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ABSTRACT
Machine learning, especially deep learning, is used increas-
ingly to enable better solutions for data management tasks
previously solved by other means, including database index-
ing. A recent study shows that a neural network can not only
learn to predict the disk address of the data value associ-
ated with a one-dimensional search key but also outperform
B-tree-based indexing, thus promises to speed up a broad
range of database queries that rely on B-trees for efficient
data access. We consider the problem of learning an index
for two-dimensional spatial data. A direct application of a
neural network is unattractive because there is no obvious
ordering of spatial point data. Instead, we introduce a rank
space based ordering technique to establish an ordering of
point data and group the points into blocks for index learn-
ing. To enable scalability, we propose a recursive strategy
that partitions a large point set and learns indices for each
partition. Experiments on real and synthetic data sets with
more than 100 million points show that our learned indices
are highly effective and efficient. Query processing using our
indices is more than an order of magnitude faster than the
use of R-trees or a recently proposed learned index.
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1. INTRODUCTION
Spatial data and query processing are becoming ubiqui-

tous. This is due in part to the proliferation of location-based
services such as digital mapping, location-based social net-
working, and geo-targeted advertising. For example, Google
Maps includes a large number of spatial objects such as
points of interest (POIs). The query “Search this area (mo-
bile window view)” in Fig. 1a is a typical example of spatial
window query. As another example, Foursquare1, a popular

1https://www.foursquare.com/
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(a) Window query (b) kNN query

Figure 1: Spatial queries

social networking app, has a “Dinner near me” (Fig. 1b)
function that returns restaurants sorted by their distances
to the app user. This is a k nearest neighbor (kNN) query,
where the spatial objects are restaurants.

To process spatial queries, indices such as R-trees [16],
kd-trees [5], and quadtrees [12] are used. A tree traversal
is often required during query processing, which may access
many tree nodes and yield decreased performance, especially
when the index is stored in external memory.

A recent study [26] advances the notion of a learned in-
dex. A database index is formulated as a function f that is
learned to map a search key to the storage address where the
corresponding data object is stored. Given a learned func-
tion, an object can be located by a function invocation.

Motivated by the performance benefits of learned indices
for one-dimensional data [26], we learn an index for spatial
data, with a focus on point data. We target applications
such as those mentioned above, where queries are much more
frequent than data updates. Our index is highly efficient for
queries, while it also supports dynamic updates.

To learn an index, a basic step is to order the data points.
Given a set of ordered data points, the learned function f
maps a search key p.key to the rank (a percentage value,
denoted by p.rank) of the corresponding data point p. This
effectively learns a cumulative distribution function (CDF)
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of the data set indexed. The address of p is computed as
p.addr = f(p.key) · n, where n is the data set cardinality.

To order spatial points in order to learn an index, an ex-
isting solution, the Z-order model [46], uses a space-filling
curve (SFC), i.e., the Z-curve [35]. To apply an SFC, the
underlying space is partitioned by a grid. The SFC then
enumerates the cells in the grid. The visiting order gives ev-
ery cell (and the points inside) a curve value, i.e., a Z-value
for Z-curves. The Z-order model uses a Z-value as the search
key p.key and learns a function f to predict the rank of the
corresponding point p among the data points sorted by their
Z-values. For example, in Fig. 2a, there are eight data points
p1, p2, . . . , p8. Their Z-values are shown in parentheses, e.g.,
p3 has Z-value 6, meaning that p3.key = 6. Among the eight
points, points p1 and p2 rank ahead of p3 by their Z-values,
thus, p3.rank = 3/8, which is the intended output of f . We
plot the CDF to be learned in Fig. 2b.
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Figure 2: Index prediction with the Z-order model

To use an SFC, a grid must be imposed, but it is difficult
to choose an optimal grid resolution. If the grid cells are
too large (i.e., a low resolution), many points may share the
same cell, which may yield false positives at query time. If we
impose a limit of one point per cell (i.e., a high resolution),
very small cells may be needed for dense data sets. When the
data distribution is skewed, this leads to a large number of
empty cells and to uneven gaps between the curve values of
the data points. Meanwhile, the ranks are always continuous.
This makes it difficult to learn function f that maps the
curve values to ranks. Fig. 2b has large and uneven gaps
between the Z-values of p3 and p4 (42 − 6 = 36), p6 and
p7 (105 − 56 = 49), and p7 and p8 (240 − 105 = 135). The
result is a CDF with many segments, which is difficult to
approximate using a single function f . This difficulty tends
to increase for more points. For the existing learned spatial
index, experiments are run on up to 130,000 points, which
is below the requirement of some practical applications.

To overcome this limitation, we take advantage of the
state-of-the-art R-tree bulk-loading technique [37] to order
the data points. This technique maps the data points into a
rank space, orders them in the rank space using an SFC, and
packs every B ordered points into a disk block (B denotes
the block size) to form an R-tree. The rank space has the
same dimensionality as the original (Euclidean) data space,
and the coordinate of a point p in each dimension is the rank
of p in the corresponding dimension of the original space.
While we do not aim to bulk-load an R-tree, the rank space
has the key property to guarantee that there is one point in
every row/column of the grid of the SFC. This enables cre-
ating more even gaps between the curve values of the data
points, which simplifies the function f to be learned.

A challenge in applying the above ordering technique is
that it creates an n×n grid given n data points. When n is
large, this yields a very large grid, and there might be many
different gaps between the curve values, making it difficult
to learn the function f . To address this challenge, we re-
cursively partition the data set (in the original data space)
until each partition allows a simple feedforward neural net-
work (FFN) to learn an accurate function f . The novelty of
our partitioning strategy is that it is learned by a hierarchy
of partitioning functions based on the distribution of the
underlying data (in contrast to based on the index order of
the data [46], detailed in Section 3). A partitioning function
takes the coordinates of a data point as input and outputs
a partition ID for the point. Data points with the same par-
tition ID form a partition. Thus, the partitioning function
determines the partition in which a data point is indexed.
This allows us to reuse the partitioning function as an in-
dexing function to predict data locations, which translates
into a highly scalable and accurate learned spatial index.

We further design query algorithms for point, window, and
kNN queries that exploit this index. Our learned index and
query algorithms can handle over 100 million points with
high efficiency and accuracy. We also propose algorithms to
handle data updates without impinging our query accuracy.
In summary, the paper makes the following contributions:

1. We propose to learn a spatial index based on order-
ing the data points by a rank space-based transforma-
tion [37]. To scale to large data sets, we design a multi-
dimensional data partitioning technique and learn an
index for each partition in a recursive manner.

2. We propose algorithms for point, window, and kNN
queries that exploit the learned index. In particular,
our kNN algorithm is the first of its kind for a learned
spatial index. We also propose update algorithms for
the learned spatial index.

3. Using real and synthetic data, our extensive experi-
ments on the proposed index and algorithms show that
they can handle data sets of over 100 million points
with significant query performance gains over both tra-
ditional spatial indices such as R-trees and an existing
spatial adaption of the learned index technique [46].

2. RELATED WORK
We review studies on spatial indices and learned indices.
Spatial indices. Spatial indices [13] organize spatial data

to enable efficient query processing. They can be classified
into data partitioning based, space partitioning based, and
mapping-based indices.

