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ABSTRACT
In this demonstration, we present a privacy-preserving epi-
demic surveillance system. Recently, many countries that
suffer from COVID-19 crises attempt to access citizen’s lo-
cation data to eliminate the outbreak. However, it raises
privacy concerns and may open the doors to more invasive
forms of surveillance in the name of public health. It also
brings a challenge for privacy protection techniques: how
can we leverage people’s mobile data to help combat the
pandemic without scarifying location privacy. We demon-
strate that we can achieve this by implementing policy-based
location privacy for epidemic surveillance. Our system has
three primary functions for epidemic surveillance: people
flow monitoring, epidemic analysis, and contact tracing. We
provide an interactive tool allowing the attendees to explore
and examine the usability of our system: (1) the utility of
location monitor and disease transmission model estimation,
(2) the procedure of contact tracing in our systems, and (3)
the privacy-utility trade-offs w.r.t. different policy graphs.
The attendees will find that we can have the high usability
for epidemic surveillance while preserving location privacy.
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1. INTRODUCTION
We are fighting with the pandemic of COVID-19 disease.

To prevent the spread of such a highly contagious virus, the
crucial information that we need for epidemic surveillance
is people’s location history. Recently, many countries that
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suffer from coronavirus crises attempt to access citizen’s lo-
cation data to eliminate the outbreak. The US pumped
500 million dollars of emergency funding into the CDC for
building a surveillance and data collection system [1] and
discussed with Facebook and Google for sharing people’s lo-
cation data to combat the coronavirus. In South Korea, the
government created a public map of coronavirus patients us-
ing location data from telecom and credit card companies
[15]. Italy’s telecom companies are sharing location data
with health authorities to check whether people are remain-
ing at home [2]. China’s giant tech companies provide a
“health code” service to certify a user’s health status based
on her travel history, which are collected by the cellphone
apps [9]. Although these special measures of personal data
collection for public health emergency may be temporary
and under stringent government regulation, it raises con-
cerns over privacy, and people are worried that it may open
the doors to surveillance activities in the name of public
health. It also brings a challenge for location privacy pro-
tection techniques: how can we utilize people’s mobile data
to help combat the pandemic without sacrificing our loca-
tion privacy.

Location privacy has been extensively studied in the lit-
erature [17]. However, the state-of-the-art location privacy
models are not flexible enough to balance the individual pri-
vacy and public interest in an emergency as we are witness-
ing in the COVID-19 crisis. The early studies on location
privacy were extending k-anonymity [19] and were flexible
enough to be adapted to different scenarios such as person-
alized location anonymity [11]. But, the recent studies re-
vealed that k-anonymity might not be rigorous enough since
they suffer many realistic attacks [14, 16] when the adver-
sary has background knowledge about the original dataset.
The recent state-of-the-art location privacy models[3, 22,
21, 20, 23, 5, 6, 7] were extended from differential privacy
(DP) [10] to private location release since DP is considered a
rigorous privacy notion. Although these DP-based location
privacy models are rigorously defined, they are not flexible
and customizable for different scenarios with various require-
ments on privacy-utility trade-off. Taking an example of
Geo-Indistinguishability[3], which is the first and influential
DP-based location privacy metric, the strength of protec-
tion is solely controlled by a single parameter ε to achieve
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Figure 1: Private location sharing with Customizable Policy.

indistinguishability among all possible locations. It is hard
to make a good privacy-utility trade-off using this single ε
in a complicated setting.

We should have a flexible and rigorous location privacy
model that enables customizable location privacy policy and
can be used to define which locations are sensitive, which are
not. The policy should be adjustable for different people,
at different time, and with different purposes. For instance,
under the emergency of COVID-19, a location privacy policy
for contact tracing could be “allowing to disclose a user’s
true locations of the past two weeks if she is a diagnosed
coronavirus patient; otherwise, ensuring indistinguishability
of the user’s location”; if the patient’s location trace and the
time period are confirmed, we can dynamically update the
location privacy policy for each person to find all contacts
of the confirmed patient. A policy for all other people could
be “allowing the app to access a user’s true locations if she
has been staying in the same location at the same period as
an infected user; otherwise, ensuring indistinguishability of
the user’s location”. In this way, we can guarantee both full
usability of contact tracing and reasonable privacy.

