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ABSTRACT
The amount of time-series data that is generated has exploded due
to the growing popularity of Internet of Things (IoT) devices and
applications. These applications require efficient management of the
time-series data on both the edge and cloud side that support high
throughput ingestion, low latency query and advanced time series
analysis. In this demonstration, we present Apache IoTDB managing
time-series data to enable new classes of IoT applications. IoTDB
has both edge and cloud versions, provides an optimized columnar
file format for efficient time-series data storage, and time-series data-
base with high ingestion rate, low latency queries and data analysis
support. It is specially optimized for time-series oriented operations
like aggregations query, down-sampling and sub-sequence similarity
search. An edge-to-cloud time-series data management application
is chosen to demonstrate how IoTDB handles time-series data in real-
time and supports advanced analytics by integrating with Hadoop
and Spark. An end-to-end IoT data management solution is shown
by integrating IoTDB with PLC4x, Calcite, and Grafana.
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1 INTRODUCTION
Nowadays, IoT applications are becoming increasingly popular in
many areas. Examples can be found in consumer electronics in-
cluding smart home devices, wearables and connected healthcare
as well as in industrial applications with the rise of Industrial IoT
(IIoT). Compared to traditional time-series usage for IT such as
infrastructure monitoring, the major characteristics of these IoT ap-
plications are real-time data management with lower latency and
more advanced analytics on the time-series datasets. Furthermore,
when IoT is used in industrial applications, intelligent equipment
usually produces one to two orders of magnitude more data than
consumer-oriented IoT devices. This makes it even harder for ana-
lytics to produce valuable insights in a reasonable amount of time.
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As an illustrative example, a single wind turbine can generate hun-
dreds of data points every 20 ms [7] to monitor conditions, detect
faults and make decisions. Future operations can then be decided
by a set of sophisticated queries against the acquired time-series by
data scientists. Typical uses are signal decomposition and filtration,
segmentation for different working conditions, and failure pattern
matching.

Consequently, the IoT-related service market has spawned new
workloads on time-series processing blended by:

Edge computing: As edge devices have gained more computa-
tional power and edge computing has grown more popular, managing
time-series data and supporting advanced analysis on the edge side is
trending. It requires the time-series database to be capable of running
on both edge and cloud side, while remaining well organized for
data synchronization.

Long-life, large volume historical data: The volume of data
in IIoT is large. For example, the sensors on a Boeing model 787
airliner produce upwards of half a terabyte of data per flight [8].
Compared with data center monitoring applications where the data
is kept for a week or month, industrial users usually choose to keep
all historical data for audit and statistical analysis of the whole life
cycle of devices.

High throughput data ingestion: As illustrated in the wind tur-
bine example, the database needs to handle the ingestion of tens of
millions of time-series data points per second stably in a 24×7×365
manner. It becomes more challenging when the arrival of time-series
data cannot be guaranteed to be in order due to various device and
network problems including device failure, weak communication
signal or network congestion.

Low latency and complex queries: Queries are typically used in
three scenarios. (1) The value of the latest data point is required for
real-time monitoring with a short on boarding interval. (2) Applica-
tions, like those for fault detection, regularly retrieve time-series data
having a timestamp or time window filter for given time-series IDs,
and the results are ordered by time. (3) The interactive, exploratory
queries by data scientists are more complicated and unpredictable,
where conditions on value and similarity of sub-sequence are applied
on arbitrary lengths of historical time-series.

Advanced data analytics: Besides queries, advanced IoT data
analytics like signal processing and machine learning algorithms
are also necessary for data scientists to process the historical data.
However, the support by big data ecosystems such as Apache Spark
requires ETL from time-series database and keeping two costly
copies of huge historical data respectively.

Time-series databases, like OpenTSDB [9] and KairosDB [2], are
built on top of existing NoSQL stores but suffer from insufficient
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Figure 1: Main modules of IoTDB

performance and poor compression for IoT workloads. InfluxDB
has about 10x improvements on these aspects [5], but still has a gap
on query performance especially when aggregating large amounts of
historical data. In practice, Parquet [3] is the choice for time-series
storage for analytics and OLAP workloads with Hadoop ecosystem,
but it requires ETL from the time-series database. Moreover, opti-
mization is needed to support native time-series data for both storage
and query efficiency beyond columnar storage.

