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ABSTRACT
Buying and selling of data online has increased substantially
over the last few years. Several frameworks have already
been proposed that study query pricing in theory and prac-
tice. The key guiding principle in these works is the notion
of arbitrage-freeness where the broker can set different prices
for different queries made to the dataset, but must ensure
that the pricing function does not provide the buyers with
opportunities for arbitrage. However, little is known about
revenue maximization aspect of query pricing. In this pa-
per, we study the problem faced by a broker selling access
to data with the goal of maximizing her revenue. We show
that this problem can be formulated as a revenue maximiza-
tion problem with single-minded buyers and unlimited sup-
ply, for which several approximation algorithms are known.
We perform an extensive empirical evaluation of the per-
formance of several pricing algorithms for the query pricing
problem on real-world instances. In addition to previously
known approximation algorithms, we propose several new
heuristics and analyze them both theoretically and experi-
mentally. Our experiments show that algorithms with the
best theoretical bounds are not necessarily the best empir-
ically. We identify algorithms and heuristics that are both
fast and also provide consistently good performance when
valuations are drawn from a wide variety of distributions.
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1. INTRODUCTION
The last decade or so has seen an explosion of data be-

ing collected from a variety of sources and across a broad
range of areas. Many companies, including Bloomberg [4],
Twitter [10], Lattice Data [7], DataFinder [5], and Banjo [2]
collect such data, which they then sell as structured (rela-
tional) datasets. These datasets are also often sold through
online data markets, which are web platforms for buying and
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selling data: examples include BDEX [3], Salesforce [9] and
QLik DataMarket [8]. Even though data sellers and data
markets offer an abundance of data products, the pricing
schemes currently used are very simplistic. In most cases, a
data buyer has only one option, to buy the whole dataset at
a fixed price. Alternatively, the dataset is split into multiple
disjoint chunks, and each chunk is sold at a separate price.

However, buyers are often interested in extracting specific
information from a dataset and not in acquiring the whole
dataset. Accessing this information can be concisely cap-
tured through a query. Selling the whole dataset at a fixed
price forces the buyer to either pay more for the query than
it is valued, or to not buy at all. This means that valuable
data is often not accessible to entities with limited budgets,
and also that data-selling companies and marketplaces be-
have suboptimally with respect to maximizing their revenue.
Indeed, popular cloud database providers such as Google [6]
and Amazon [1] also follow a coarse grained pricing model
where the user is charged based on the number of bytes
scanned rather than information content of the requested
query.

Query-Based Pricing. To address this problem, a re-
cent line of research [37, 39, 30] introduced the framework
of query-based pricing. A query-based pricing scheme tai-
lors the purchase of the data to the user’s needs, by assign-
ing a different price to each issued query. Given a dataset
D and a query Q over the dataset, the user must pay a
price p(Q,D) to obtain the answer Q(D). This price reflects
only the value of the information learned by obtaining the
query answer, and not the computational cost of executing
the query. The work on query-based pricing has mainly fo-
cused on how to define a well-behaved pricing function, and
how to develop system support for efficiently implementing
a data marketplace. In particular, a key property that a
pricing function must obey is that of arbitrage-freeness: it
should not be possible for the buyer to acquire a query for
a cheaper price through the combination of other query re-
sults. The arbitrage-freeness constraint makes the design of
pricing functions a challenging task, since deciding whether
a query is more informative than another query (or set of
queries) is generally computationally hard, and for practical
applications it is critical that the price computation can be
performed efficiently.

To overcome this barrier, [30] proposes a setup where
we start with a set S consisting of multiple ”candidate”
databases instances; this set is called the support. Each
query Q can then be thought of as a function that classi-
fies instances from S: ones that return the same answer as
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Q(D), and ones that do not. Whether a query is more infor-
mative than another then amounts to whether it classifies
more inconsistent instances than the other. The benefit of
this approach is that in order to find the price of a query, it
suffices to only examine the instances in the set S, which is
a computationally feasible problem.

The Revenue Maximization Problem. Although prior
work provides a framework to reason about the formal prop-
erties of pricing functions, it does not address the following
fundamental question:

How do we assign prices to the queries in order to maximize
the seller’s revenue while ensuring arbitrage freeness?

This is the main problem we study in this paper. Our
key observation is that query pricing can be cast as a prob-
lem of pricing subsets (bundles) over a ground set of items,
where each item corresponds to a database instance in S.
The arbitrage-freeness constraint corresponds to the pric-
ing function (which is a set function over S) being mono-
tone and subadditive. Since there is no limit to how many
times a seller can sell a query (a digital good), we can model
the seller as having unlimited supply for each query answer.
We further consider single minded buyers, which means that
each buyer wants to buy the answer to a single set of queries.

Finding the monotone and subadditive pricing function
that maximizes revenue in this setting is a computationally
hard problem. Furthermore, a subadditive function, even if
we manage to find one, can take exponential space (w.r.t.
S) to store. Therefore, for practical applications we must
seek a simple and concise pricing function that approximates
the optimal subadditive pricing in terms of revenue. In this
paper, we explore such succinct families of pricing functions
that are appropriate for use in a data market, and answer
the following questions:

• What is the theoretical gap between optimal revenue
and the revenue obtained through succinct families of
pricing functions?

• Which revenue maximization algorithms are best suited
for query pricing and what guarantees do they offer?

• How well do the theoretical revenue and performance
bounds translate to real-world query workloads?

Our Contributions. We now discuss our contributions in
detail.

Succinct Pricing Functions. We study three types of suc-
cinct pricing functions (Section 4). The first, uniform bundle
pricing, assigns the same price to every bundle (query) and
is the default pricing scheme in many data markets. The sec-
ond, additive or item pricing, assigns a price to each item
(instance in the support) and charges a price for each bun-
dle equal to the sum of prices for the items in the bundle.
Item pricing has been studied extensively from a theoretical
perspective and a number of approximation algorithms are
known (see, e.g.,[34, 15, 19]). Third, we consider a much
more general class of pricings, namely XOS or fractionally
subadditive pricings. These pricing functions are more ex-
pressive than item or uniform bundle pricings, while at the
same time having a small representation size. Our key find-
ing is that XOS pricing functions can achieve a logarithmic
factor larger revenue than the better of item and uniform
bundle pricing.

Revenue Maximization Algorithms. We theoretically study
several algorithms for finding the revenue maximizing pric-
ing function (Section 5). In quantifying performance, sev-
eral parameters of the instance are relevant: the number of
items n (which is the size of the support), the number of
bundles m (which is the number of the queries issued in the
market), the size of the largest bundle k, and the maximum
number of bundles any item belongs to B. In the context of
query pricing, it is usually the case that B ≤ m � k ≤ n,
so algorithms with approximation factors and running time
depending on B or m are generally better than those de-
pending on k or n.

In particular, although we can always find the optimal
uniform bundle pricing efficiently, it is computationally hard
to find the optimal item pricing. Hence, we consider several
algorithms for the latter task that come with worst case
approximation factors that are logarithmic in one or more
of the natural parameters of the instance. Apart from known
algorithms, we also develop new algorithmic techniques that
improve performance. Finally, for the family of XOS pricing
functions, we propose an algorithm that simply combines
multiple additive item pricing functions.

