to the
page are not impacted by buffer cache eviction. Third, small
memory resident data structures, e.g. page synopsis [4, 14,
24] can be designed to reduce the amount of page accesses
and to cache statistics, as the main fraction of a column
is guaranteed to not change between two consecutive delta
merges.

6. HANA BUFFER CACHE
The introduction of the Native Store Extension in HANA

necessitated a well performant and scalable buffer manage-
ment system for page resources. HANA has a resource man-
ager that manages different kinds of resources in memory
and evicts them under high memory pressure situations us-
ing a weighted LRU strategy, where each kind of resource
(columns, pages) can be associated with a specific weight.
However, for better eviction strategies, we needed to further
classify pages based on their access patterns. With this pur-
pose, we have introduced a buffer cache which is maintained
separately from the resource manager to manage the page
resources within a memory limit. The buffer cache holds
used and free pages and can grow and shrink on demand.
Most used pages are retained in-memory while the least used
ones are replaced, if needed, reducing HANA’s overall mem-
ory footprint. HANA supports multiple page sizes based on
their usage for data, dictionary, or index. Multiple buffer
pools of different page sizes are maintained within the buffer
cache. In this section, we explain features and requirements
that motivated the design of the buffer cache architecture
(Figure 3). HANA’s buffer cache supports the creation of
domain-specific page pools for objects (e.g. data, dictionar-
ies, and indexes) helping to retain one set of heavily used
pages more than the other, to improve system performance.

6.1 Buffer Cache Elasticity
The buffer cache supports all HANA page sizes by main-

taining a buffer pool per size. On server start, the cache
contains no memory. When a free buffer is requested, the
buffer cache grows by pre-allocating free buffers in the back-
ground, so the subsequent requests for free buffers of the
same page size need not wait on memory allocation. All
the buffer pools can cumulatively grow up to the cache ca-
pacity. The growth size of each buffer pool can be tuned

based on the frequency of the free page requests of its page
size. Cache capacity can be tuned, and when reduced, the
buffer pool will start asynchronously shrinking the cache by
removing free buffers followed by unused pages proportion-
ately across all the pools until the cache size falls below the
reduced cache capacity.

6.2 Hot Buffer Retention and Page Stealing
Although the goal is to keep the memory footprint low by

limiting usage through the limited buffer cache, the overall
performance of the system should remain on par with that
of the in-memory system. To achieve this, it is essential to
reduce I/O by retaining frequently used buffers while main-
taining enough free buffers for future usage. We provide
an adaptive version of the LRU replacement policy, that not
only provides the simplicity of the LRU mechanism, but also
solves the synchronization overhead associated with it. We
maintain a separate list of working set buffers in a lockless
queue. A housekeeper thread monitors the overall buffer
requests in the system and rebalances the buffers from the
working set queue into the LRU list and free list. This also
follows a policy of retaining frequently used buffers, extend-
ing the stay of hot buffers in the cache until there is an
occasional burst of buffer requests e.g. by delta merge oper-
ation. As buffers exist in different pools, a pool size balance
is maintained by stealing buffers from pools with least ac-
tivity. This is critical for the frequent scenario of a specific
pool being heavily used causing LRU replacements leading
to a reduced performance due to page I/O.

6.3 Page Prefetch
The buffer cache allows queries to asynchronously prefetch

pages before accessing them to reduce wait on I/O. Every
prefetched page follows the same life cycle of an LRU page.
For example, analytical queries access multiple pages of each
column, and many such queries could run concurrently. This
can result in many concurrent page prefetch requests. How-
ever, buffer cache prefetch subsystem limits the total number
of prefetched pages to certain percentage of the cache capac-
ity so the synchronous page loads or page allocations do not
starve for free buffers. To fulfill large prefetch requests, de-
spite a limited prefetch size, the prefetch subsystem allows
the queries to incrementally prefetch a list of pages. Queries
run with multiple jobs, and before jobs for a query begin,
the first few pages of the range of pages each job will ac-
cess are prefetched. As each job begins its processing, the
remaining pages are prefetched.