In this demo, we introduce Apache IoTDB [1], a native time-series
storage format and database for both edge and cloud computing. It
has the following key features: (1) IoTDB has a lightweight archi-
tecture running on the edge appliances, and a cluster version for
the data center under the same code base, as well as efficient data
synchronization from edge to cloud. (2) IoTDB provides a novel
columnar file format, called TsFile (Time-series File), as the main
storage format to optimize the data organization, size reduction, and
query performance with time-series data. (3) IoTDB supports high
throughput ingestion by an elaborate buffering design and storage
strategy to handle frequent out-of-order data ingestion and sorted
data query. (4) IoTDB leverages metadata in TsFiles and index files
to support low latency queries and complex similarity search. (5)
TsFile, as the file format of IoTDB, can also be accessed directly in
Hadoop ecosystem by Spark and Hive for data analysis.

Currently, IoTDB supports the ingestion rate up to 30 million
data points per second on a single node, and the latency of hundreds
of milliseconds for raw data queries and tens of milliseconds for
aggregation queries on billions of data points. A more comprehensive
functional and experimental evaluation can be accessed in public [4].
IoTDB has been deployed in the production environment by several
industry users.

2 SYSTEM OVERVIEW
The architecture of IoTDB is shown in Figure 1. IoTDB is designed
to manage huge volumes of time-series data points from IoT de-
vices, where one data point is logically depicted as (<device, sensor,
timestamp, value>. Herein the device and sensor identifiers together

present a unique time-series ID. The Metadata Management module
manages the naming space of devices with a tree structure. For in-
stance, Location1.Windfarm2.Manufactuer3.Turbine4 is a full path
to describe a single wind turbine. The design of IoTDB chooses
to store the data in an open native time-series file format for both
database access with Query/Storage Engine and Hadoop/Spark ac-
cess against a single copy of the data. It also serves as a distributed
time-series database, where data is partitioned by grouping of time-
series in Cluster Engine among different nodes while time-based
data slicing is implemented on each node to improve the perfor-
mances. IoTDB provides an SQL-like language, native API, and
restful API to access the data. We then introduce the main features
in the following subsections.

2.1 Uniform Edge-Cloud Design
In IoT scenario, edge computing and cloud side deployment are
equally important. Therefore, IoTDB is designed to fit three deploy-
ment models: 1) file-based storage or embedded time-series database
on edge appliance like Raspberry PI, 2) standalone time-series data-
base on Industrial PC and 3) distributed time-series database or
Hadoop cluster with TsFile storage format.

Typically, IoT devices collect data from sensors and industrial
controllers, and send data to data center using customized or stan-
dard protocols like MQTT in real-time. However, in some cases, the
edge intelligence requires real-time analytics, such as fault alerts,
to retrieve data from a local data store. Therefore, IoTDB has a
lightweight, embedded version to be deployed on the IoT devices,
where the minimal runtime memory requirement is 32MB and com-
putation is supported with an ARM7 processor. Local storage is also
mandatory to prevent data loss in case of the temporary network
outage. In this scenario, TsFile Lib allows the devices to persist
data in TsFile format, and afterwards the generated TsFiles can be
directly synchronized and merged with active IoTDB instance on
the cloud using the File Sync module.

On the cloud side, using the Cluster Engine, a raft-based protocol
is implemented to manage multiple IoTDB nodes. In the cluster
mode, data partitions can be defined according to both time slice
and time-series ID. The distribution of data and query operations are
completely transparent to the end users.

2.2 TsFile Format
TsFile is the primary data file format for time-series data storage
in IoTDB. Figure 2 shows the structure of the TsFile. TsFile is
similar to Parquet but optimized for time-series data. A TsFile mainly
consists of two parts: the data content (Chunks, Pages) and the
index. Each chunk stores the data of a time-series for a certain time
range. Inside a chunk, the data is split into several pages, which
is the fundamental unit of the data storage on the disk. Each page
stores data points in a pair of columns, i.e. the timestamps and the
value. Timestamps are encoded by second order difference and the
value field supports compression algorithms like bitmap, Gorilla,
RLE, etc. to save disk space. Snappy is also employed for advanced
compression on historical data.