Experimental Evaluation. Finally, we perform an empirical
analysis of the different pricing functions to understand how
well do the algorithms hold up in practice, which of these
algorithms should a practitioner use, and what features of
the problem instance dictate this choice (Section 6). We
compare the pricing algorithms using both synthetic and
real world query workloads.

Our study shows that the worst-case analysis of pricing
algorithms does not capture how well the algorithms behave
in real-world instances in terms of approximating the opti-
mal revenue. In particular, we observe that the structure
of the bundles induced by different query workloads, as well
as the distribution of buyer valuations, heavily influences
the quality of approximation. For example, the algorithm
that obtains the best known worst case approximation ra-
tio does not achieve the best performance of the algorithms
we tested in any of our setups. Our experiments also show
that it is possible to efficiently extract most of the available
revenue using succinct pricing functions, and in particular
item pricings. Hence, succinct pricing functions seem a good
practical choice for a data marketplace.

Lessons and Open Problems. Finally, we discuss our take-
away lessons, as well as several exciting open questions (Sec-
tion 7).

2. RELATED WORK
Query-Based Pricing. There exist various simple mech-
anisms for data pricing (see [42] for a survey on the sub-
ject), including a flat fee tariff, usage-based and output-
based prices. These pricing schemes do not provide any
guarantees against arbitrage. The vision for arbitrage-free
query-based pricing was first introduced by Balazinska et
al. [14], and was further developed in a series of papers [37,
39, 38]. The proposed framework requires that the seller sets
fine-grained price points, which are prices assigned to a spe-
cific type of queries over the dataset; these price points are
used as a guide to price the incoming queries. Even though
the pricing problem in this setting is in general NP-hard,
the QueryMarket prototype [39] showed that it is feasible to
compute the prices for small datasets, albeit not in real-time
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or maximizing the revenue. Further work on data pricing
proposed new criteria for interactive pricing in data mar-
kets [40], and described new necessary arbitrage conditions
along with several negative results related to the trade-off
between flexible pricing and arbitrage avoidance [41]. Upad-
hyaya et al. [47] investigated history-aware pricing using re-
funds. More recently, [29] characterized the possible space
of pricing functions with respect to different arbitrage con-
ditions. The theoretical framework was then implemented
as part of the Qirana system [30, 31], which can support
pricing in real-time. The framework we use in this paper for
query-based pricing is the same one from [30].

Revenue Maximization. Revenue-maximizing mechanisms
have been well understood in single-item auctions, where the
posted pricing mechanism is optimal [43]. However, in gen-
eral multi-parameter settings, revenue-maximizing mecha-
nisms are considered hard to characterize. In the past few
decades, many researchers started to focus on simple and
approximately optimal solutions, especially posted-pricing
mechanisms. Recent line of work shows that in Bayesian
setting with limited supply, posted pricing achieves constant
approximation when there is single buyer [11, 24, 25, 26, 45],
and logarithmic approximation (with respect to the number
of items) when there are multiple buyers [20, 27, 21].

In this paper, we focus on the case where all valuations of
buyers are revealed to the seller. The study of this setting
was initiated by [34], which shows that item pricing gives
O(logn)-approximation for unit-demand buyers in limited-
supply setting, andO(logn+logm)-approximation for single-
minded buyers in unlimited supply setting. The compet-
itive ratio for unlimited supply setting was improved to
O(log k + logB) by [19] then to O(logB) by [28] where k
denotes the size of largest bundle, and B denotes the max-
imum number of bundles containing a specific item. An-
other line of work studies how to find best possible item
pricing in above setting where k is bounded. This prob-
lem is also known as the k-hypergraph pricing problem. [19]
gave the first polynomial-time algorithm finding an approx-
imately optimal item pricing with competitive ratio k2. The
approximation ratio is improved to k by [15], which is proven
to be near-optimal: under the Exponential Time Hypothesis
there is no polynomial-time algorithm that achieves compet-
itive ratio k1−ε [22].

Pricing information. Another line of research in eco-
nomics considers the revenue maximization problem for a
seller offering to sell information. See, for example, [12,
16, 17] and references therein. However, that literature dif-
fers from our work in several fundamental aspects. First,
in those works, both the seller and the buyer are unaware
of the true state of the information (i.e., the dataset), and
this state is stochastic. Second, the seller is allowed to sell
queries whose results are randomized. Third, the buyer’s
type (which information he is interested in and his value)
are unknown to the seller. In contrast, in our setting while
the pricing is required to be arbitrage-free, the types of the
buyers are known to the seller in advance. As such the two
models lead to very different types of pricing mechanisms
and algorithms.

3. THE QUERY-BASED PRICING FRAME-
WORK

User
uid name gender age
1 Abe m 18
2 Alice f 20
3 Bob m 25
4 Cathy f 22

Figure 1: A relation with 4 attributes. uid is the primary
key.

In this section, we present the framework of query-based
pricing proposed by [29], and then formally describe the
pricing problems we tackle.

3.1 Query-Based Pricing Basics
The data seller wants to sell an instance D through a data

market, which functions as the broker. The instance has a
fixed relational schema R = (R1, . . . , Rk). We denote by I
the set of possible database instances. The set I encodes in-
formation about the data that is provided by the data seller,
and is public information known to any buyer (together with
the schema). We allow the set I to be infinite, but count-
able. For example, suppose that the schema consists of a
single binary relation R(A,B), and the domain of both at-

tributes is [`] = {1, . . . , `}. Then, I = 2[`]×[`], i.e. the set of
all directed graphs on the vertex set [`].

Data buyers can purchase information by issuing queries
on D in the form of a query vector Q = 〈Q1, . . . , Qp〉. For
our purposes, a query Q is a deterministic function that
takes as input a database instance D and returns an output
Q(D). We denote the output of the query vector by Q(D) =
〈Q1(D), . . . Qp(D)〉.

Example 1. Consider a database that consists of a single
User relation as shown in Figure 1. Suppose that the data
seller has fixed the price of the entire relation to $100. Con-
sider a data buyer, Alice, who is a data analyst and wants
to study user demographics. Since Alice has a limited bud-
get, she cannot afford to purchase the entire database. Thus,
Alice will extract information from the table by issuing re-
lational queries over time. We will use this as a running
example throughout the section.

A pricing function p(Q,D) takes as input a query vector
Q and a database instance D ∈ I and assigns to it a price,1

which is a number in R+. Assigning prices to query vectors
without any restrictions can lead to arbitrage opportunities
in the following two ways:

Information Arbitrage. The first condition captures the
intuition that if a query vector Q1 reveals a subset of infor-
mation of what a query vector Q2 reveals, then the price of
Q1 must be no more than the price of Q2. If this condition
is not satisfied, it creates an arbitrage opportunity, since a
data buyer can purchase Q2 instead, and use it to obtain
the answer of Q1 for a cheaper price.

Formally, we say that Q2 determines Q1 under databaseD
if for every database D′ ∈ I such that Q2(D) = Q2(D′), we
also have Q1(D′) = Q1(D). We say that the pricing function
p has no information arbitrage if for every database D ∈ I
1Allowing prices to be general functions of query vectors,
rather than just additive over queries allows for more ex-
pressivity and therefore more revenue for the seller.
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Table 1: Symbol definitions.