Data partitioning based indices partition the data based
on clusters formed by the data. The R-trees [3, 4, 16, 42] are
typical examples. An R-tree is often maintained by means
of dynamic updates. In that case, the node in which a data
point is placed is determined by not only the point’s loca-
tion (i.e., its coordinates), but also by the order in which the
points are inserted. Learning an indexing function that maps
the coordinates of data points to nodes is thus more difficult,
and the resulting function may be less effective. An alterna-
tive approach is to pack data points into leaf nodes, thereby
building, or bulk-loading, an R-tree bottom up. Most pack-
ing procedures [1, 8, 15, 23, 27, 41] rely on some ordering of
the points based on their coordinates, e.g., sorting by their
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x-coordinates [41]. Every B points are packed into a node
according to the ordering, where B is the node capacity.
This establishes a relationship between data point locations
and their leaf nodes, which may be learned.

Space partitioning based indices recursively partition the
space in which the data is embedded until the spatial ob-
jects in a partition fit into an index node. Kd-trees [5] and
quadtrees [12] are typical examples. To learn a meaningful
mapping between the spatial objects and the nodes in which
they are stored, some order on the nodes must be estab-
lished. Since each node corresponds to a space partition, this
becomes a problem of establishing an order on the partitions,
which resembles the idea of an SFC. We discuss this with
the mapping-based indices. Attempts also have been made
to obtain balanced indices using space partitioning [19, 39].
A typical example is the K-D-B-tree [39], which implements
a kd-tree with a B-tree structure to support block-based
storage. We compare with it empirically.

Mapping-based indices map multi-dimensional objects to
one-dimensional values. The mapped values are indexed us-
ing a one-dimensional index, e.g., the B+-tree. SFCs are of-
ten used for mapping spatial objects with low dimensional-
ity. For two popular SFCs, the Z-curve [35] and the Hilbert-
curve [10], their curve values are also called Z-values and
Hilbert-values, respectively. The curve value of a cell is used
as the one-dimensional value (i.e., the index key) to which
a point in this cell is mapped. The curve values of the data
points establish a monotonic order over the points. It is nat-
ural to store the points in this order and learn a function
that maps a curve value to the rank of the corresponding
point, i.e., to the address of the node that holds the point.
This is done in a recent learned spatial index [46] using the
Z-curve (detailed next). There are other mapping schemes,
e.g., [2, 6, 21], which are designed for non-point or higher
dimensional objects, and are less relevant here.

Learned indices. The intuition behind a learned index is
that a database index can be thought of as a function f that
maps a search key to the storage address of a data object.
If such a function can be learned, a (point) query can be
processed by a function invocation in constant time. This
avoids a logarithmic-time search over a hierarchical index.

The recursive model index (RMI) [26] adopts this ap-
proach and learns a function f for one-dimensional data us-
ing a feedforward neural network (FFN). The data points
are first sorted. The function f then maps a search key
p.key to the rank (a percentage value, denoted by p.rank)
of the corresponding data point p. Function f essentially
learns a cumulative distribution function (CDF) on the data
set. The address of p is computed as f(p.key) · n. To han-
dle larger data sets, RMI creates a hierarchical structure.
At the root level, just one function (termed “model” [26])
f0(p.key) is learned to predict p.rank ∈ (0, 1]. This may only
yield a rough prediction of p.rank. At the next level (i.e.,
level 1), m1 functions are learned, where the i-th function

f
(i)
1 (p.key) is trained to predict the rank for a data point
p where f0(p.key) ∈ (i/m1, (i + 1)/m1], i ∈ [0,m1). This

means that function f
(i)
1 can focus on a subset of the data

points whose ranks fall into (i/m1, (i + 1)/m1]. The same
process is repeated recursively to define subsequent levels of
the RMI. The function learning (i.e., model training) is done
iteratively starting from f0. The L2 loss is used to minimize
the difference between the predicted ranks and the ground
truth ranks of the data points allocated to each function. A

number of studies (e.g., [11, 14, 18, 24, 43]) follow this idea
and optimize learned indices on one-dimensional data.

The Z-order model [46] extends RMI to spatial data by
using a Z-curve to order the data points. Function f now
learns to predict the rank of point p given its Z-value as the
search key. At query time, a query point is first mapped to
its Z-value by interleaving the bits of its coordinates. Then,
function f predicts the rank (address) given the Z-value.

SageDB [25] is a learned database system which includes
a learned multi-dimensional index. To learn this index, the
data points are successively sorted and partitioned along
a sequence of dimensions into equal-sized cells. Then, the
points are ordered by the cells in which they lie, and func-
tion f is learned to predict the rank of a point given its
coordinates. The dimensions used for sorting and the parti-
tion granularity are both learned. No details are available on
how this learning is done and on how the cells are ordered.
Thus, it is not possible to implement and compare empiri-
cally with this technique. Another study [31, 32] partitions
a d-dimensional space using a (d− 1)-dimensional grid and
learns an RMI on the d-th dimension for the data points
in each grid cell. The dimension used for RMI learning, the
ordering of the other d− 1 dimensions, and the numbers of
columns in those d−1 dimensions are learned from a sample
query workload to obtain better data selectivity. Once these
are learned, a cell table records the coordinate ranges of the
grid cells, which serve to identify the cells intersected by a
given window query. The RMI for each intersected cell is
used to refine the data points in the cell based on their co-
ordinates in the d-th dimension. This study is not discussed
further as we do not assume a known query workload.

Four other learned multi-dimensional indices are proposed
in parallel to ours. The ML-Index [7] adopts the iDistance
technique [20] to map points to one-dimensional values and
indexes such values with an RMI. The LISA [28] structure
partitions the data space with a grid, numbers the grid cells
with a partially monotonic function, and learns a data par-
titioning based on this numbering. The Qd-tree [47] applies
reinforcement learning to optimize the data partitioning for
a kd-tree-like structure according to a given query workload.
PolyFit [29] learns polynomial approximations in order to
provide efficient support for approximate multi-dimensional
range aggregate queries with guaranteed error bounds.

Update handling can impact the query performance of a
learned index. This is because function f may have predic-
tion errors. A prediction error range, [err`, erra], needs to
be derived from the initial data set from which f is learned,
such that the search for a point p can be constrained to
[f(p.key) · n − err`, f(p.key) · n + erra]. Deletions do not
impact the error range if the data points are simply flagged
as “deleted.” Insertions may impact the error range, and a
trivial way to handle insertions is to update the error range
to [err`+ i, erra+ i] after i updates. A tighter estimation of
the updated error range [17] is achieved by tracking the error
range drifts of a number of reference points. At query time,
the closest reference points on both sides of the query point
are fetched, and their error range drifts are used to estimate
the updated error range of the query point with a linear in-
terpolation. The FITing-Tree [14] uses an additional fixed-
sized buffer for each data segment (an index block) to handle
insertions. Data in the buffer is kept sorted for fast search
and merge operations. When a buffer is full, it is merged
with its corresponding segment (where new segments may
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Figure 3: Point ordering and our indexing model

Table 1: Frequently Used Symbols

Symbol Description

P A set of data points
d The dimensionality of P
n The cardinality of P
p A data point
q A query
M The index structure (mapping function)
B A data block
B The capacity of a block
LM The loss function of M
N The partitioning threshold
h The height of RSMI

O(M) The prediction cost of a sub-model in RSMI
I The number of new blocks created due to insertions

be created). ALEX [9] enhances the RMI by leaving gaps in
data nodes and splits nodes to support data insertions.