6.4 Out-of-buffers and Emergency Pool
Queries fail if the buffer cache fails to find a free buffer

despite a reasonable number of retries. In this case, the
user is alerted to increase the buffer caches capacity. But
some critical tasks like undo of a transaction, crash recov-
ery, or continuous log replay on a secondary site, cannot fail
as their failure would leave the database in an inconsistent
state. For these cases, a free buffer request is fulfilled by an
overflow resource provider managed outside the buffer cache.
Here, the free buffer provided for the page is destroyed im-
mediately after the page has been used for its designated
purpose. By allocating-on-demand and immediate destruc-
tion of the emergency buffer, the memory consumed by the
overflow resource provider is kept as low as possible.
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7. HEX INTEGRATION
An incoming query in HANA is first parsed and optimized

by the SQL frontend. In this step, various static rules (e.g.
convert expressions to conjunctive normal form, eliminate
constants and tautologies, apply static partition pruning)
and cost-based heuristics (e.g. enumerate different join or-
ders, pick plan alternative with lowest estimated cost) are
applied to produce an optimized logical execution plan. The
logical operators are subsequently substituted by physical
operators (e.g. replace a generic join by a hash, nested, or
loop index join). If a physical HEX alternative exists for
each operator, HEX is used for execution, else the query is
sent to one of HANA’s classical query engines.

7.1 Query Execution in HEX
Relational databases traditionally evaluate a physical op-

erator tree in a root-to-leaf fashion using the iterator model
first popularized by the Volcano system [13]. In that model,
parent operators repeatedly pull single tuples from their
child operators by calling a virtual getNext() method. Vol-
cano style processing is simple and versatile and had its
merits in a time when disk I/O was the bottleneck. How-
ever, getNext() is not only invoked very frequently (once per
tuple and operator), also each call needs to be resolved in
a vtable. This makes the iterator model generally ill-suited
to the branch prediction of modern CPUs. HEX instead
adopted a data-centric, leaf-to-root push model [23, 21]. In
this approach, the control flow is reversed: operators push
tuples towards their parent operators using produce() and
consume() methods. Neighboring HEX operators are said
to form a pipeline if they pass batches of tuples, as many
as fit the Lx cache, without spilling them to DRAM or to
disk. To achieve maximum flexibility, HEX operators can
add two kinds of code to a pipeline. One kind inserts pre-
compiled code which usually wraps complex logic like de-
compression of domain-coded tuples or disk pages fetches.
The other kind emits code in a high-level programming lan-
guage (L, an SAP-internal language) which is by default ei-
ther interpreted upon the first query invocation or, upon re-
peated invocation, compiled to native code at runtime using
LLVM. Adjacent generated operators can be amalgamated
into a single, fused operator. The resulting tight nested loop
greatly benefits code locality and data locality as tuples typ-
ically reside fully in CPU registers during execution.

7.2 Column Scans with Prefetch
Some of the most I/O-intensive operations in many HEX

plans are pipelines which are fed by a main fragment scan.
Such pipelines are typically generated from WHERE clauses
in SQL queries with predicates on one or more columns. A
main fragment scan comprises two steps. In the first step,
called dictionary lookup, the scan predicate is translated
into a set of value ids using the dictionary. For most predi-
cates, this breaks down to (few) binary dictionary searches
with logarithmic runtime. The second step, called data vec-
tor scan, compares each value id of the data vector against
the value ids found in the previous step. Data vector scans
tend to be more expensive than dictionary scans because the
size of the data vector usually exceeds the dictionary size by
far and, the scan advances row-by-row with linear runtime.
To that end, the HEX framework breaks up the scan range
into subranges, and eventually scans the subranges using
multiple threads in parallel. If the scanned column is paged

Algorithm 1 GetLoadUnitAffinity

1: if column load unit hint 6= ”default loadable” then
2: return column load unit hint
3: else if partition load unit hint 6= ”default loadable” then
4: return partition load unit hint
5: else if table load unit hint 6= ”default loadable” then
6: return table load unit hint
7: else
8: return ”column loadable”