In this demonstration, we present PANDA, i.e., Policy-
aware privAcy preserviNg epiDemic surveillAnce, which im-
plements our recently proposed Policy Graph-based Loca-
tion Privacy (PGLP) [4] and mechanisms for epidemic sur-
veillance. Our system is featured by the customizable loca-
tion privacy policy graph, which provides a new dimension
to tune utility-privacy trade-off.

In our recent study [4], we proposed a formal represen-
tation of location privacy policy using a graph, which is
inspired by a statistical privacy notion of Blowfish privacy
[12]. In our setting of private location release, a privacy
policy graph (such as the ones shown in Fig.2) includes all
possible locations that need to be protected as its nodes, and
the edges indicate indistinguishability between two possible
locations. A user could arbitrarily customize the location
policy graph according to her privacy and utility require-
ment and enjoy plausible deniability regarding her where-
abouts. The definition of PGLP can be seen as a general-
ization of two influential DP-based location privacy models:
Geo-Indistinguishability [3] and Location Set Privacy [22].
Under appropriate configuration of policy graphs, an algo-
rithm satisfying PGLP w.r.t. the policy graphs could also
satisfy Geo-Indistinguishability or Location Set Privacy. In
[4], we also designed mechanisms for PGLP by adapting the
Laplace mechanism and Planar Isotropic Mechanism (PIM)
(i.e., an optimal mechanism for Location Set Privacy [22])
w.r.t. a given location policy graph.

However, it is not trivial to directly apply PGLP for a
location-based application such as epidemic surveillance due
to the following reasons. First, it is not clear how to design a
proper policy graph with reasonable privacy and functional
utility. Second, when there are multiple choices for location

privacy policies, we lack a tool to explore and compare the
utility gain w.r.t. different location privacy policies. Third,
it is difficult for users to understand the privacy implications
(i.e., the privacy risks) of a given location privacy policy.

1.1 Contributions
To address the above issues and motivated by the signif-

icant impact of the pandemic of COVID-19 in the world,
we demonstrate a policy-based location privacy-preserving
epidemic surveillance system. Our contributions are sum-
marized below.

First, we design an epidemic surveillance system with
three primary functions: location monitoring, epidemic anal-
ysis, and contact tracing. The scenario is shown in Fig.1,
where users locally maintain location databases (e.g., all lo-
cations in the past two weeks) and share perturbed loca-
tions satisfying PGLP w.r.t. a specific policy graph with a
semi-honest server. The policy graph essentially acts as an
information filter to control what could be shared and what
should not be shared.

Second, we demonstrate three policy graphs with distinct
granularity that are appropriate for different functions in the
epidemic surveillance. Specifically, we visualize the utility
gain or loss between different policy graphs. It turns out that
no policy is the best for all. The attendees of the conference
can find that it is possible to have the full functionality of
epidemic surveillance while preserving location privacy.

Third, we visualize the trade-off between privacy and util-
ity. Although we can specify a policy graph that enables the
full usability of the system, it is not clear what is the pri-
vacy implication given a policy graph. The policy graph
itself could be semantically meaningful, but we lack a quan-
titative measurement. We provide empirical privacy metrics
as the adversary’s successful inference [18] with an interac-
tive tool. The attendees can randomly generate a policy
graph to explore its effect on the privacy-utility trade-off.
The codes are available in github 1 2.

2. BACKGROUND
2.1 Location Policy Graph

Inspired by Blowfish privacy[12], we use an undirected
graph to define which location should be protected and which
could not, i.e., location privacy policies. The nodes are
secrets and the edges are the required indistinguishability,
which indicate an attacker should not be able to distinguish
the input secrets by observing the perturbed output. In our
setting, we treat possible locations as nodes, and the indis-
tinguishability between the locations as edges.

Definition 1. (Location Policy Graph) A location pol-
icy graph is defined as an undirected graph G= (S, E), where
S denotes all the locations (nodes) and E represents indis-
tinguishability (edges) between these locations.

Definition 2. (Distance in Policy Graph) We define the
distance between two nodes si and sj in a policy graph as
the length of the shortest path (i.e., number of hops) between
them, denoted by dG(si, sj).

In DP, the two possible database instances with or with-
out a user’s data are called neighboring databases. In our

1https://github.com/emory-aims/pglp
2https://github.com/tkgsn/covid-demo
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Figure 2: Two examples of location policy graphs.

location privacy setting, we define neighbors as two nodes
with an edge in a policy graph.

Definition 3. (Neighbors) The neighbors of location s,
denoted by N (s), is the set of nodes having an edge with s,
i.e., N (s) = {s′|dG(s, s′) = 1, s′ ∈ S}.