Symbol Description

Q Query vector containing buyer queries
D Input database provided by the seller
I Set of all possible database instances consistent

with D
S Support set chosen by the framework
p(Q,D) Pricing function
CS(Q,D) Conflict set of query Q (subset of S)
V Vertex set of hypergraph
E Hyperedges in a hypergraph
H = (V, E) Hypergraph generated by transforming buyer

queries into hyperedges (bundles) containing
db’s in conflict set (V = S)

item j some database j ∈ V in vertex set of H
vQ buyer valuation of query vector Q
bundle A Conflict set of some query in H.
B maximum degree over all items in H

such that Q2 determines Q1 under D, we have p(Q2,D) ≥
p(Q1,D).

Example 2. In our running example, suppose that Alice
wants to count the number of female users in the relation.
She can issue the query Q1 = SELECT count(*) FROM User

WHERE gender = ’f’. However, a different way she can
learn the same information is by issuing the query Q2 =
SELECT gender, count(*) FROM User GROUP BY gender.
Q2 will return the number of users for each gender as its
output. Suppose that the buyer charges p(Q1) = $10 and
p(Q2) = $5, then there exists an information arbitrage op-
portunity. Since Alice can learn the required information
from Q2 at a cheaper cost, she has no incentive to purchase
Q1. Thus, if the seller wants to prevent this arbitrage, he
needs to ensure that p(Q1) ≤ p(Q2). Thus, the seller now
sets the price of Q2 to $10, i.e, p(Q2) = $10.

Combination Arbitrage. The second condition regards
the scenario where a data buyer wants to obtain the answer
for the query vector Q = Q1‖Q2, where ‖ denotes vector
concatenation. Instead of asking Q as one, the buyer can
create two separate accounts, and use one to ask for Q1 and
the other to ask for Q2. To avoid such an arbitrage situation,
we must make sure that the price of Q is at most the sum
of the prices for Q1 and Q2. Formally, we say that the price
function p has no combination arbitrage if for every database
D ∈ I, we have p(Q1‖Q2,D) ≤ p(Q1,D) + p(Q2,D).

Example 3. Alice now wants to find the average age of
female users in the relation. She can issue the query Q3 =
SELECT AVG(age) FROM User WHERE gender = ’f’. Suppose
the seller decides to price p(Q3) = $20. However, Alice could
have also chosen to ask Q4 = SELECT SUM(age) FROM User

WHERE gender = ’f’. Now, she can obtain her desired re-
sult by combining the answers of Q4 and Q2

2. If the seller
prices p(Q4) = $5, then there exists a combination arbitrage
opportunity, since p(Q3) > p(Q4) + p(Q2) which gives Al-
ice an incentive to split her query. To avoid this, the seller
needs to ensure that p(Q3) ≤ p(Q4) + p(Q2).

We say that the pricing function p is arbitrage-free if it
has no information arbitrage and no combination arbitrage.

2We assume that it is public information that gender in this
relation takes only two values: m and f

3.2 From Pricing Queries to Pricing Bundles
In general, computing whether Q2 determines Q1 under

some D is an intractable problem. To overcome this obsta-
cle, we take a different view of a query vector. Let S ⊆ I be
any subset of I, called the support, and define the conflict
set of Q with respect to S as:

CS(Q,D) = {D′ ∈ S | Q(D) 6= Q(D′)}.

Intuitively, the conflict set contains all the instances from
S for which the buyer knows that cannot be the underlying
instance D once she learns the answer Q(D). This construc-
tion maps each query vector to a bundle CS(Q,D) over the
set S. We should remark here that the task of computing
the bundle CS(Q,D) is computationally feasible if we choose
S to be small enough, since we can simply iterate through
all the items D′ ∈ S, and for each item check the condition
Q(D) 6= Q(D′).

Example 4. Consider the support set S = {D1,D2,D3}
as shown below. The colored font highlights the values that
are changed with respect to D.

uid name gender age

1 Abe m 18

2 Alice f 30

3 Bob m 25

4 Cathy f 22

uid name gender age

1 Abe f 18

2 Alice f 20

3 Bob m 25

4 Cathy f 22

uid name gender age

1 Abe m 18

2 Alice f 20

3 Ben m 25

4 Cathy f 22

D1 D2 D3

For query Q1 from Example 2, Q1(D) = Q1(D1) = Q(D3)
but Q1(D) 6= Q1(D2). Thus, CS(Q1,D) = {D2}. Similarly,
CS(Q3,D) = {D1,D2}.

We can now compute a price for Q by applying a set
function f : 2S → R+ to CS(Q,D). A set function f is
monotone if for sets A ⊆ B we always have f(A) ≤ f(B),
and subadditive if for every set A,B we have f(A) + f(B) ≥
f(A ∪ B). By choosing f to be monotone and subadditive,
we can guarantee that the pricing function is arbitrage-free.

Theorem 1 ([29]). Let S ⊆ I, and f be a set func-
tion f : 2S → R+. Then, the pricing function p(Q,D) =
f(CS(Q,D)) is arbitrage-free if and only if the function f is
monotone and subadditive.

We emphasize that the arbitrage-freeness guarantee holds
for any support S. The choice of S impacts the granular-
ity of prices that can be assigned to queries which in turn
affects the revenue. Observe that in the extreme case when
S = ∅, CS(Q,D) = ∅ for any Q implying that all queries
have exactly the same price. On the other hand, a large
support set can make the computation of the conflict set
prohibitively expensive. Section 6.5 explores the tradeoff
between the revenue obtained and S in more detail.

3.3 Revenue Maximization
We consider the unlimited supply setting, where the seller

can sell any number of units of each query. Additionally,
we assume that the buyers are single-minded: each buyer
is interested in buying only a single query vector Q; the
buyer will purchase Q only if p(Q,D) ≤ vQ, where vQ is the
valuation that the buyer has for Q. Note that the single-
minded buyer assumption is not restrictive; a buyer who
wishes to purchase multiple queries (say Q1, . . . , Qλ) can be
modeled as λ separate buyers where each buyer i ∈ [λ] wants
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D1 D2 D3

Q3

Q1

Figure 2: Hypergraph instance for Example 4. Q1 and Q3

are represented as hyperedges containing the databases in
their conflict sets.

to purchase query Qi = 〈Qi〉. Similarly, if the buyer wants
to buy all λ queries together, then we can already express it
as a bundle Q = 〈Q1, . . . , Qλ〉.

The problem setup is as follows. We are given as input a
set of m buyers, where each buyer i is interested of purchas-
ing a query vector Qi with valuation vi. These valuations
can be found by performing market research in order to un-
derstand the demand and price buyers are willing to pay for
queries of interest. Defining and using these demand curves
is a standard practice in the study of economics for digital
goods [33]. We pick a support set S ⊆ I of size n = |S|. By
using the transformation of query vectors to bundles over
S, we can construct a hypergraph H = (V, E), with vertex
set V = S, and hyperedges E = {ei | i = 1, . . . ,m}, where
ei = CS(Qi,D). Figure 2 shows an example of hypergraph
instance constructed from the queries and their conflict sets.

A pricing function p is a set function that maps subsets
of S to prices in R+

3. The task at hand is to find a mono-
tone and subadditive pricing p that maximizes the seller’s
revenue. The revenue of a pricing function p is given by:

R(p) =
∑

i:vi≥p(ei)

p(ei)

The optimal revenue is:

OPT = max
monotone; subadditive p

R(p)

Many of the approximation results in the literature use a
simpler (and weaker) upper bound on OPT, namely the
sum of all bundle values

∑
i vi, as a basis of comparison

for algorithms’ performance. Throughout the paper, we will
use the term hypergraph to refer to the instance created by
the transformation as described above and the term item to
refer to some instance in the vertex set V of the hypergraph.