and not loaded, scan jobs will repeatedly trigger blocking
page loads via the buffer cache. To avoid such unneces-
sary roundtrips to persistency, a prefetch pipeline is created
and populated with prefetch operators, one per column frag-
ment, and run as early as possible. The prefetch operator
requests the buffer cache to preload as many pages of the
respective subrange as possible. Prefetching generally has
best-effort semantics, i.e. if the page cache area is already
highly utilized or if the I/O system is contended, the buffer
cache may decide to drop parts of the prefetch request. We
found that fairness is a desirable property of prefetching.
By that we mean that approximately the same number of
pages shall be loaded for all subranges and that pages shall
be loaded in the same order in which the scan visits them.
If prefetching is not fair, some scan jobs are given a head
start over other scan threads and finish (in average) earlier
than penalized threads. This works in general against the
scalability and resource utilization of the database system.
To ensure fairness, our implementation of prefetch asks one
subrange after the other to advance a per-subrange row wa-
termark by which the scan can proceed, assuming it can
access a constant number of pages. Prefetch stops if the
buffer cache prefetch limit has been exhausted or if all sub-
ranges have been prefetched. During the data vector scan, a
best-effort attempt will be made to prefetch any remaining
pages in each subrange not accepted during the first prefetch
request.

8. LOAD UNIT CONFIGURATION
For HANA to use the features introduced so far, database

objects (tables, partitions and columns) need to be config-
ured to use NSE. This section describes the metadata and
SQL interface used to configure NSE, as well as the process
of load unit conversion, which is required to convert existing
database objects to use the unified persistency format.

8.1 Persistent Metadata and SQL Interface
HANA provides the functionality to either page individual

columns or to use the data aging feature. In data aging, a
single partition will be in-memory and all other partitions
paged [29]. HANA’s NSE adds flexibility by providing a SQL
interface to tag columns, partitions and tables with load unit
hints and convert the underlying column persistency to the
preferred storage format. The load unit hint tag is persis-
tent and acts as a hint to determine the loading behavior
of columns i.e. in-memory or paged. Column, partition and
table can be tagged with one of the three load unit hints:
column-loadable to indicate the columns to be loaded as
fully in-memory, page-loadable to indicate columns to be
loaded as paged, default-loadable to indicate the absence of
any explicit load unit hint. The desired loading behavior for
a column in a given partition is derived during the load unit
tagging operation as described in Algorithm 1.
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8.2 Online Load Unit Conversion
Prior to NSE, HANA used a different persistency format

for in-memory vs. page loadable column structures [29].
This is because in-memory structures do not require page
alignment, so the most efficient way to store them was sim-
ple serialization. NSE hybrid column structures use a page-
aligned unified persistency format (Section 4). This means
tables with persistency created prior to NSE need to convert
their persistency to the unified format to take advantage of
the hybrid column store features. This persistency conver-
sion is termed load unit conversion and is done through an
explicit SQL alter column DDL.

In HANA, table columns have a numeric identifier which
is unique within a table and consistent across all partitions
of that table. Before the introduction of NSE, alter col-
umn operations in HANA were implemented by internally
creating a new table column with a new identifier followed
by copying data from the old column to the new column
and subsequently dropping the old column. DDLs to al-
ter the load unit of a given partition, which internally uses
the alter column infrastructure, would have to operate on
all the partitions of the table to guarantee a consistent col-
umn identifier across partitions. HANA also uses internal
columns with fixed unique column identifiers where load
unit conversion must be supported. With NSE, the online
load unit conversion within a partitioned table is no longer
done by introducing a new column, but by versioning exis-
tent columns while keeping their identifiers. The load unit
conversion DDL creates a new version of the column with
the preferred persistency format, while existing readers re-
ferring to the old column version can continue to access it.
The new column version is activated when the DDL com-
mits, from which time readers use the new column version.
This column versioning mechanism allows HANA to execute
load unit conversions on specific partitions while preserving
the same unique column identifier across partitions.

8.3 Partitioning with NSE
Unbalanced partitioning is a flexible partitioning strategy

that departs from the conventional balanced partitioning
scheme. It allows to define separate partitioning schemes
(e.g. hash) at selected nodes of the second level of parti-
tioning subtrees than the first level which uses range par-
titioning. For instance, one could decide on a range-range
partitioning scheme, and have different ranges at the 2nd
level for some of the 1st level ranges, or not even have a
range at the 2nd level for some of them. This scheme is
very useful in organizing the table based on data temper-
ature i.e. based on the hot vs. cold nature of the data.
It may be possible, for instance to organize the cold parti-
tions differently as the access requirements are optimized by
design. The partitioning specification for such a scheme is
internally represented as a JSON document; very different
from a linear text string used in balanced partitioning.