3. LEARNING A SPATIAL INDEX
Given a set of n points P = {p1, p2, ..., pn} in d-dimensional

Euclidean space, we aim to index P in a structureM for effi-
cient query processing. We consider point, window (range),
and k nearest neighbor (kNN) queries. For scalability, we
consider points storing in external storage (e.g., a hard drive)
in blocks of capacity B, i.e., a block holds at most B points.
We present the structure in Section 3.1 and scale it to large
data sets in Section 3.2. For ease of presentation, we use
d = 2 in the discussion, although our techniques also apply
to any d ∈ N+. Table 1 lists frequently used symbols.

3.1 Index Structure
The indexM is a mapping from the coordinates of a point

p ∈ P , p.cord, to the location in the storage that holds data
related to p. This location is given by a block ID: p.blk.

Ordering points. We establish a relationship between
p.blk and p.cord by packing the points into blocks based on
coordinates. We exploit the state-of-the-art R-tree packing
strategy [37, 38] which takes three steps (cf. Fig. 3).

(1) The points are first mapped to a rank space, which
is an n × n grid, where each row and each column has ex-
actly one point. To perform this mapping, the points are
sorted by their x-coordinates (y-coordinates), and the rank
p.rankx (p.ranky) of a point p is used as its x-coordinate
(y-coordinate) in the rank space, where ties are broken by
the y-coordinates (x-coordinates) of the points in the orig-
inal space. We assume that no two points have the same
coordinates in both dimensions. In Figs. 3a and 3b, point

p1 is mapped to the second column in the rank space. Point
p3 has the same x-coordinate as p1, but its y-coordinate is
larger. Thus, p3 is mapped to the third column.

(2) An SFC (e.g., a Z-curve) goes through the points in
the rank space and maps every point p to a curve value p.cv.
In Fig. 3b, the curve values are shown in parentheses next
to the points, e.g., p3.cv = 12.

(3) The points are sorted in ascending order of their curve
values, and every B points are packed into a block in the
sorted order. Let p.rank be the rank of point p in the sorted
order. The block ID for p is computed as:

p.blk = bp.rank · n/Bc (1)

This packing strategy was used previously [37, 38] to con-
struct R-trees with worst-case optimal window query perfor-
mance. Here, we use this strategy to obtain a more uniform
data distribution and more even gaps between the curve val-
ues of the data points. In Fig. 3c, our minimum and maxi-
mum gaps between the curve values of two adjacently ranked
points are 12−7 = 5 and 27−12 = 15, while those given by
the Z-ordering [46] are 5 − 4 = 1 and 240 − 105 = 135, re-
spectively (cf. Fig. 2). Our variance in the curve value gaps
is much smaller, leading to a simpler CDF to be learned.

Model learning. IndexM is learned so that it approxi-
mately maps p.cord to p.blk for each point p:

p.blk ≈M(p.cord) (2)

Any regression model may be used to learnM. We follow
recent learned indices [26, 46] and use a multilayer percep-
tron (MLP, a type of feedforward neural networks), to ex-
ploit its ability to learn a non-linear function. We minimize
the L2 loss on the model predictions using standard learn-
ing procedures (stochastic gradient descent, SGD). The loss
function LM is defined as:

LM =
∑
p∈P

(M(p.cord)− p.blk)2 (3)

After M is trained, we use it to predict p.blk for every
point p and record the maximum errors for the cases where
M(p.cord) is smaller than p.blk andM(p.cord) exceeds p.blk,
denoted by M.err` and M.erra, respectively.

M.err` = max
∀p∈P (M(p.cord)<p.blk)

{|M(p.cord)− p.blk|} (4)

M.erra = max
∀p∈P (M(p.cord)>p.blk)

{M(p.cord)− p.blk} (5)

Discussion. The design of function M and its learning
process resemble those of previous learned indices [26, 46].
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The advantage of M derives from the rank space based or-
dering. As discussed above, this ordering creates more even
gaps between the curve values of the data points. Meanwhile,
the gap between of the ranks of two adjacently ranked points
is a constant (1/n). This makes it easier to learn a mapping
from the coordinates (which determine the curve values) to
block IDs (which are determined by the ranks, cf. Fig. 3c).

3.2 Scaling to Large Data sets
Larger data sets make it more difficult for a single func-

tion to map all data points to their ranks. We propose a re-
cursive spatial model index (RSMI) for such cases. Suppose
that function M can predict block IDs of up to N points
with sufficiently high accuracy. Such an N value depends on
the data distribution and the model learning capacity, and
it may be determined empirically. Since N points occupy
dN/Be blocks, this means that we have a function that can
predict dN/Be different block IDs with a high accuracy.

Given a data set P with cardinality n > N , our RSMI
model recursively partitions P until each partition has at
most N points. Then, for each partition, we learn an index-
ing model following the procedure in Section 3.1.

The partitioning strategy works as follows. We start by
partitioning the full data set P into dN/Be partitions (such
that we may reuse M to predict dN/Be different parti-

tion IDs later). This partitioning is done via a 2blog4 N/Bc ×
2blog4 N/Bc grid with 4blog4 N/Bc ≤ N/B cells that form at
most dN/Be partitions. In Fig. 4, when N = 8 and B = 2,

2blog4 N/Bc × 2blog4 N/Bc = 2× 2 cells partition the space.
The grid is created by first cutting the data space into

2blog4 N/Bc columns where each column has dn/2blog4 N/Bce
points (i.e., partitioning by x-coordinates). We further cut

each column individually into 2blog4 N/Bc cells such that each
cell has at most dn/4blog4 N/Bce points (i.e., partitioning by
y-coordinates). The grid follows the data distribution and is

non-regular, but is still a 2blog4 N/Bc × 2blog4 N/Bc grid. We
can apply an SFC of order blog4N/Bc to the grid to obtain a
curve value for each cell. We learn a mapping functionM0,0

(i.e., the 0-th model at level 0 of RSMI) to map a point
p ∈ P to the curve value corresponding to its cell. To learn
M0,0, we reuse the model structure used for M (since we
know that M predicts dN/Be different values with a high
accuracy). The loss function for the learning also resembles
that of M (Equation 3), except that now the ground truth
is not p.blk but the curve value of p in the grid for M0,0.

Once M0,0 is trained, we use it to predict a curve value
for each point p ∈ P . Since a learned model may not be

fully accurate, M0,0(p.cord) may not yield the curve value
of p. We group the points in P by the predicted curve values.
This results in a learned point grouping, as illustrated by the
differently colored points in Fig. 4. For the j-th group, if it
still has more than N points, we repeat the above partition-
ing procedure to learn a function M1,j (e.g., M1,2) that
predicts the partition membership of each point p in this
group. Otherwise, we follow the procedure in Section 3.1 to
learn a function M1,j to predict p.blk for each point p in
this group. We call such a function a leaf model.

When the partitioning is complete and the data points
are all packed into blocks, in each block, we further store
pointers (block IDs) to its preceding and subsequent blocks.
In Fig. 4, Bi represents a block, and arrows between blocks
represent the pointers. These pointers allow data scans for
queries. The order of blocks under the same leaf model fol-
lows that of the data points in the blocks. The order of blocks
under the different leaf models follows the order of the par-
tition IDs (recursively) corresponding to the leaf models.