3.4 Simple Pricing Functions
For practical applications (e.g., Qirana [30]), we must

only consider functions that can be both concisely repre-
sented and also efficiently computable. For example, it is
not desirable to come up with a function p where we need
to explicitly store all the 2n values for all input bundles from
S. For this reason, we focus on a few important subclasses
of monotone and subadditive set functions:

• The uniform bundle price pb(·) assigns the same price
to every hyperedge, i.e. pb(e) = P for some number
P ≥ 0.

• The additive price pa(·) assigns a weight wj ≥ 0 to
every item j ∈ S, and then defines pa(e) =

∑
j∈e wj .

Such a pricing function is also commonly known as an
item pricing.

3Here we have overloaded p to also be a pricing function
with input a bundle of items.

subadditive bundle
pricing

XOS pricing

max
{ item pricing

uniform bundle pricing
}

item pricing uniform bundle
pricing

O(logm)O(logB) [28]

?

Ω(logm)

Ω(logm) Ω(logm)

Figure 3: Summary of the lower and upper bounds between
different subclasses of pricing functions. The red font show
results in this paper; blue font shows known results.

• The XOS price px(·) defines k weights w1
j , w

2
j , . . . , w

k
j

for each item j ∈ S, and sets the price to px(e) =
maxki=1

∑
j∈e w

i
j .

Given the above three subclasses of pricing functions, we
consider the following two questions, both from a theoretical
and practical point of view. First, how much do we lose
in terms of revenue by replacing the optimal monotone and
subadditive pricing function with a uniform, additive or XOS
pricing function? In other words, we seek to understand
what is the revenue we lose for the sake of computational
efficiency. Second, we want to develop algorithms that can
optimize the prices for each subclass and achieve a good
approximation ratio with respect to the optimal revenue.

4. UPPER AND LOWER BOUNDS
In this section, we present worst-case guarantees on how

well uniform bundle pricing and item pricing can approxi-
mate the optimal subadditive and monotone bundle pricing.
Figure 3 summarizes the upper and lower bounds that are
either known, or we obtain in this paper.

Upper Bounds. It is a folklore result that for any hyper-
graph H = (V, E) with valuations {ve}e∈E , one can always
construct a uniform bundle price that is O(logm) away from
the sum of valuations

∑
e ve, which is an upper bound on

the optimal subadditive and monotone bundle pricing.

Lemma 1. Consider a hypergraph H = (V, E) with valua-
tions {ve}e∈E . Then, there exists a uniform bundle price pb

that achieves revenue O(logm) away from
∑
e∈E ve, where

m = |E|.

Similarly, we know from [28] that item pricing can achieve
a O(logB) approximation of the sum of valuations. Recall
that B is the maximum number of hyperedges that any ver-
tex can be contained in, and hence B ≤ m.

Lower Bounds. The theoretical upper bound of O(logm)
is tight in the worst case for both uniform item pricing and
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bundle pricing. In particular, we show the following results
(proofs in full paper [23]).

Lemma 2. There exists a hypergraph H = (V, E) with ad-
ditive valuations, such that any uniform bundle price pro-
duces revenue Ω(logm) from the optimal revenue

∑
e∈E ve.

Lemma 3. There exists a hypergraph H = (V, E) with
uniform valuations, such that any item pricing solution pro-
duces revenue Ω(logm) from the optimal revenue

∑
e∈E ve.

Lemma 4. There exists a hypergraph H = (V, E) with
submodular valuations, such that any uniform bundle pric-
ing and any item pricing produces revenue Ω(logm) from
the optimal revenue

∑
e∈E ve.

Note that for each of the above result, there exists a sub-
additive pricing function that can extract the full revenue.
The above lower bounds tell us that there are problem in-
stances where uniform bundle pricing will be optimal, but
item pricing will behave poorly, and vice versa. Moreover,
there are instances where both subclasses of pricing func-
tions will not perform well with respect to the optimal sub-
modular monotone function (which is a subset of subadditive
and monotone bundle pricing). A straightforward corollary
of the lower bound of Lemma 4 is that even an XOS pricing
function that combines a constant number of item pricing
functions suffers from the Ω(logm) revenue gap. An open
question here is whether an XOS pricing that uses a non-
constant (but still small enough) number of item pricings
can obtain a better approximation guarantee with respect
to the optimal subadditive and monotone bundle pricing.

5. APPROXIMATION ALGORITHMS
In this section, we present the various approximation al-

gorithms that we consider in our experimental evaluation.
We consider algorithms from two subclasses of subadditive
and monotone pricing schemes: (i) uniform bundle pricing,
and (ii) item (additive) pricing.

5.1 Uniform Bundle Pricing
In uniform bundle pricing, the algorithm sells every hy-

peredge at a fixed price P . Then, if the buyer has valuation
ve ≥ P , the hyperedge (and thus, the query bundle corre-
sponding to the hyperedge) can be sold. To compute the
optimal uniform bundle price P , we use a folklore algorithm
that we call UBP. The algorithm first sorts the hyperedges in
E in decreasing order of valuation. Then, it makes a linear
pass over the ordered valuations, and for every hyperedge
e ∈ E computes the revenue Re obtained if we set the price
P = ve. In the end, it outputs maxe{Re}. It is easy to
see that the algorithm runs in time O(m logm), and that it
achieves an approximation ratio of O(logm).

Uniform bundle pricing is very attractive as a practical
pricing scheme, since it has a single parameter (and thus it
has a concise representation), and computing the price of a
new query is a trivial task. However, because it is insensitive
to the structure of the bundle (and hence the query), it
will perform very poorly when the valuations have a large
difference across the hyperedges. We should remark here
that we expect this to be the case in real-world scenarios:
for instance, consider a large table and two queries: one that

returns the whole dataset, and one that returns only a single
row of the table. Then, it is reasonable to expect that the
valuation for these two queries will generally differ by a large
margin.

5.2 Item Pricing
In item pricing, we seek to assign a weight wj ≥ 0 to each

vertex in the hypergraph. Then, the price of any hyperedge
e is given by p(e) =

∑
j∈e wj . The representation size of

item pricing is O(n), so we can guarantee that it will have
a concise representation as long as we pick the support set
to be small enough (recall that n = |S|). Unlike uniform
bundle pricing, item pricing can capture large differences
between the valuation of different queries. On the other
hand, we also need to choose a large enough support size,
so that we can extract a reasonably good revenue from our
pricing function. A large support size also guarantees that
that new queries that arrive will have non-empty hyperedges
and hence will not be priced to 0. In our experiments, we
evaluate four item pricing algorithms.

The Uniform Item Pricing (UIP) Algorithm. Our first
item pricing algorithm is an O(logn+logm)-approximation
algorithm given by Guruswami et. al [34]. UIP outputs a
uniform item pricing, where every wj is set to the same value
w. The algorithm sorts all hyperedges on the value qe = ve

|e| ,

computes for every hyperedge e the revenue Re that we can
obtain if we set wj = qe for every j ∈ V, and finally outputs
the pricing that gives maxe{Re}. Its running time is also
O(m logm).