To accelerate the query, the data in the chunks of each time-series
is ordered by time in TsFile. In this way, queries with time range
filters can quickly skip the chunks out of the given time window.
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For further query performance improvement, the max/min time, the
max/min value, count and average of data points for each series are
pre-calculated and stored as Summary Info in the level of the file,
chunk, and page, which significantly accelerates the filtration and
aggregation operations. The TsFile Index part is organized at the
end of a TsFile, to quickly locate the data chunks of a given time-
series. TsFile differs from Parquet and ORC by separately storing
the metadata corresponding to each time-series to avoid accessing
metadata for unmatched columns.

2.3 Data Ingestion
Apart from the batch file loading, the Storage Engine is the main
component providing real-time data ingestion. The high throughput
ingestion is a key requirement of an IoT database, but out-of-order
data presents the major technical challenge. The arrival of data is
not guaranteed in order due to many factors like re-transmission
because of a temporary device or network failure. However, on the
other hand, the time-ordered property of the data inside and among
TsFiles is necessary for efficient query processing.

To achieve the high write throughput, the Storage Engine buffers
data in memory as a memtable first with a write-ahead log. Since
the time complexity of finding the ordered position is 𝑂 (log𝑛),
IoTDB’s design gives up the ordering of newly ingested data in the
memtable. When flushing a memtable into a TsFile, the ordering and
flushing operations are pipelined against different time-series data,
therefore the utilization of available CPU time for ordering during
I/O helps IoTDB improve the data ingestion throughput further.
Another acceleration of ingestion is the vectorized write interfaces
in Storage Engine in the case of batch arrival data. The pointer of
the data array is saved in the memtable, hence memory copy and
potential Garbage Collection hereafter is avoided.

In some cases, the late arrival data is out of the time range of
memtable. The Storage Engine saves such out-of-order data sepa-
rately into Out-of-Order (O3) TsFiles first and then merges them into
TsFiles periodically in the background. Comparing with the normal
TsFile, the only difference in O3-TsFile is that the time window of
different chunks may overlap, which incurs a merge-sort of multiple
chunks against a matched query.

Differential (D) files are used for infrequent update and deletion
operations where updates are only for correction in case of data
quality issues and deletion is for truncating the data older than a cer-
tain timestamp. The log-style records are appended in the versioned
D-file, and will be similarly merged to TsFile as O3-TsFile. The
query will sequentially scan the D-file to get the latest value, if the
target time-series exists.

2.4 Queries
The Query Engine takes full advantage of the time-ordered property
of TsFiles to reduce I/O and latency for queries with time and value
predicates. TsFiles’ file, chunk and page level Summary Info signifi-
cantly prune the unnecessary access of TsFiles in IoTDB. For the
potential page hit in TsFile, O3-TsFile and D-file, sequential scans
will be applied to verify the results. Moreover, the latest data point
query is retrieved from the memory Cache without accessing a file.

To accelerate interactive and exploratory queries, we proposed
PISA [6] index for aggregation and down-sampling queries and KV-
match [10] indexes for sub-sequence similarity search. All indexes
are managed by Index Manager. In IoTDB, the PISA index is built on
top of the Summary Info of pages by constructing variant of segment
trees and forming a forest to support 𝑂 (log𝑛) time complexity for
aggregation and down-sampling queries while minimizing the loss of
the insertion throughput. The leaf and internal nodes in the tree-based
index are considered as data points of a time-series and thereby the
index file of PISA is in the TsFile format. KV-match index supports
sub-sequence matching under either ED or DTW distance while
avoiding scanning full time series. When creating a KV-match index
on a time-series, the related TsFiles will attach index files one to
one while the index file is in the key-value format. Then, users can
specify “similar(target time-series, distance bound, start time, end
time)" sub-clause to find similar sub-sequences.

Using the above design, the latest data query, which is the most
importance for device monitoring, has the extreme low latency as
the data is cached in memory. Query against raw data with time filter
could also be achieved with low latency with our optimizations, but,
for the case of out-of-order data, the query latency may increase duo
to the unfinished data compaction.

2.5 Integration with Big Data Ecosystem
IoTDB supports TsFiles persistence on the local file system and
HDFS directly. We implement TsFile’s HDFS interface for MapRe-
duce, SerDe interface for Hive, and the Data Sources API of Spark to
integrate TsFile with MapReduce, Hive, and SparkSQL respectively.
TsFile can tell Hive and Spark where the data is for a given time
range, what the file schema is, and how to decode the data. In this
manner, SparkSQL can push filter conditions down to the TsFile Lib
to reduce unnecessary disk I/O.