Discussion. Our RSMI model looks similar to the RMI
model [26] at a first glance. However, the design strategies
of RSMI and RMI are fundamentally different. In RMI, each
sub-model Mi,j handles data points whose predicted ranks
(i.e., model output) fall in a range (j/mi, (j + 1)/mi], j ∈
[0,mi), assuming mi sub-models at level i). Due to the na-
ture of SFCs, points ranked adjacently can have vastly dif-
ferent curve values and may be quite far apart (e.g., p7 and
p8 in Fig. 2). Thus, each sub-model may still need to han-
dle points with very different curve values, and the mapping
to ranks is still difficult to learn. In contrast, in RSMI, each
sub-modelMi,j handles data points whose coordinates (i.e.,
model input) fall into a region. This allows each sub-model
to focus on a subset of points nearby, which may facilitate
better prediction accuracy, to be verified in experiments.

Also note that we have not used rank space for the higher-
level sub-models in RSMI. The impact of skewed data dis-
tribution is mitigated by the use of non-regular grids and
the partitioning of data points by model predictions.

For query processing, RSMI only requires a function invo-
cation to determine the (single) sub-model to be accessed at
each level. As shown in the experiments, this is more efficient
than traditional hierarchical indices that require scanning
and comparing entries (e.g., MBRs) in the inner nodes.

4. QUERY PROCESSING
We present algorithms to process point (Section 4.1), win-

dow (Section 4.2), and kNN (Section 4.3) queries using RSMI.
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4.1 Point Queries

Algorithm 1: Point Query

Input: q: a query point.
Output: A pointer to the point indexed in our RSMI

structure that has the same coordinates as q.

1 i← 0; j ← 0;
2 while Mi,j is not a leaf model do
3 j ←Mi,j(q.cord); i← i+ 1;

4 j ←Mi,j(q.cord);
5 for j′ ∈ [j −M.err`, j +M.erra] do
6 if q ∈ Bj′ then
7 return a pointer to the point in Bj′ that has the

same coordinates as q;

8 return NULL;

As summarized in Algorithm 1, point queries are done via
a recursive call of the sub-models in the RSMI using the
coordinates of a query point q as the input (Lines 1 to 3).
The process starts from the root sub-model M0,0. At each
level, only one sub-model needs to be visited. Let Mi,j be
the sub-model visited at level i. Then, at level i + 1, the
sub-model to be visited isMi+1,j′ where j′ =Mi,j(q.cord).
This process continues until a leaf model is reached. The leaf
model output is the predicted block ID of q,M(q.cord). We
examine the corresponding block and its neighboring blocks
as bounded by [M(q.cord)−M.err`,M(q.cord)+M.erra].
If q is found, we return a pointer to the found point (Lines
4 to 7). Otherwise, q is not in our structure (Line 8).

Correctness. The algorithm correctness is guaranteed by
the RSMI structure. As Fig. 4 shows, if j′ = Mi,j(p.cord),
point p is only indexed by Mi+1,j′ at the next level. Thus,
if j′ =Mi,j(q.cord) for q, we only need to accessMi+1,j′ at
the next level. At the leaf level, the model prediction may
have an error, which is bounded by M.err` and M.erra.
Scanning the blocks in [M(q.cord)−M.err`,M(q.cord) +
M.erra] guarantees no false negatives.

Query cost. There are two cost components. The first is
for model prediction, which consists of numerical computa-
tions. This cost depends on the prediction model. We use
O(M) to denote the prediction cost of a sub-model. For ex-
ample, consider a simple fully connected feedforward neural
network with two neurons in the input layer, m neurons in
the (only) hidden layer, and a single neuron in the output
layer. Then, O(M) = O(2m). Given that RSMI has height
h, we need O(hM) time to predict a block ID for q. The
second cost component is for locating the query point on
disk. In the best case, we need to access the disk block with
ID M(q.cord), which takes O(B) time (scanning B points
in the block). In the worst case, we need to accessM.err`+
M.erra+1 blocks withO((M.err`+M.erra)B) time. Over-
all, a point query takes O(hM+(M.err`+M.erra)B) time.

4.2 Window Queries
Fig. 5a illustrates the window query algorithm. The solid

rectangle in the middle denotes a window query q. The grid
cells in q are covered by several red segments of the SFC.
Processing query q means finding the points corresponding
to the curve segments in q. For each such segment, if we
can locate the storage location of the points corresponding
to the minimum and maximum curve values of the segment
then any other points on the curve segment must be stored
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Figure 5: Query examples (The queries are plotted in the
rank space for ease of illustration. They are processed in
the original space since RSMI takes point coordinates in the
original space as input and outputs the predicted block ID.)

between these two points, which form the query answer. This
is because the data points are stored in curve value order.

Identifying the points for the minimum and maximum
curve values of the curve segments is feasible (e.g., via query
window mapping [48]). However, locating such points im-
plies issuing point queries, which may cause repetitive scan-
ning over the same blocks (due to prediction errors).

To avoid excessive data scans, the window query algo-
rithm only locates the points corresponding to the minimum
and maximum curve values among all curve segments in q.
We thus only need two point queries for a window query:

(1) Compute two points ql and qh in q with the minimum
and the maximum curve values, respectively.

(2) Compute point queries for ql and qh and retrieve all
points between them. This forms a superset of the query
answer, since some of these points may not be in q (p4 in
Fig. 5a is between p3 and p6 but not in q).

(3) Filter the points retrieved in Step 2 with q and return
the remaining points.

We focus on locating ql and qh in Step 1. Steps 2 and 3
are done by Algorithm 1 and a simple block scan.

The locations of ql and qh depend on the SFC. We discuss
the cases for two commonly used SFCs, the Z-curve and the
Hilbert-curve. For the Z-curve, ql and qh are the bottom
left and the top right corners of the query window, respec-
tively [30]. This is because a Z-curve goes through the space
from the bottom left to the top right recursively. For exam-
ple, in Fig. 5a, the bottom left and top right cells in q are
the two with the minimum and the maximum curve values.
For the Hilbert-curve, ql and qh must be on the boundary of
q [48]. Computing ql and qh from the boundary in the rank
space requires B-tree searches to map the point coordinates
to their ranks [37, 38]. To avoid constructing and search-
ing B-tree indices, we heuristically use the four corners of q,
denoted by qxl, qxh, qyl, and qyh, for query processing.

Algorithm. Based on ql and qh, Algorithm 2 summa-
rizes the window query algorithm. We first obtain ql and qh
(Line 1). We query these two points using our point query
algorithm (Line 2). If ql (qh) is found, we use its block ID
ql.blk (qh.blk) as the lower (upper) bound for data scan-
ning. Otherwise, we useM(ql.cord)−M.err` (M(qh.cord)+
M.erra) to approximate the bound (Lines 3 to 10). We
then scan the data blocks between the lower and upper
bounds and return the points in q (Lines 11 to 15). For
Hilbert-curves, we need point queries for qxl, qxh, qyl, and
qyh. The lower and upper bounds for data scanning be-
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come min{M(qi.cord) −M.err`} and max{M(qi.cord) +
M.erra}, respectively, where qi ∈ {qxl, qxh, qyl, qyh}.

Algorithm 2: Window Query

Input: q: a window query.
Output: S: the set of data points in q.