The partitioning schema offers the flexibility to declare
specific properties assigned for each physical partition, e.g.
the location, the load unit specification, and the partition-
ing group types. Declaring inheritance rules allows to in-
herit from parent level (i.e. 2nd level can inherit from 1st
level). Furthermore, one can partition at the second level us-
ing a different partitioning statement, e.g. range(Column1)
and range(Column2) for some of the 1st level ranges but
range(Column1) and range(Column3) for some other parti-

tion nodes. This enables specializing and balancing the par-
titioning tree based on actual data distribution. Unbalanced
partitioning integrates well with the Native Store Extension.
As opposed to classic data aging, where each partitioned ta-
ble could have one hot current partition and a set of cold
aged partitions, we can designate selected nodes in the par-
titioning tree to be page loadable with NSE. This ensures
that the data for all the columns in those partitions would
reside on disk and will be paged via the buffer cache when
the data is queried. This relaxes the memory requirements
for storing very large tables in HANA. The NSE advisor can
analyze workloads on partitioned tables and recommend the
change of the load unit for each partition node.

9. LOAD UNIT ADVISOR FOR NSE
To achieve the best cost/performance ratio, it is necessary

to know which objects should be made page loadable to re-
duce total memory footprint without significantly affecting
the performance. This section describes a solution to help
identify the objects (tables, partitions, or columns) that are
suitable to be converted to page loadable (to save the mem-
ory space) or to column loadable (to improve performance).
Ideally, objects that are small and accessed frequently should
be kept in memory to improve column data access perfor-
mance. Large objects rarely accessed are better to be kept
on disk to reduce memory usage, and only brought in mem-
ory when needed and only for the pages that are accessed.
Our solution consists of two phases: access pattern collec-
tion and rule-based load unit recommendation.

9.1 Access Pattern Collection
To build the data access pattern for a workload, each phys-

ical access to a column fragment is counted and updated at
query level in an internal cache unit called the access statis-
tics cache. Becuase only the main fragment is paged for a
page loadable column, the access count is only recorded for
accesses to the main fragment. When the delta fragment
is merged to the main fragment, the access count for the
original main fragment is retained. When a column is un-
loaded from memory during the workload, its access count
is also retained in the access statistics cache and continues
to be updated after the column is loaded again into mem-
ory. DDLs that drop an object will clean up the statistics
entries related to the dropped objects. Building the data ac-
cess statistics has a small impact on the ongoing workload
performance. Therefore, it is only enabled through a con-
figuration option. The statistics cache can be cleared when
not needed or when a new cache needs to be built.

9.2 Object Load Unit Recommendation
Load unit recommendations uses a heuristics rule-based

approach that relies on measurements and thresholds:

Scan density d(o) ratio of access scan count of object o
over the object’s memory size

Hot object threshold θh minimum scan density for an
object to be considered a hot object

Cold object threshold θc maximum scan density for an
object to be considered a cold object

Object size threshold θs minimum object size to be con-
sidered for recommendation

The thresholds (θh, θc, and θs) are system parameters.
A list of objects is recommended to convert their load units
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based on their scan density. For object o1, if d(o)<θc and the
object’s memory size is greater than θs, it is recommended
to be page loadable. If d(o)>θh, it is recommended to be
column loadable. A table may be recommended to be page
loadable due to an overall low scan density while a column
within the table may be recommended to be column load-
able due to its high scan density. In that case, the column
level recommendation takes precedence over the table level
recommendation. Similarly, partition level recommendation
takes precedence over the table level recommendation.

10. EVALUATION
We report the performance analysis and the memory foot-

print reduction for SAP HANA. We compare default column
loadable tables, where columns are completely loaded into
memory (CL) vs. columns that use the Native Store Exten-
sion (NSE). We report only the results from selected set of
experiments for brevity.