The LP Item Pricing (LPIP) Algorithm. The second
item pricing algorithm we consider builds upon the UIP al-
gorithm to construct a non-uniform item pricing. LPIP con-
structs a separate linear program LP (e) for every hyperedge
e ∈ E as follows. Let Fe ⊆ E be the set of hyperedges e′ such
that ve′ ≥ ve. Then, LP (e) has the objective of maximizing
the revenue, with the constraint that every edge in Fe must
be sold: in other words, for every e′ ∈ Fe, we must have∑
j∈e′ wj ≤ ve′ . Observe that the uniform item pricing so-

lution that sets each weight wj to ve is a feasible solution for
LP (e), so the output of the linear program can only give a
better item pricing. LPIP outputs the revenue-maximizing
solution across all LP (e). The worst-case approximation
guarantee of LPIP is also O(logm); however, as we will see
in the experimental section, it often outperforms UIP.

The Capacity Item Pricing (CIP) Algorithm. This
algorithm is an O(logB)-approximation algorithm given by
[28]. Although this primal-dual algorithm was presented in
the context of item pricing with limited supply, it readily ex-
tends to the unlimited supply setting. Intuitively, CIP sets a
uniform capacity constraint k on how many times each item
(vertex) can be sold, and for that k solves a linear program
that optimizes for the welfare-maximization problem. The
dual solution of this LP gives the prices of items such that
at least k copies of each item are sold. [28] proves that if
we search through the possible capacity constraint using a
step-size of (1 + ε) – so k = 1, (1 + ε), (1 + ε)2, . . . – then
the revenue-maximizing item pricing across all k’s achieves
an approximation ratio of O((1 + ε) logB).

The Layering Algorithm. Since the previous algorithms
require solving multiple linear programs, they can be slow
when the size of input is large. We thus also consider a fast
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Figure 4: Hyperedge size distribution

greedy algorithm that achieves an O(B)-approximation in
the worst case (but as we will see, a much better approxi-
mation in practice).

Algorithm 1: The Layering Algorithm

input : Hypergraph H = (V, E) and valuation {ve}e∈E
output: Item pricing wj for each item j ∈ V

1 Rev ← 0, S ← ∅, wj ← 0 for each j ∈ V;
2 while E 6= ∅ do
3 Let E ′ ⊆ E be a minimal set cover of the items in⋃

e∈E e;

4 if
∑
e∈E′ ve > Rev then

5 S ← E ′;
6 Rev ←

∑
e∈E′ ve;

7 E ← E \ E ′;
8 for e ∈ S do
9 Find item j ∈ e such that j 6∈ e′, ∀e′ ∈ S, e′ 6= e;

10 wj ← ve;

11 return {wj}j∈V

The key idea of the algorithm is to arrange the hyperedges
in a layered fashion such that in each layer, every hyperedge
has a unique item. Then, setting the weight for unique items
to the valuation of the edge and all other items to zero can
extract the full revenue in a particular layer. The following
theorem proves the correctness of Algorithm 1, and analyzes
its performance.

Theorem 2. Algorithm 1 outputs a B-approximation item
pricing in O(Bm) time.

Proof. Each step the algorithm finds a minimal set cover
of the remaining items, call the set cover a layer. On one
hand, since each item presents in at most B hyperedges,
there are at most B layers as at each step the degree of each
item decreases by at least 1. On the other hand, each hyper-
edge e in a minimal set cover E ′ must contain at least one
unique item that is not contained in other sets: otherwise
E ′ \ {e} is still a set cover, which contradicts the minimal-
ity of E ′. Pricing these unique items at price equal to the
value of corresponding sets can extract full revenue from
the hyperedges in this layer. There must exist a layer such
that the item pricing can achieve Ω( 1

B
) of the total value

of all the hyperedges, thus this item pricing algorithm has
approximation ratio O(B). The running time for each step
is O(m), and the total running time is O(Bm).

The XOS Pricing (XOS) Algorithm. The last pricing
algorithm we consider is the XOS function obtained by com-
puting the bundle price using pricing vector from LPIP , CIP

and then using the higher of the two as price offered by the
seller.

6. EXPERIMENTAL EVALUATION
In this section, we empirically evaluate the performance of

the five pricing algorithms presented in Section 5. We evalu-
ate the performance across two measures: (i) the runtime of
the algorithm, and (ii) the revenue that the algorithm can
generate. All pricing algorithms run on hypergraph struc-
tures that are generated from a workload of SQL queries
executed over a real-world dataset. The valuations are ob-
tained using different generative random processes, so as to
observe the algorithmic behavior under different scenarios.
These generative models are motivated by studies modeling
valuations for digital goods in online platforms and their
pricing [44, 18, 35, 46, 48, 13, 49].

6.1 Experimental setup
We perform all our experiments on Intel Core i7 proces-

sor machine and 16 GB main memory running OS X 10.10.5.
We use MySQL as the underlying database for query process-
ing and evaluation. Our implementation is written in Python
on top of the Qirana query pricing system [30]. For all our
experiments, we use Cvxpy [32] optimization toolkit for run-
ning linear programs. Qirana generates a support set S by
randomly sampling ”neighboring” databases of the under-
lying database D, i.e. databases from I that differ from D
only in a few places. The advantage of this strategy is that
it is possible to succinctly represent the support set by stor-
ing only the differences from D, which is efficient in terms of
storage. For every query bundle Q, Qirana computes the
conflict set CS(Q,D), which is the bundle (or hyperedge)
that we use as input to the pricing algorithms.

Table 2 shows the design space of our experimental eval-
uation. Our experiments are over the world dataset, TPC-H
benchmark and SSB benchmark. Each query workload will
generate a hypergraph; to assign valuations over the hyper-
edges, we sample from different types of distributions, which
we describe later in detail. We evaluate our algorithms for
each instance that is generated in this fashion.

In order to compare how well our algorithms perform in
terms of revenue, we use two upper bounds: (i) sum of valu-
ations, and (ii) an upper bound on the optimal subadditive
valuation. We find an upper bound on the optimal subad-
ditive valuations by computing a linear program whose con-
straints encode the arbitrage constraints. Since the number
of constraints can be exponential in the number of hyper-
edges, we optimize by greedily adding constraints for bun-
dles with largest valuations and finding a set of bundles that
cover the hyperedge with small valuations. As we will see
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Figure 5: skewed and uniform workload

Table 2: Experimental Design Space

Dataset Algorithms Query Workload Valuation Model

world dataset UBP uniform sampled bundle

UIP skewed scaled bundle

SSB benchmark LPIP SSB queries additive bundle

CIP TPC-H queries
TPC-H benchmark Layering

later, this helps us compare the performance of algorithms
with respect to the subadditive bound, which can generally
be much smaller than the sum of valuations. In all our ex-
periments, we report each data point as an average over 5
runs, where we discard the first run to minimize cache la-
tency effects on running time of the algorithms.

6.2 Workload and Dataset Characteristics
We now describe briefly the characteristics of the query

workload and datasets. The first dataset we consider is
world dataset, a popular database provided for software
developers. It consists of 3 tables, which contain 5000 tu-
ples and 21 attributes. We construct a support set of size
n = |S| = 15000. For TPC-H and SSB, we generate data for
scale factor of one (≈ 10 million rows) and support set of
size 100000.