1 Obtain points ql and qh for query window q;
2 Run point queries for ql and qh;
3 if ql is found then
4 begin← ql.blk;

5 else
6 begin←M(ql.cord)−M.err`;

7 if qh is found then
8 end← qh.blk;

9 else
10 end←M(qh.cord) +M.erra;

11 for i ∈ [begin, end] do
12 for p ∈ Bi do
13 if p in q then
14 S ← S ∪ {p};

15 return S;

Query cost. Algorithm 2 runs two (four for Hilbert-
curves) point queries and a data scan. The point queries take
O(hM + (M.err` +M.erra)B) time, as discussed earlier.
The maximum number of blocks scanned is (M(qh.cord) +
M.erra)−(M(ql.cord)−M.err`). The overall query time is
O(hM+(M.err`+M.erra)B+(M(qh.cord)+M.erra)B−
(M(ql.cord)−M.err`)B) = O(hM+(2M.err`+2M.erra+
M(qh.cord)−M(ql.cord))B). For Hilbert-curves, the query
time is O(hM+(2M.err`+2M.erra+max{M(qi.cord)}−
min{M(qi.cord))B), where qi ∈ {qxl, qxh, qyl, qyh}.

Discussion. Algorithm 2 offers approximate answers. The
errors occur for two reasons. First, when Hilbert-curves are
used, the four corners of q may not correspond to the exact
minimum and maximum curve values bounded by q. Second,
when querying ql and qh (or qxl, qxh, qyl, and qyh), if these
points are not indexed in the RSMI, we may not return the
point just next to them. Thus, the point queries may not
bound the accurate blocks to be scanned for q.

Empirically, the query answer errors are small. Experi-
ments under various settings show that the query answer
accuracy (i.e., recall) is consistently above 87%. Our query
answer does not have false positives (i.e., we may miss points
in q but will not return any points outside q). This suits ap-
plications that need to quickly identify regions with POIs
but may not require all POIs in the region, e.g., to recom-
mend a region with many restaurants to a user.

The RSMI can also offer exact query answers with a simple
modification to store a minimum bounding rectangle (MBR)
for each sub-model in its parent model. This modification en-
ables an R-tree-style tree traversal of the RSMI to compute
exact query answers with reasonable efficiency.

4.3 K Nearest Neighbor Queries
We can use R-tree kNN algorithms (e.g., the best-first al-

gorithm [40]) to compute kNNs accurately using the RSMI
with MBRs. Below, we design a prediction-based approxi-
mate kNN algorithm to achieve high query efficiency.

Our approximate kNN algorithm follows a classical search
region expansion paradigm. It starts with a small search
region around the query point q and keeps expanding until
k points are found. Each time the search region is expanded,

a window query is run using Algorithm 2 to find points in
the region. See Fig. 5b for a 3NN example. The query point
q is represented by a red dot, and the window queries run
are represented by the two solid rectangles enclosing q.

Algorithm. Algorithm 3 summarizes the approximate al-
gorithm, where Q is a queue to store the found NNs prior-
itized by their distances to q (Line 1). The algorithm first
estimates an initial search region based on the data distri-
bution. Intuitively, if the points are uniformly distributed
in a unit space, a search region of size k/n around q is ex-
pected to contain k points. We thus use a rectangular-shaped
search region centered at q with width αx

√
k/n and height

αy
√
k/n as the initial search region (Line 2). Here, αx and

αy are skew parameters to adjust the search region size in
both dimensions according to data skew – αx = αy = 1 for
uniform data. We estimate αx and αy later.

Using the initial search region, we run a window query to
find the data blocks containing points in the region (Lines 4
and 5). We go through these blocks. If a block Bi is closer
to q (measured by the MINDIST metric [40]) than the cur-
rently found k-th NN,Q[k], we go through every point p ∈ Bi
and add p to Q if p is closer to q than Q[k] (Lines 6 to 9).
Next, if there are less than k points in Q, we double the
width and the height of the search region (Lines 10 and
11). If the distance between q and Q[k] (dist(q,Q[k])) ex-

ceeds
√
width2 + height2/2 (i.e., Q[k] is outside the current

search region), we also enlarge the width and height to be
2 · dist(q,Q[k]) (Lines 12 and 13). Otherwise, we terminate
and return the first k points in Q (Lines 14 to 16).

Algorithm 3: kNN Query

Input: q: a query point; k: the number of targeted NNs
Output: S: the set of (approximate) kNNs of q.

1 Initialize an empty priority queue Q;

2 width← αx
√

(k/n); height← αy
√

(k/n);
3 while TRUE do
4 Construct window query wq with q, width, and height;
5 Query wq to obtain data block ID range [begin, end];
6 for i ∈ [begin, end] do
7 if Bi is unvisited AND

(mindist(q,Bi) < dist(q,Q[k]) OR Q.size() < k)
then

8 for p ∈ Bi AND (dist(q, p) < dist(q,Q[k]) OR
Q.size() < k) do

9 Insert p into Q;

10 if Q.size() < k then
11 width← 2 · width; height← 2 · height;

12 else if dist(q,Q[k]) >
√
width2 + height2/2 then

13 width← 2 · dist(q,Q[k]); height← 2 · dist(q,Q[k]);

14 else
15 break;

16 return S ← first k elements in Q;

Estimating αx and αy. When the data distribution is
non-uniform, we estimate αx and αy by learning the CDF
in the x- and y-dimensions. Let CDFx(X) be a function to
predict the percentage of points with an x-coordinate less
than or equal to X. Then, αx is estimated by the slope of
CDFx(X) at the x-coordinate q.cordx of the query q:

αx = ∆/(CDFx(q.cordx + ∆)− CDFx(q.cordx)) (6)

Here, ∆ is a system parameter (0.01 in our experiments).
We estimate αy with CDF y(Y ) for the y-dimension.
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Obtaining CDF is expensive. We compute a piecewise
mapping function [48] PMFx(X) to approximate CDFx(X)
(and PMF y(Y ) for CDF y(Y )). We partition the data set
into γ partitions by their x-coordinates and compute a cu-
mulative count xi.c for the boundary point xi of each par-
tition. We let PMFx(xi.cord) = xi−1.c/n, where xi.cord is
the x-coordinate of xi. We compute piecewise linear func-
tions to connect every pair of points (xi.cord, xi−1.c/n) to
form PMFx(X). We use γ = 100 in the experiments.

Query cost. The key factor that determines the time
cost of a kNN query is the search region size. A small initial
search region may incur more searches later, while a large
initial search region may incur many unnecessary data block
accesses. In the worst case, the number of window queries
needed is log2 1/(min{αx, αy}

√
k/n), which is the number

of times that the search region width/height needs to be dou-
bled to cover a unit space. Let W be the time cost of a win-
dow query derived in Section 4.2. Then, the worst-case time
cost of a kNN query is O(W log2 1/(min{αx, αy}

√
k/n)).

5. UPDATE HANDLING
Our index allows both insertions and deletions of data.

Given a new point p to be inserted, we first run a point query
for p. We insert p into the block predicted by the query.
There are two cases: (1) If the predicted block has space for
p (e.g., space left by a deleted point), we simply place p in
the block. (2) If the predicted block is full, we create a new
block B, place p in B, and insert B as the next block of the
predicted block in the list of data blocks. We mark B as an
inserted block such that it does not count towards the error
bounds (M.err` and M.erra) during query processing. In
either case, we need to recursively update the MBRs of the
ancestor models indexing p to complete the insertion. An
insertion takes O(hM + (M.erra +M.err`)B + IB + h)
time, where O(hM + (M.erra +M.err`)B) is the point
query time to locate p, O(IB) is the additional search time
on the blocks created after the predicted block by previous
insertions, and O(h) is the MBR update time.