Moreover, IoTDB has been integrated with many other big data
open source systems including Flink, RocketMQ, Calcite, PLC4X,
and Grafana. The integration in these systems helps to extend IoTDB’s
capabilities to manage the life cycle for time-series data from data
collection to data visualization.

2903



Chen Wang1,2, Xiangdong Huang1∗, Jialin Qiao1, Tian Jiang1, Lei Rui1, Jinrui Zhang3, Rong Kang1, Julian Feinauer4, Kevin A. McGrail5, Peng Wang6, Diaohan Luo1,
Jun Yuan1, Jianmin Wang1, Jiaguang Sun1

distance

measuring 

sensor
PLC !"#$%&$'(

)*%'+(##",-.

edge-side

file sync

JDBC

cloud-side

Figure 3: Data management from the edge to the cloud

3 DEMONSTRATION
IoTDB System: We first demonstrate IoTDB’s usage on the edge
side. We install a Raspberry PI with a Mitsubishi programmable
logic controller (PLC) , an industrial distance measuring sensor
and a gyroscope sensor as an intelligent IoT device. An IoTDB is
deployed on the Raspberry PI to manage the time-series data locally.
The Raspberry PI collects distance-measuring data at a frequency of
100 Hz from the PLC and the data is ingested into IoTDB locally. The
edge IoTDB synchronizes the generated TsFiles to the cloud every
10 seconds. The angle changes (x, y, z, accelerated-x, accelerated-y,
and accelerated-z) from the gyroscope are collected at a frequency of
5 Hz, IoTDB JDBC is used to send the data to the cloud in real-time.
Figure 3 shows the real sensors, the PLC and the Raspberry Pi with
IoTDB. When the sensors are moved, we can see the visual time
series being updated on the left top screen.

On the cloud, an IoTDB instance receives both the batch TsFiles
and the streaming data points in real-time. The effect of the File Sync
is shown in Figure 4 (d). In the IoTDB-CLI console (Figure 4 (a)),
we can see there are 7 time-series in IoTDB. Figure 4 (b) shows that
an aggregation query to down-sample the distance measuring data
from 100 Hz to 1 Hz. Figure 4 (c) shows using KV-match index to get
the most similar sub-sequence from the distance time-series curve
when given a sample curve. Figure 4 (a) to (c) are all finished by
using IoTDB SQL, while Figure 4 (d) requires running two IoTDB
instances and setting the receiver’s IP in IoTDB’s configuration.

To support advanced analysis, e.g., interactive data exploring and
signal computing, we show how to integrate IoTDB with other sys-
tems. Figure 5 (a) shows the integration with Calcite to use a nested
query to query data from IoTDB. Figure 5 (b) shows using Spark-
SQL to translate the data in IoTDB to DataFrame and leveraging the
capability of DataFrame for complex analysis. In Figure 5 (c), we
integrate Zeppelin with IoTDB for exploratory analysis. Figure 5 (d)
shows using Grafana to visualize time-series data in IoTDB.

4 CONCLUSION
In this paper, we present Apache IoTDB, a high performance data-
base for time-series data management on the edge and cloud. A
native time-series oriented columnar file format, TsFile, is intro-
duced for improved query performance and storage efficiency. More

(a).  Show timeseries (b). Down-sampling

IoTDB> show timeseries;

IoTDB> select avg(sensor0) from 

root.plc4jDemo.sensor group by 

([now()-1h, now()), 1s);

(c). KV-match index (d). File Sync

Edge Side Cloud Side

Figure 4: Some basic queries in IoTDB

(a). Calcite Integration

(d). Grafana Integration

(b). Spark Integration

(c). Zeppelin Integration

scala> spark.sql(select * 

from tsfile_table).show()jdbc:calcite> select count(*) 

from (select sensor0 from 

root.plc4jDemo where device = 

… and time >… and time <…)

Figure 5: IoTDB integration for advanced functions

write and query optimizations are also discussed. These contribu-
tions are demonstrated with a proof of concept application. This
illustrates how time-series data is managed, visualized, explored and
analyzed in IoT world using Apache IoTDB.
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