We consider four different query workloads, which create
different hypergraphs that fundamentally differ in structure:

• The skewed query workload [36] consists of m = 986
SQL queries containing selection, projections and join
queries with aggregation. The list of queries in this
workload is presented in the full paper [23].

• The uniform query workload consists of only selection
and projection SQL queries with the same selectivity
(which means that the output of each query is about
the same).

• The SSB query workload is generated by using the stan-
dard twelve queries as templates where we change the
constants in the predicates.

Table 3: Hypergraph Characteristics

Query Workload # Queries (m) Max degree (B) Avg edge size

uniform 1000 400 5982.07

skewed 986 22 41.67

SSB 701 257 278.72

TPC-H 220 151 375.48

• The TPC-H query workload is generated by using seven
of the 22 queries that are supported by [30] as tem-
plates where we change the constants in the predicates.
The query generation process is described in the full
version of the paper [23].

Table 3 summarizes the characteristics of the two hyper-
graphs generated by each query workload. Both hyper-
graphs have the same number of vertices and hyperedges.
On the other hand, their structure is very different, as can
be seen in Figures 4a and 4b, which depict the distribution
of the hyperedge size. For the uniform query workload, the
average size of each hyperedge is around 6000, and it is nor-
mally distributed around that value. This means that there
is a high overlap among the vertices of the hyperedges. For
the skewed query workload, most of the hyperedges contain
only a very small number of vertices, while only a few hyper-
edges contain a large number of vertices. Observe also that
the average hyperedge size is around 40, so the hypergraph
is more sparse compared to the uniform query workload.
TPC-H and SSB workloads also have skew in their hyperedge
distribution (Figures 4d and 4c). SSB workload has exactly
one hyperedge with size zero and has close to half of the
edges with a unique item in it. TPC-H workload has eleven
edges with size zero but only a quarter of edges have a unique
item in them.

6.3 Measuring the Revenue
We first focus on the behavior of the pricing algorithms

with respect to the goal of maximizing the revenue. We
will examine separately the algorithmic behavior for differ-
ent structure of the valuations.
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Figure 6: SSB and TPC-H workload

Sampling Bundle Valuations. In this part of the exper-
iment, we generate valuations for every hyperedge by sam-
pling from a parametrized distribution.

First, we sample valuations from the uniform distribu-
tion Uniform[1, k] for some parameter k. Figures 5a and 6a
shows the performance of all six pricing algorithms for all
workloads. We should remark that the revenue plotted is
normalized with respect to the sum of valuations including
the subadditive upper bound. We can observe that the LPIP
algorithm performs much better in all cases for both query
workloads. The second best algorithm is UBP; we expect
that uniform bundle pricing performs well in this case, since
the size of the bundle is not correlated with the valuation
in this setup. Finally, notice the huge gap between UIP and
LPIP: this is an instance where both algorithms have the
same worst-case guarantees, but their revenue differs by a
large margin. For SSB and TPC-H workloads, layering algo-
rithm gets close to half and a quarter of the possible revenue
for uniform bundle valuations (figure 6a), in proportion to
the number of edges with unique items. For all workloads,
XOS pricing function obtained using the LPIP and CIP pric-
ing vector is close to the performance of CIP.

Second, we sample valuations from the zipfian distribution
parametrized by a. LPIP again performs better than the
other pricing algorithms, but now UBP comes a close second
(and in one case performs better than LPIP).

The layering algorithm does not perform well except in
the case of zipfian distribution with exponent smaller than
2. Indeed, for a < 2, zipfian distribution assigns a large
valuation to some hyperedge that contributes significantly
to the total revenue. In such cases, the layering algorithm
can always extract full revenue from the layer containing
high valuation edges and perform well in practice. This also
explains why for SSB workload and a = 1.5 (figure 6a), the
revenue extracted is close to 1. In that specific instance, one
edge was assigned a valuation of 1428920 and the sum of all
valuations was 1653537. As the zipfian exponent becomes
greater than two, the spread of valuations becomes smaller
and the layering algorithm performs worse.

Finally, the CIP algorithm does not perform that well,
even though it is theoretically optimal. This is because going

over all capacity vectors with limited supply is very expen-
sive. In our implementation, running the linear program for
a large number of capacity vectors for the uniform workload
takes close to 2 hours in total (we discuss reasons for this in
the next section). Thus, we reduce the number of capacity
vectors that we try by increasing the (1+ε) parameter. This
introduces a factor of (1 + ε) in the approximation ratio but
allows for the running time to be smaller. For the purpose
of experiments, we set (1 + ε) such that the running time
is ∼ 30 minutes. Performing this optimization allows us to
complete the algorithm rather than truncating the experi-
ment prematurely and returning the best result obtained so
far. The approximation factor of CIP remains marginally in-
ferior to LPIP (although in some cases, it outperforms LPIP)
while XOS pricing is consistently worse than both LPIP and
CIP.

Scaling Bundle Valuations. In the previous scenario,
the valuations were sampled independently of the edge size.
Our next experiment correlates the size of each hyperedge
with the valuation that is assigned to it. To achieve this,
we sample each valuation from the parameterized exponen-
tial and normal distribution as follows: we assign ve ∼
exponential(β = |e|k) where β is the mean of the distri-
bution. Similarly, for normal distribution, we assign ve ∼
N (µ = |e|k, σ2 = 10). Here k is the parameter that we will
vary. Figure 5b and 6b shows the revenue generated for the
four query workloads and two families of distributions for
different values of the parameter k.

For the skewed query workload, when k ≥ 1, most of the
revenue is concentrated in a few edges that have extremely
large valuations (because there are few edges of large size).
In this case, all algorithms perform very well and extract
almost all of the revenue. For smaller values of k, the al-
gorithms can extract smaller revenue, and LPIP and CIP
perform best. Notice again the large revenue gap between
LPIP and UIP for such values (as much as 5x). The same
behavior is also observed for TPC-H and SSB . Since layering
algorithm is the second best algorithm for k > 1, we inves-
tigated why this is the case for TPC-H. We found that all
hyperedges with size greater than 500 (total of 10 as seen in
figure 4c) have unique items and thus are placed in a single
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Figure 7: Sampling item prices: all workloads

layer. Since these edges contribute the most to the revenue,
layering performs close to the best. SSB workload has a more
even spread of edge with unique items. Out of 36 edges with
size > 1000, 22 edges have unique items.

The landscape changes for the uniform query workload.
The main observation is that the layering algorithm per-
forms extremely poorly. The revenue generated by the other
four algorithms is very close, with LPIP and UBP perform-
ing the best. For the exponential distribution, all algorithms
are very far from optimal. However, we believe this is not
an anomaly but rather the subadditive bound not being as
good as it should be.

Sampling Item Prices. The last set of experiments is to
understand the behavior of the pricing algorithms when the
valuation of each hyperedge is defined by an additive gener-
ative model. More specifically, we define k different distri-
butions {Di}ki=1 from which items will draw their prices and

a special distribution D̃ which will assign each item which
distribution it will sample from. The valuation of an edge
is the defined as ve =

∑
j∈e xj ∼ D`j where `j ∼ D̃. In-

tuitively, this model will capture the scenario where parts
of the database have non-uniform value and some parts are
much more valuable than others. To see why this setting
is of practical interest, consider a research analyst in bank-
ing who gives stock recommendations. While public infor-
mation about companies and stocks may be cheap, the re-
search analysts buy and sell recommendations will be of
much higher value. For the purpose of experiments, we
fix Di to Uniform[i, i + 1] and set D̃ to Uniform[1, k] or
Binomial(k, 1/2) while varying k. Figure 7a and 7b shows
the results of this experiment.