10.1 Workload and Metrics
We used an in-house benchmark tool (ML4). ML4 simu-

lates production environment SQL workload at customer site
with configurable scale factor. ML4 simulates users’ interac-
tions on an ABAP stack based on SAP S/4HANA application.
ABAP is server programming platform for SAP applications.
It sends SQL statements to the database. Basis of the work-
load is a sell from stock process including creation of sales or-
ders, outbound deliveries, goods movements and billing doc-
uments (OLTP part) with reporting queries (OLAP part). A
single scenario loop in ML4 simulates business transactions
consisting of multiple user interaction steps. Each step is
separated by an artificial constant waiting time of 10 sec-
onds (think time). A typical test setup consists of multiple
concurrently simulated scenarios executed by different users,
where each user runs a series of loops. The first few set of
transactions sometimes includes the execution of a reporting
query, hence creating the OLAP part of the workload. The
remaining transactions form the OLTP part. When simu-
lating a certain number of users, OLTP and OLAP loads
are balanced by default, allowing statistically 1 out of 100
users to perform a reporting query in the first transaction.
The underlying HANA database used by ML4 has at least
100, 000 tables with every column type that is used in a
typical SAP S/4HANA installation, with different compres-
sion format (i.e. Clustered, Indirect, Prefixed, RLE, Sparse)
as well as no compression. We conducted two sets of exper-
iments: CL when accessed columns were completely loaded,
and NSE when the majority of tables were converted to use
Native Store Extension. In NSE experiments, we turned on
the Load Unit Advisor for NSE (Section 9) to collect statis-
tics from the workload and to provide recommendation on
converting columns to NSE format. We report two set of
metrics; memory consumption and performance. Memory
consumption was measured at two levels; total system mem-
ory (M1) and the aggregate of memory footprint for tables
(M2). The latter metric excludes the memory not used by
the column store, e.g. for storing intermediate results of
queries. We report performance as average total database
time for running OLTP and OLAP transactions (we call these
OLTP MMV and OLAP MMV, where MMV stands for ML4-
metric value). We restrict the amount of memory used by

1a table, a partition, or a column

60% savings
75% savings

Normalized Peak Memory (M1) Normalized Agg. Memory (M2)

CL NSE

1 51 101 151
Time interval (seconds)

CL NSE

Figure 4: Normalized memory (OLTP workload)

HANA server to around 2X the size of the database, and we
conducted NSE experiments by fixing the buffer cache size
at 10% of data size as default. We also report experiment
varying the buffer cache size.

10.2 Results and Analysis
Figure 4(top) presents the normalized memory measure-

ments (M1 and M2) for running OLTP workload. Both CL

and NSE benefit from compressing index vectors, but NSE

does not need to load each column accessed for each OLTP

operation completely into memory. Because of this, we ob-
served immediate memory savings for both measures. We
also monitored the memory consumption of the two settings
(M2) over time, shown in Figure 4(bottom). For NSE, the
memory consumption is restricted by the buffer cache size,
whereas for CL, it is limited by the total memory avail-
able to HANA server. Notice that there are fluctuations
for CL somewhere around 40 seconds. These correspond to
accesses to column(s) designated as CL that had not been
loaded into memory yet when the benchmark executed, and
the read only portion of these columns need to be accessed,
e.g. for checking a uniqueness constraint, or for system level
statistics collection. As the buffer cache is operating at its
full capacity, the same operation would trigger page evic-
tions, to accommodate new requests. This kept the total
memory consumption for NSE balanced in this experiment.
This is a very desirable property for cloud deployment. The
majority of the OLTP requests that require modifications of
any type (INSERT/UPDATE/DELETE) were handled by the
delta store of each column. Because the NSE technology
only targets the read optimized section of column store (i.e.
the main store), the performance of OLTP operations were
not impacted significantly (less than 3.7%) by choosing the
NSE configuration over fully loaded setting.

We conducted experiments with a mixture of OLTP and
OLAP operations and observed similar trends as in the OLTP

experiments for normalized runtime (Figure 5). The buffer
cache again guaranteed that the total memory usage re-
mains smaller than the amount of memory consumed by
the CL setting (Figure 6 top) with a system memory usage
pattern (Figure 6 bottom) very similar to the OLTP only
experiments in Figure 4 bottom. Converting to NSE does
not significantly affect the runtime, as shown in Figure 7.
We should note that in the extreme case, when the buffer
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Figure 5: Normalized runtime (mixed workload)
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Figure 6: Normalized memory (mixed workload)

cache is very small, any operation that requires a portion
of data which is not in the buffer cache would incur I/O to
load required page(s). However, there is a significant dif-
ference with when a needed column is not present in the
memory; NSE only loads sections of a column (e.g. pieces
of compressed index vector, fractions of dictionary, and in-
verted index). However, CL needs every subcomponent of a
column to be entirely present in memory. Because of this,
CL may suffer more from column evictions, whereas NSE’s
granularity of eviction from the buffer cache is page units.