Given a point p to be deleted, we run a point query for
p. When the data block containing p is found, we swap p
with the last point in this block and mark p as “deleted.”
We then recursively update the MBRs of the ancestor mod-
els. We do not delete a disk block when it underflows (e.g.,
when becoming half empty), to ensure the validity of the er-
ror bounds. The deletion also takes an O(hM + (M.erra +
M.err`)B+ IB+ h) time, as it also needs a point query to
locate p and entails recursive MBR updates. We omit the
pseudo-code of these update algorithms for succinctness.

Insertions and deletions impact the layout of the learned
index and hence impact the query performance (i.e., adding
an O(IB) cost for each point query). A periodic rebuild may
be run (e.g., overnight) to retain a high query efficiency.

6. EXPERIMENTS
We report on experimental results on the RSMI.

6.1 Experimental Setup
The experiments are done on a computer running 64-bit

Ubuntu 20.04 with a 3.60 GHz Intel i9 CPU, 64 GB RAM,
and a 1 TB hard disk. We use PyTorch 1.4 [36] and its C++
APIs to implement the learned indices based on CPU. The

Table 2: Parameters and Their Values

Parameter Setting

Distribution Uniform, Normal, Skewed
n (million) 1, 2, 4, 8, 16, 32, 64, 128
Query window size (%) 0.0006, 0.0025, 0.01, 0.04, 0.16
Query window aspect ratio 0.25, 0.5, 1, 2, 4
k 1, 5, 25, 125, 625
Inserted points (%) 10, 20, 30, 40, 50
Deleted points (%) 10, 20, 30, 40, 50

traditional indices are implemented using C++ (except for
the RR∗, which was implemented in C [4]) based on CPU.

Competitors. We compare with the following indices:
(1) Z-order model [46] (ZM): This model predicts the

storage address of a data point by its Z-value (cf. Section 2).
We implement a recursive version of the model with three
levels with 1,

√
n/B2, and n/B2 sub-models each.

(2) Grid File [33] (Grid): This index partitions the data
space with a regular grid, assigns data points to cells based
on their coordinates, and stores the data points by their
cells. We use a

√
n/B ×

√
n/B grid, i.e., B points (one

block) per cell under a uniform distribution.
(3) K-D-B-tree [39] (KDB): This index implements a kd-

tree [5] with a B-tree structure to support block storage.
(4) Rank space based R-tree [37, 38] (HRR): This is an

R-tree bulk-loaded using the rank space technique (cf. Sec-
tion 3.1) and a Hilbert-curve for the ordering. This R-tree
offers the state-of-the-art window query performance.

(5) Revised R∗-tree [4] (RR∗): This is an improvement of
the R∗-tree, which has shown strong query performance.

KDB, HRR, and RR∗ have up to five levels in the exper-
iments (on data sets with up to 128 million points).

Implementation. We use the original implementation of
HRR and RR∗. For Grid, ZM, and KDB, no source code is
available. We use the static component of a Grid File for
moving objects [22] for Grid. We implement ZM and KDB
following their papers. We run all indices and algorithms in
main memory for ease of comparison (it is straightforward
to place the data blocks in external memory).

For all structures, we use data blocks with a capacity of
100, i.e., B = 100. The R-tree and K-D-B-tree leaf nodes
(blocks) and the Grid File blocks can store up to 100 points
each, while the internal nodes of the tree structures store up
to 100 MBRs. No buffering is assumed.

For both ZM and RSMI, each sub-model (e.g., Mi,j in
RSMI) is a multilayer perceptron (MLP) with an input layer,
a hidden layer, and an output layer. The number of nodes
in the hidden layer equals the sum of the number of input
attributes and the number of output classes divided by two,
e.g., 51 in RSMI, where the input is two coordinates and
the output has 100 different block ID values. We use the
sigmoid activation function for the hidden layer. The MLPs
are trained level by level, starting from the root sub-model
(cf. Section 3.2), with a learning rate of 0.01 and 500 epochs
per MLP. RSMI uses a partitioning threshold N = 10, 000,
i.e., a leaf model handles at most 10,000 data points. It learns
the number of levels and the number of sub-models at each
level adaptively for each data set. For ease of model training,
the point coordinates and block IDs are normalized into the
unit range. RSMI uses Hilbert-curves for ordering as these
yield better query performance than Z-curves.

Data sets. We use two real data sets: Tiger and OSM.
Tiger contains over 17 million rectangles (950 MB in size)
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representing geographical features in 18 Eastern states of
the USA [45]. We use the centers of the rectangles as our
data points. OSM contains over 100 million points (2.2 GB
in size) in the USA extracted from OpenStreetMap [34].

We generate three groups of synthetic data sets, Uni-
form, Normal, and Skewed, with up to 128 million points
(2.5 GB in size). The synthetic data falls into the unit square.
Uniform and Normal data sets follow uniform and normal
distributions, respectively. Skewed data sets are generated
from uniform data by raising the y-coordinates to their pow-
ers yα (α = 4 by default), following HRR [37, 38].

As summarized in Table 2, we vary the data set size n,
the query window size and aspect ratio, the query param-
eter k, and the percentages of points inserted or deleted,
respectively. Default settings are shown in boldface.

We generate queries that follow the data distribution for
each set of query experiments and report the average re-
sponse time and number of block accesses per query.
The block accesses serve as a performance indicator for an
external memory based implementation of the algorithms.

6.2 Results
We report results on the impact of N , point, window, and

kNN query processing, and update handling.

6.2.1 Impact of RSMI Partition Threshold N

Table 3: Impact of N

N 2,500 5,000 10,000 20,000 40,000

Construction time (s) 10,997 8,215 7,553 7,602 7,161
Height 9 5 4 4 3
Index size (MB) 488.5 425.5 405.5 398.9 391.3
Query # block accesses 1.28 1.35 1.44 1.47 1.52
Query time (µs) 1.79 1.59 1.44 1.47 1.49

We first study the impact of N to optimize RSMI. As Ta-
ble 3 shows, when N increases (from 2,500 to 40,000), the
index construction time, height, and index size all decrease
overall. This is because a larger N means more points in
each partition and fewer partitions, leading to fewer levels
and sub-models, and hence shorter training times. Mean-
while, the average number of block accesses per point query
increases, because the leaf models become less accurate. The
point query time, however, first decreases and then increases
again. This is resulted from a combined effect of fewer sub-
models to compute while more data blocks to examine as N
increases. The query time is the shortest when N = 10, 000.
We use this N value in the rest of the experiments.

6.2.2 Point Queries
We use all data points in each data set as the query points

and report the average performance per point query.
Varying the data distribution. As Fig. 6 shows, RSMI of-

fers the best query performance on both real (Tiger and
OSM) and synthetic (Normal and Skewed) data. It improves
the query time by at least 1.3 times and up to 5.5 times com-
pared with the competing techniques, i.e., 3.0 µs vs. 3.8 µs
(KDB) and 16.5 µs (Grid) on OSM. It also improves the
number of block accesses by at least a factor of 5.3 (1.4 vs.
7.4 for RSMI vs. Grid on Skewed) and up to 77.5 times (1.3
vs. 100.8 for RSMI vs. Grid on OSM). Grid works better
on Uniform data, as such data can be partitioned relatively
evenly across the cells and take full advantage of Grid. Note
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Figure 6: Point query vs. data distribution

that Grid has much higher numbers of block accesses than
the other techniques while its running time may not seem
as high, because it features a simple checking procedure per
block, and the blocks are stored in memory.