Here, LPIP outperforms all other algorithms across all
workloads. For small values of k, the valuation of each hy-
peredge is closer to |e|. In this case, there is no gap between
UIP and its LPIP. As the value of k increases, the gap be-
tween the two algorithms increases, since the weights of each
item become less uniform.

We should remark two things that are distinct for each
query workload. For the skewed query workload, UBP per-
forms poorly, since now the valuation of each hyperedge is
correlated (in an additive fashion) with the bundle struc-

ture. For the uniform query workload on the other hand,
UBP does well, since the size of the edges is relatively con-
centrated. Finally, the layering algorithm is the worst per-
forming out of all in the case of the uniform query workload.

For SSB and TPC-H , the first observation is that although
these workloads are also skewed, UBP performs reasonably
well (often beating CIP and layering for TPC-H). This is con-
sistent with the fact that in the hyperedge distribution for
TPC-H , 150 hyperedges have a size of ∼ 400. Thus, for
smaller values of k, UBP is expected to perform well. SSB hy-
peredge distribution is more spread out compared to TPC-H

which explains why UBP is not as well performing. We go
one step further to see if a post-processing step can refine
UBP prices to boost the revenue even more. To do so, we
find the best item prices via a linear program where the
constraints sell all edges sold by uniform bundle price that
achieves the maximum revenue for k = 1,Uniform[1, k] in
TPC-H workload. We observed that this simple step (runs
in ∼ 1s) improves the revenue from 0.78 to 0.99. Layering
algorithm again performs the worst for TPC-H. This happens
because none of the 150 hyperedges with size ∼ 400 contains
a unique item. Thus, although valuation of each edge is cor-
related with |e|, the total revenue in the hyperedges with
large size is not significantly more as compared to when the
valuation is proportional to (say) |e|2 as in the case of ex-
periments in figure 6b. Layering performs better for SSB

as the edges with unique items are more evenly spread (as
noted before). Thus, layering algorithm is able to extract
more revenue from the large size hyperedges as compared
to TPC-H. Perhaps the most interesting observation is that
XOS pricing function performs significantly worse than best
of the two. This happens because the max function assigns
prices to bundle that overshoots the vQ leading to lower
revenue.

6.4 Measuring the Runtime
In this section, we discuss the running time of the algo-

rithms. Table 4 shows the runtime of all algorithms 4. The
most time efficient algorithms are uniform bundle pricing,

4We skip XOS in this section as it is dependent on both LPIP
and CIP making it very expensive.
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Table 4: Algorithm running times (in seconds) for different
workloads.

Query Workload LPIP UBP UIP CIP Layering

skewed 60.62 < 1 25.45 812.67 15.67
uniform 95.81 < 1 29.82 1800 50.19
SSB 1300 + 3600 < 1 1300 + 13 7200 1300 + 32
TPC-H 2000 + 1900 < 1 2000 + 13 7200 2000 + 4

Table 5: Algorithm running times (in seconds) for skewed
workload (including hypergraph construction time)

Support Set Size LPIP UBP UIP CIP Layering

|S| = 100 < 1 < 1 < 1 < 1 < 1
|S| = 500 6.16 < 1 5.25 6.87 1.6
|S| = 1000 15.10 < 1 17.43 29.82 3.12
|S| = 5000 30.12 < 1 29.82 189.97 8.78
|S| = 15000 70.42 < 1 35.21 676.23 12.34

uniform item pricing and the layering algorithm. Uniform
bundle pricing and uniform item pricing depend only on
number of hyperedges and the number of items in the hy-
pergraph. Thus, they are very fast to run in practice. Note
that for all item pricing algorithms, we also include the time
taken to compute the conflict set of the query. However, for
uniform bundle pricing, we need not take that into account
as it is independent of the conflict set. For skewed and
uniform workload, the layering algorithm is slightly slower
but comparable in performance. Note that the layering is
faster on the skewed query workload as compared to the uni-
form query workload, since the maximum degree B is much
smaller. Note that since the support set and the underlying
database is much larger for SSB and TPC-H , running time
to construct conflict set is also large (∼ 1300s and ∼ 2000s
respectively in table 4).

The two slowest running algorithms are LPIP and CIP as
they require running multiple linear programs. In practice,
LPIP is faster than CIP. This is because the size of the lin-
ear program is very different. In our setting, the number of
edges 220 ≤ m ≤ 1000 is much smaller than the number of
items n = 15000(100000). LPIP has at most one constraint
per bundle (thus, at most m constraints) but CIP has one
constraint per item (n constraints in total). This dramati-
cally influences the running time of the two algorithms. CIP
uses (1 + ε) as a parameter, where ε controls the limited
supply available for each item. We adjust the value of ε for
both workloads to ensure that the running time is at most
30 minutes. We fix ε = 0.2 for the skewed workload and
ε = 4 for the uniform workload based on our empirical ob-
servations. For TPC-H and SSB experiments, CIP did not run
to completion for values of ε ≤ 0.5 since the itemset here is
much larger. In this case, we fix a value of ε = 3 to limit the
running time to a total of 2 hours. LPIP still remains the
best performing algorithm for uniform and zipfian distribu-
tion.

6.5 Impact of Support Set Size
Our final set of experiments is to understand the impact

of support set size, i.e., the number of items n. Given a hy-
pergraph instance, adding more items to the hypergraph is
an interesting proposition since it can only increase the rev-
enue. However, this also comes at a higher cost of running
time. On the other hand, too few items in the hypergraph

Table 6: Algorithm running times (in seconds) for SSB

workload (excluding hypergraph construction time)

Support Set Size LPIP UBP UIP CIP Layering

|S| = 1000 180.29 < 1 < 1 3.55 < 1
|S| = 5000 363.97 < 1 2.85 21.43 < 1
|S| = 10000 709.10 < 1 5.12 50.66 < 1
|S| = 50000 2500 < 1 11.24 692.97 6.2
|S| = 100000 3600 < 1 13.21 7200 32.58

can lead to suboptimal revenue for most algorithms (except
uniform bundle pricing, since it is independent of the items).
Figure 8a demonstrates the impact of changing the support
set size on the revenue extracted. Unsurprisingly, uniform
bundle pricing is not impacted by the support set size. As
the support set size decreases for 15000 to 100, the per-
formance of all item pricing algorithms decreases. Finally,
Table 5 depicts the running time of all algorithms as a func-
tion of support size. The key takeaway is that running time
is dependent on the support set size. Thus, the right trade-
off depends on the data seller requirements. It remains an
interesting open problem to design algorithms for choosing
the items in a smarter way. This will ensure that we can get
good revenue guarantees without sacrificing running time.
For instance, if we can create the support set in such a way
that every hyperedge contains a unique item, then we can
extract the full revenue from the buyers.