To evaluate the impact of buffer caches size, we conducted
both OLTP and OLAP experiments, varying the size of buffer
cache (Figure 7 and 8). NSE benefits from the NSE advisor
integrated with the buffer cache, to enhance the page evic-
tion decisions, and to initiate prefetch requests if needed.
Because HANA’s memory resources for CL setting is man-
aged separately by HANA’s resource manager, as opposed
to NSE buffer cache, we did not observe difference in mem-
ory consumption and runtime for CL. When the size of the
buffer cache reduces, we see the impact on the runtime for
both OLTP and OLAP, with OLAP being more affected be-
cause it accesses more pages (Figure 7). This is expected,
as buffer cache is pressured to evict more pages when the
size decreases. This translates into more page misses in the
buffer cache, and less average page lifetime. Reducing buffer
cache size has no impact on peak and average memory for
CL, but directly impacts NSE (Figure 8).

We conducted another experiment by reducing the global
allocation limit (GAL). This limit restricts the amount of
memory available to CL objects, and it has no impact on NSE

resident objects. Reducing GAL imposes memory pressure
on the HANA server, which results in the resource manager

CL NSE (500 GB) NSE (50 GB) NSE (5 GB)

OLTP_MMV OLAP_MMV

Figure 7: Normalized runtime varying buffer cache
size (mixed workload)

CL NSE (500 GB) NSE (50 GB) NSE (5 GB)

Normalized Peak Memory
Normalized Agg. Memory

Figure 8: Normalized peak memory varying buffer
cache size (mixed workload)

GAL = 1TB GAL = 512 GB GAL = 256 GB

CL NSE

GAL = 1TB GAL = 512 GB GAL = 256 GB

CL NSE

Figure 9: Normalized peak memory (top) and nor-
malized runtime (bottom) varying global allocation
limit (OLAP workload)

evicting database objects, at table and column granularity,
to free memory. This eviction is orthogonal to the page
eviction by the buffer cache. The former type of eviction
results into reduction in normalized peak memory (Figure 9
top) and increased memory traffic, which impacts normal-
ized query response time in CL (Figure 9 top). The buffer
cache size is not affected by the total memory reduction, as
long as it does not affect the amount of resources it pre-
allocates. Hence, no performance impact for NSE (Figure 9
bottom).

11. RELATED WORK
We focus on selected components of NSE and place our

contributions in the context of the state of the art.
Columnar databases use compression techniques exten-

sively [2] and HANA implemented highly optimized loss-
less packing techniques for its in-memory column store [18].
Pairing paging and compression is a challenging problem and
has been studied for data pages [27, 8]. Storing geo-spatial
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data in paged format has been implemented before, with in-
tegration with specialized query processing engines [10, 32].
In our work, we proposed primitives that were designed for
generic use case, and can be used to provide pageable com-
pression and pageable geospatial columns. The byte com-
patibility with in-memory columns provided seamless inte-
gration with query processing at upper layer, without the
need to specialize highly optimized algorithms.

Enterprise-class main memory translytics systems have
started focusing on cloud-native infrastructure as a service
to balance TCO. For instance, Oracle [1] uses a disk-based
row store backed by a buffer cache as the warm store. The
in-memory store with compression units support fast ac-
cess to the columnar hot store. The row store is backed
by a buffer cache to balance TCO and performance. These
separate two layouts require format conversions and data
migration to move data to a slower volume. Our unified
persistency format mitigates this problem and enables dy-
namic load unit conversion to keep TCO at a desired level
for cloud deployment. Stoica et. al. [30] use OS paging di-
rectly to efficiently migrate cold data efficiently to secondary
storage by relying on the virtual memory paging mechanism
of the operating system. Unlike NSE, their focus is only on
row stores and OLTP. As this approach does not need buffer
cache, it is hard to benefit from the optimizations possible by
maintaining statistics from query execution engine at lower
granularity, e.g. primitives. SQL Server [15] maintains a
columnar store index (CSI) on memory-optimized row store
tables for operational analytics on hot data. Operational
analytics on warm data is done by creating and maintaining
secondary CSI on disk-based row store tables. This results
in additional overhead of maintaining the dual stores and
moving data.