Table 4: Prediction Error Bounds (M.err`, M.erra)

Uni. Nor. Ske. Tig. OSM

ZM (×104) (1.9, 1.9 ) (1.2, 5.5) (0.9, 3.7) (0.7, 0.7) (7.4, 11)
RSMI (43, 82) (37, 91) (55, 78) (70, 69) (89, 74)

The strength of RSMI comes from its fast and accurate
predictions. Table 4 summarizes the maximum prediction
errors (M.err`, M.erra) of ZM and RSMI. For example,
M.err` and M.erra of RSMI on Skewed are 55 and 78
blocks, respectively. The average number of block accesses is
much lower than these bounds, e.g., 1.4 for RSMI on Skewed.
ZM offers less accurate predictions due to its design. On
Skewed, its prediction error can be as large as 3.7 × 104

blocks, and its average number of block accesses is 8.1 (bi-
nary search on the Z-values is used to reduce the number
of block accesses). KDB, HRR, and RR∗ incur fewer block
accesses than ZM does. However, they still need to access in-
ner nodes. Also, due to overlapping node MBRs, the R-trees
may need to access multiple nodes at each tree level.

We further report the average depth of RSMI, i.e., the av-
erage number of sub-models invoked to reach a data block,
which are 3.11, 3.26, 3.30, 3.04, and 4.01 on Uniform, Nor-
mal, Skewed, Tiger, and OSM, respectively. RSMI only needs
3 or 4 function invocations to locate a data block. KDB,
HRR, and RR∗ have a depth of 3 on the first four data sets
and 4 on OSM (excluding the data block level). They need
to scan 3 or 4 nodes (maybe more for R-trees due to over-
lapping MBRs) to locate a data block, which is slower. Grid
and ZM have fixed depths of 1 and 3. They suffer from the
number of block accesses as discussed above.

Another observation concerning ZM vs. RSMI is that ZM
suffers more in terms of block accesses and less in terms
of response time. This is because ZM can quickly skip a
data block accessed by testing whether the Z-value of the
query point belongs to the Z-value range of the block. Its
processing time per block is smaller than that of RSMI.

Fig. 7a shows the index size. The learned indices are the
smallest because they only store the data blocks and the
(small) sub-models. In contrast, Grid stores the data blocks
and a cell table that maps grid cells to the corresponding
data blocks; KDB, HRR, and RR∗ store the data blocks
(leaf nodes) and the internal nodes. RSMI has a slightly
larger index size than ZM due to its slightly larger number of
sub-models. This is because RSMI is constructed adaptively
based on the data distribution, while the number of sub-
models in ZM is determined by the number of data points
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Figure 7: Index size and build time vs. data distribution

(cf. Section 6.1). For example, on OSM, RSMI has 10,445
sub-models, while ZM has 10,101 (2,303 MB vs. 2,244 MB,
i.e., 2.6% larger). RR∗ is the largest because its nodes are
less compact. HRR is also larger than RSMI because it uses
two extra B-trees for its rank space mapping [37, 38].

The advantages of RSMI in query performance and index
size come with a higher construction time (Fig. 7b), which
is a common characteristic of learned indices. RSMI can be
trained within 16 hours on OSM (over 100 million points),
which is justified given its query performance. This training
time assumes CPUs. If GPUs are used, we can reduce the
training time by over 74%. For example, training RSMI on a
Skewed data set with 128 million points takes 60,514 seconds
on a CPU. This can be reduced to 15,698 seconds on an RTX
2080 Ti GPU. ZM is faster than RSMI at training, because
RSMI needs to first sort and partition the data points each
time it learns a sub-model. ZM only sorts the data points
once for learning all sub-models. Among the traditional in-
dices, HRR is bulk-loaded, which only takes a few rounds
of sorting and data scans. This is faster than RR∗, which is
created by means of top-down insertions. Grid and KDB are
the fastest due to their simple sorting-based construction.
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Figure 9: Index size and construction time vs. data set size

Varying the data set size. In Fig. 8, we vary the data set
size using Skewed data. Results on the other data sets show
similar patterns and are omitted due to the space limitation.
The same applies in the remaining experiments.

As expected, the query costs increase with the data set
size. RSMI offers the lowest query costs, and the advantage

is up to 5.8 times (1.3 µs vs. 7.6 µs for RSMI vs. ZM with 8
million points). We observe a slight drop in the number of
block accesses for RSMI. When there are more points, RSMI
may learn a structure with more levels, where the leaf models
are more compact, yielding more accurate predictions and
fewer block accesses. The query time still increases as there
are more levels – the average depth increases from 2.49 to
4.46 for 1 to 128 million points, and the maximum depth is
10. These findings indicate that RSMI is scalable.

The index sizes and construction times also increase with
the data set size, as shown in Fig. 9. RSMI is consistently
small in size, while its construction time does not grow dras-
tically (which can be further reduced using GPUs, as men-
tioned above). This allows it to scale to very large data sets.

6.2.3 Window Queries
We generate 1,000 window queries under each setting and

report the average cost per query. Since the number of block
accesses aligns with the query response time, we omit cov-
erage of the number of block accesses. Also, index size and
construction time are independent of the query type and
are omitted hereafter. As learned indices may offer approxi-
mate window query answers (without false positives, cf. Sec-
tion 4.2), we report their recall — the number of points
returned over the cardinality of the ground truth answer.

We add one more technique called RSMIa to the com-
parison. It offers accurate query answers by performing an
R-tree-like traversal by utilizing MBRs associated with the
sub-models in RSMI, as described at the end of Section 4.2.
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Figure 10: Window query vs. data distribution

Varying the data distribution. Fig. 10 reports the window
query costs across different data sets. As for point queries,
RSMI is the fastest for window queries except for on Uniform
data where Grid is slightly faster (0.025 ms vs. 0.024 ms).
This is because Grid can easily locate the cells and hence the
data blocks that overlap with the query window. On non-
uniform data, Grid may have cells that only partially overlap
with the query window while containing many blocks (and
false positives) to be filtered for the query. On such data
sets, RSMI outperforms the traditional indices by at least a
factor of 1.33 (6.4 ms vs. 8.0 ms for RSMI vs. KDB on OSM)
and up to 17 times (0.05 ms vs. 0.85 ms for RSMI vs. Grid
on Tiger). RSMI also outperforms ZM by 4.4 times on OSM
(6.4 ms vs. 28.5 ms) and by over an order of magnitude on
the other four data sets. Meanwhile, RSMIa outperforms ZM
on Uniform, Normal, and OSM, and its query performance
is comparable to those of the R-tree indices on the real data
sets Tiger and OSM. These findings show the applicability
of RSMIa when accurate query answers are needed.