Figure 8b shows the same trend in revenue drop as the
support set shrinks. The running time of the algorithms
is more interesting for SSB. Observe the steep decrease in
running time of CIP as we go from support size 100000 to
50000 (table 6). This drop happens because of two reasons:
(i) since CIP contains one linear program per item, halving
the support size reduces the number of linear programs by
the same factor. (ii) as the number of items decrease, the
maximum degree of hypergraph (i.e B) also decreases.

7. KEY TAKEAWAYS
The empirical study has brought forward many insights.

Below, we summarize some of the most important lessons
from our studies and simple rules of thumb that a data bro-
ker should follow.

7.1 Lessons Learned
Choice of algorithm. The right choice of algorithm de-
pends on the revenue guarantees desired by the broker, run-
ning time constraints imposed and the knowledge about
query instances that need to be priced. Throughout our
experiments, CIP has been the worst performing algorithm
followed by layering algorithm (except for zipfian distribu-
tion on skewed workloads where it was either the best or
second best) while LPIP has consistently outperformed all
other choices. Thus, if the broker does not have any run-
ning time constraints, LPIP is the best pick. However, since
LPIP can also be expensive (as seen for SSB and TPC-H), the
better of layering and uniform bundle pricing gives the best
empirical revenue guarantee.

Hypergraph structure. Knowledge about the structure
of the hypergraph is crucial in predicting the performance
of the algorithm. For instance, if a non-negligible fraction
of the hyperedges have size zero (TPC-H workload) or have
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Figure 8: Revenue generated with increasing itemset size

similar edge sizes (uniform query workload), then UBP per-
forms very well. Similarly, if a large fraction of hyperedges
contain a unique items, the layering algorithm and LPIP
perform well.

Scalability challenges. Our experiments indicate a wide
gap between the theoretical guarantees of the algorithms
and their practical utility. Specifically, LP based algorithms
suffer from scalability issues as the instance size grows. For
LPIP there are m constraints in total while CIP contains
n constraints (recall that m � n in our setting). LPIP
works well for small values of m and n. As m grows, LPIP
also starts suffering from scalability issues. On the other
hand, UIP, UBP and layering algorithms are both time and
memory efficient.

Valuation distribution. Assumptions about valuation
distribution for bundles and correlation with bundle size
is also a key indicator of extracted revenue. For all query
workloads, whenever the revenue is concentrated in a few
edges (zipfian distribution with a < 2, scaled valuations and
additive model), LPIP and UIP perform well. We perform
experiments with different distributions and valuation mod-
els to expose the strength and weaknesses of each algorithm.
However, to the best of our knowledge, there is no existing
user study or datasets available that can help us validate
assumptions about how buyers value different queries in the
context of data pricing.

7.2 Future Work
Our empirical study has also given us many hints for fu-

ture directions. We find the following tasks particularly ur-
gent and engaging.

Choosing support set. Recall from Section 3 that our
data pricing framework depends on a chosen set I of possible

database instances. This choice is controlled entirely by the
seller. However, a careful selection of these databases can
affect the hypergraph structure. For instance, if there is a
way to choose the items such that most hyperedges will have
a unique item, then the pricing becomes significantly easier.
More formally, we propose the following problem: Given a
set of queries Q1, . . . Qm, database D, does there exist a
set of databases D1, . . . , Dm such that Qi(Di) 6= Qi(D) but
Qi(Dj) = Qi(D), i 6= j. Our goal is to study the data com-
plexity of the problem and identify query fragments which
admit efficient algorithms. A related variant of the problem
is when the broker decides to fix the query templates for the
buyers. Since the set of possible queries is restricted, the
hypergraph structure can be controlled carefully to make
pricing more amenable.

Learning buyer valuations. This work assumes that
queries and valuations are available apriori allowing for pre-
processing where we can run the revenue maximizing algo-
rithms to identify the best pricing vector. It is also worth-
while to investigate how we can learn the prices on-the-fly.
In the online setting, queries arrive and the marketplace has
to dynamically vary the prices based on whether the query
was bought by the buyer or not. We plan to investigate how
bandit algorithms and gradient descent algorithms perform
when all buyers have a fixed valuation that is unknown to
the algorithm. Note that the online pricing problem requires
a new model of arbitrage freeness, where the temporal as-
pect of the problem is also taken into account.

Maximizing revenue. From a mechanism design perspec-
tive, several interesting problems remain open. First, it re-
mains unknown what is the gap between optimal subadditive
revenue and XOSpricing functions with non-constant num-
ber of additive components. The complexity of finding the
optimal item prices over graphs under the additive model
where each item draws its value from a distribution and the
complexity of item pricing over hypergraphs with specific
structure (e.g. trees) also remains open.

User study. Finally, we believe it is worthwhile to perform
a user study in order to understand how buyers interact in
the data market, what queries are of interest, and how they
are valued.

8. CONCLUSION
In this paper, we study the problem of revenue maximiza-

tion in the context of query-based pricing. We cast the task
as a bundle pricing problem for single-minded buyers and
unlimited supply, and then perform a detailed experimen-
tal evaluation on the effectiveness of various approximation
algorithms that provide different worst-case approximation
guarantees. Our results show that the specific bundle struc-
ture often means that simple item-pricing algorithms per-
form much better than their worst-case guarantees. There
are several interesting open questions in this space. We be-
lieve that making progress on these questions is an impor-
tant step, likely to create significant impact in practice.
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Pricing approaches for data markets. In International
Workshop on Business Intelligence for the Real-Time
Enterprise, pages 129–144. Springer, 2012.

[43] R. B. Myerson. Optimal auction design. Mathematics
of operations research, 6(1):58–73, 1981.

[44] M. Naldi and G. DAcquisto. Performance of the
vickrey auction for digital goods under various bid
distributions. Performance Evaluation, 65(1):10–31,
2008.

[45] A. Rubinstein and S. M. Weinberg. Simple
mechanisms for a subadditive buyer and applications
to revenue monotonicity. In Proceedings of the
Sixteenth ACM Conference on Economics and
Computation, pages 377–394. ACM, 2015.

[46] B. Shiller and J. Waldfogel. Music for a song: an
empirical look at uniform pricing and its alternatives.
The Journal of Industrial Economics, 59(4):630–660,
2011.

[47] P. Upadhyaya, M. Balazinska, and D. Suciu.
Price-optimal querying with data apis. PVLDB,
9(14):1695–1706, 2016.

[48] Z. Zheng, Y. Peng, F. Wu, S. Tang, and G. Chen. An
online pricing mechanism for mobile crowdsensing
data markets. In Proceedings of the 18th ACM
International Symposium on Mobile Ad Hoc
Networking and Computing, page 26. ACM, 2017.

[49] Z. Zheng, Y. Peng, F. Wu, S. Tang, and G. Chen.
Trading data in the crowd: Profit-driven data
acquisition for mobile crowdsensing. IEEE Journal on
Selected Areas in Communications, 35(2):486–501,
2017.

14


	Introduction
	Related Work
	The Query-Based Pricing Framework
	Query-Based Pricing Basics
	From Pricing Queries to Pricing Bundles
	Revenue Maximization
	Simple Pricing Functions

	Upper and Lower Bounds
	Approximation algorithms
	Uniform Bundle Pricing
	Item Pricing

	Experimental Evaluation
	Experimental setup
	Workload and Dataset Characteristics
	Measuring the Revenue 
	Measuring the Runtime
	Impact of Support Set Size

	Key Takeaways
	Lessons Learned
	Future Work

	Conclusion
	References