The use of buffer pools as a performance optimization
component dates back to the early days of database sys-
tems [28]. Several modern in-memory databases use a form
of buffer pool [5]. New hardware technology has been re-
cently adapted to enhance the performance of classic buffer
pool. Sai et. al. [25] propose a new replacement policy
that separates the queue of managed resources into clean
and dirty pools, when the database is stored on flash disk.
Do et. al. [9] propose alternative eviction policies enhanced
by high I/O bandwidth of SSD drives and predicted block
access patterns. Liu and Salem [19] propose cost aware re-
placement algorithms for hybrid storage configuration (SSD

and HDD drives). Arulraj et. al. [7] propose multi-tier
buffer management using DRAM, NVM, and SSD that can
be used for different workloads using different storage hier-
archy for optimum performance. Graefe et. al. [12] propose
a design that uses pointer swizzling to eliminate buffer pool
overheads for memory resident data, in which raw pointers
to loaded pieces are kept as reference to avoid lookup in
separate queues managed by the buffer pool. LeanStore [17]
uses pointer swizzling and replacement strategy by identi-
fying infrequently accessed pages and an epoch-based tech-
nique to pin pages and achieve performance comparable to
main memory systems. In HANA’s NSE, the read optimized
section of a hybrid column benefits from the NSE architec-
ture and is managed by NSE’s buffer cache for better tun-
ing and optimizations that are only applicable to paged re-
sources. Our buffer cache was designed from the ground up
to take advantage of lessons learned from SAP’s ASE [13]
and HANA and providing extensibility as well as integration

with HANA’s brand new execution engine HEX, and NSE’s
hybrid column and primitives. NSE uses advanced replace-
ment strategies to retain frequently accessed pages while
maintaining balance of buffers for reuse across different page
size pools. HANA’s page accesses avoid the hash lookup by
caching the buffer pointers in the page chain metadata.

The design and configuration of individual database fea-
tures is a challenging task that significantly affects the per-
formance and the total cost of ownership. The database
community has studied this problem in the context of self-
management for relational databases [11], to recommend the
design of physical layout [19, 33], to create new set of indexes
[3, 33], to define new data statistics objects [24], to alter par-
titioning landscape [22], or to tweak the knobs and switches
[3], all with the common goal of running the database at its
highest performance level. The combination of NSE’s hybrid
column store and partitioning proposes the opportunity to
balance TCO with optimum performance goals. With this
goal in mind our advisor pairs with byte-compatible primi-
tives to support dynamic load unit conversion unique to NSE

and to maintain a desired balance between performance and
TCO.

12. SUMMARY
We presented the architecture of HANA’s Native Store Ex-

tension, with a unified persistent format and pageable prim-
itives at its foundation. By integrating NSE into HANA’s
in-memory columnar store we support hybrid columns with
advanced paged compression and reduced memory require-
ments. Hybrid columns, being a primary citizen of HANA’s
column store, require a new buffer cache to effectively man-
age pageable resources. This buffer cache works in conjunc-
tion with HANA’s resource manager which oversees the in-
memory structures. The buffer cache was optimized consid-
ering the nature of hybrid columns and page access patterns,
and for tight integration with HANA’s HEX query execution
engine. HEX can feed the buffer cache with hints to en-
hance its operation, e.g. buffer retention policies, among
many other optimized algorithms that we implemented al-
ready. Through comprehensive end-to-end experiments, we
have shown that on typical customer scenarios NSE reduces
the memory footprint with a minimal loss of performance
compared to in-memory column stores, especially when the
required resources for a query are provided by the buffer
cache. Our approach proved to be fruitful. Beyond its initial
goal, NSE and the unified persistence format in conjunction
with a flexible load unit configuration and partitioning en-
ables several desirable applications, including data tiering,
K-safe high availability with reduced TCO, and a conven-
tional disk database with fast restart.
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