Next, we consider the recall of the learned indices. RSMIa
has 100% recall as it uses MBRs for query processing. ZM is
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more accurate than RSMI. It uses Z-curves, where the bot-
tom left and top right corners of a query window bound the
search region better than all four corners of the query win-
dow in RSMI, which uses Hibert-curves. However, RSMI has
much lower query costs. It also has a consistently high recall
of over 91.4% and up to 95.4% on Normal data (Fig. 10b).
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Figure 11: Window query vs. data set size

Varying the data set size. When the data set size varies
(Fig. 11a), RSMI is the fastest except for on data sets with
fewer than 4 million points, where KDB is slightly faster.
KDB creates non-overlapping data partitions, which bene-
fits query performance. However, as the data set grows, the
partitions become long and thin due to the block size limit
(especially on Skewed). This leads to many tree nodes over-
lapping with queries and high query costs. RSMIa is faster
than ZM when the data set size is below 8 million or exceeds
128 million. It queries 128 million points in just 6.1 ms.

Fig. 11b shows the recall of RSMI, which is consistently
high and is over 89.8% for 128 million points. The recall
drops slightly as the data set size increases, since it is more
difficult to train an accurate prediction model on more points.
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Figure 12: Window query vs. query window size

Varying the query window size. We vary the query window
size from 0.0006% to 0.16% of the data space size. As Fig. 12
shows, the query times grow with the query window size
since more points are queried. The relative performance in
both the query time and the recall among the indices is
similar to that observed above. RSMI offers highly accurate
answers (over 90.3%) and lowest query times, thus showing
robustness for window queries in varying settings.

Varying the query window aspect ratio. We further vary
the query window aspect ratio from 0.25 to 4.0. Fig. 13 shows
that the aspect ratio is less impactful than the query window
size. We conjecture that this is because the query costs are
averaged over 1,000 queries that are positioned following the
data distribution. Every set of 1,000 queries of a given aspect
ratio may cover a similar set of data points overall, and hence
has a similar average query cost. RSMI again outperforms
all competitors and is at least 1.4 times faster (0.058 ms vs.
0.083 ms for RSMI vs. KDB when the aspect ratio is 4) than
the other structures, and its recall exceeds 89.4%.
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Figure 13: Window query vs. query window aspect ratio

6.2.4 KNN Queries
We generate 1,000 kNN queries under each setting and

report the average query time and recall. Here, the recall
refers to the number of true kNN points returned divided
by k. This is the same as the precision. ZM does not come
with a kNN algorithm, so we use our kNN algorithm for it.
For the other indices, we use the best-first algorithm [40].
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Figure 14: KNN query vs. data distribution

Varying the data distribution. Fig. 14 shows that RSMI is
also the fastest for kNN queries. It outperforms ZM by up to
46 times (0.03 ms vs. 1.38 ms on Tiger). This is because both
techniques use window queries for kNN queries, where RSMI
is much faster. RSMI also outperforms the other indices. For
Grid, the kNNs may spread in multiple cells which makes
it uncompetitive. The other traditional indices require tree
traversals and accesses to possibly many tree nodes. In terms
of recall, RSMI is again very close to ZM and is over 91.8%.
This shows the applicability of RSMI to kNN queries.
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Figure 15: KNN query vs. data set size

Varying the data set size. In Fig. 15, we vary the data
set size. RSMI again yields high recall and the fastest query
time, while RSMIa produces accurate answers and is faster
than ZM (except when n = 64 million). The query times
grow with the data set size. When n = 128 million, RSMI
is over an order of magnitude faster than ZM. The recall of
RSMI also decreases slightly with the data set size but it
stays above 88.3%. This is in line with the observations for
window queries where the data set size is varied (cf. Fig. 11).
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Figure 16: KNN query vs. k

Varying k. In Fig. 16, we vary the query parameter k from
1 to 625. We see that the query costs increase with k, which
is expected as more blocks and data points are examined.
The high efficiency and recall (89.1% to 96.5%) of RSMI
indicate that it scales to large k values.

6.2.5 Update Handling
We further examine the impact of data updates. ZM does

not come with update algorithms, so we adapt ours for it.
We initialize the indices with the default data set, insert (or
delete) 10%n to 50%n data points, and query the updated
indices with 1,000 queries. We report the average response
time per insertion and the average response time per query.
We also studied the impact of deletions but omit those due
to space constraints. We note however, that they replicate
the performance figures of insertions.
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Figure 17: Insertion and point queries after insertions

Insertion. Fig. 17a shows slowly increasing insertion times
with more insertions, as the tree index height has not in-
creased till 50%n insertions, while the learned indices keep
appending new points to the end of the predicted blocks.
Grid adds a new point p to the last block in the cell enclos-
ing p, which is the fastest. RSMI insertions cost more than
those of ZM, since it has more sub-models than ZM, and it
takes more time to reach a data block for the insertion.

Fig. 17b shows that insertions cause the point query times
to increase. There are more points to query, and the indices
become less optimal. The learned indices ZM and RSMI are
impacted the most as they have more blocks to scan with in-
sertions. RSMI still yields the best query performance after
50%n insertions, i.e., 2.7 µs (RSMI) vs. 3.9 µs (Grid).

We further compare with an RSMI variant named RSMIr,
which rebuilds the sub-models that exceeded the partition
threshold after every 10%n insertions. RSMIr has an amor-
tized insertion time of less than 130 µs, which confirms the
feasibility of periodic rebuilds. It also improves the point
query performance, especially when there are more inser-
tions. A similar pattern is observed on window and kNN
queries. We omit its curve in those figures for succinctness.
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Figure 18: Window queries after insertions
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Figure 19: KNN queries after insertions

For window queries (Fig. 18a), RR∗ keeps adjusting MBRs
to reduce overlaps, while HRR checks the newly created
blocks with tree traversals. They now perform similarly to
RSMI. For RSMI, the created blocks are linked after blocks
with the same predicted location. When the first block does
not contain a query window corner point, more blocks need
to be checked, which increase the query time. For kNN
queries (Fig. 19a), as there are more points, the size of the
initial search region of RSMI decreases. This helps RSMI re-
tain the fastest query time. The recall of RSMI for both win-
dow and kNN queries consistently exceeds 87.5% (Fig. 18b
and Fig. 19b). These results indicate the effectiveness of the
update algorithm at maintaining the performance of RSMI.

7. CONCLUSIONS
Exploiting recent advances in machine learning, we pro-

pose algorithms to learn indices for spatial data. We order
the data points using a rank space based technique. This
ordering simplifies the indexing functions to be learned that
map spatial coordinates (search keys) to disk block IDs (lo-
cation). To scale to large data sets, we propose a recursive
strategy that partitions a large data set and learns indices
for each partition. We also provide algorithms based on the
learned indices to compute point, window, and kNN queries,
as well as update algorithms. Experimental results with both
real and synthetic data show that the proposed learned in-
dices and query algorithms are highly effective and efficient.
Query processing using our indices is more than an order of
magnitude faster than R-trees and a recent baseline learned
index, while our window and kNN query results are highly
accurate, i.e., over 87% across a variety of settings.

Our learned indices may be applied to spatial objects with
non-zero extent using query expansion [44, 48], although this
impacts query accuracy and efficiency. We leave in-depth
studies of learned indices for spatial objects with non-zero
extent for future work. Further, it is important to attempt
to establish theoretical performance bounds for the learned
spatial indices including the height, query accuracy, and
curve value gaps, and to improve the efficiency for highly
dynamic data updates, e.g., in moving object databases.
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