In our system, we assume that the location policy graph
is determined by the server for the purposed utility maxi-
mization. The user has the right to reject a privacy policy
so that no location will be released. By making the policy
graph public, the system has a high level of transparency.

2.2 Privacy Metrics
We now formalize Policy Graph-based Location Privacy

(PGLP), which guarantees indistinguishability for every pair
of neighbors (i.e., for each edge) in a location policy graph.

Definition 4. ({ε,G}-location privacy) A randomized al-
gorithm A satisfies {ε,G}-location privacy iff for all z ⊆
Range(A) and for all pairs of neighbors s and s′ in G, we

have Pr(A(s)=z)
Pr(A(s′)=z)

≤ eε.

In PGLP, privacy is rigorously guaranteed through ensur-
ing indistinguishability between any two neighboring loca-
tions specified by a customizable location policy graph. The
user enjoys plausible deniability about her whereabout.

Lemma 1. An algorithm A satisfies {ε,G}-location pri-
vacy, iff any two neighbors si, sj ∈ G are ε · dG(si, sj)-
indistinguishable.

Lemma 1 indicates that, if there is a path between two
nodes (locations) si, sj in the policy graph, the correspond-
ing indistinguishability is required at a certain degree; if two
nodes are not connected (i.e., dG(si, sj) =∞), the indistin-
guishability is not required by the policy. As an extreme
case, if a node is not connected with any other nodes, it
allows to release it without any perturbation.

2.2.1 Comparison with Other Location Privacy
We analyze the relation between PGLP and two influential

DP-based location privacy models, i.e., Geo-Indistinguish-
ability[3] and δ-Location Set Privacy [22]. We show that
PGLP implies each of them under proper configurations of
location policy graphs.

Geo-Indistinguishability [3] guarantees a level of indistin-
guishability between two locations si and sj that is scaled
with their Euclidean distance, i.e., ε·dE(si, sj)-indistinguisha-
bility, where dE(·, ·) denotes Euclidean distance. Let G1
be a location policy graph that every location has edges
with its closest eight locations on the map as shown in Fig.2
(left). We can derive the following theorem by the fact of
dG(si, sj) ≤ dE(si, sj) for any si, sj ∈ G1 and Lemma 1.
Note that the unit length used in Geo-Ind scales the level
of indistinguishability. We assume that, for any neighbors s
and s′, the unit length used in Geo-Ind makes dE(s, s′) ≥ 1.

Client:

Server:

Loc.

Perturbed 
Loc.

εG

PGLP mechanism

Location 
Monitor

Epidemic 
Analysis

Contact 
Tracing

Location Policy Configuration

Epidemic Surveillance Apps
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Figure 3: System Overview.

Theorem 1. An algorithm satisfying {ε,G1}-location pri-
vacy also achieves ε-Geo-Indistinguishability.

δ-Location Set Privacy [22] extends differential privacy on
a subset of possible locations, which is assumed as adver-
sarial knowledge. δ-Location Set Privacy ensures indistin-
guishability among any two locations in the δ-location set.
Let G2 be a location policy that is a complete graph among
locations in the δ-location set as shown in Fig.2 (right), an
algorithm satisfying {ε,G2}-location privacy also achieves δ-
location set privacy for a certain δ.

3. SYSTEM OVERVIEW

3.1 Epidemic Surveillance
Our system consist of three main modules: PGLP mech-

anisms, Location Policy Configuration, and Epidemic Sur-
veillance Apps as shown in Fig.3. PGLP mechanisms are
proposed in [4] for achieving rigorous and customization lo-
cation privacy. It takes inputs of ε, location policy graph
G and the user’s true location, and outputs a perturbed
location to the server. The policy G is recommended by Lo-
cation Policy Configuration and approved by the user. Lo-
cation Policy Configuration defines different location poli-
cies according to the application of epidemic surveillance.
Three primary functions (Apps) for epidemic surveillance
are location monitoring, epidemic analysis and contact trac-
ing. Location monitoring focuses on understanding people’s
movement between different cities or provinces in a coarse-
grained level, which provides essential insights when com-
bining with the incidence rate in each city along with the
people’s movement. It could also provide a “health code”
service, i.e., allowing certification of the users health sta-
tus, in a privacy-preserving way. A location policy for lo-
cation monitoring can be “ensuring indistinguishability in-
side each coarse-grained area and allowing the locations to be
distinguishable in different coarse-grained areas” such as Ga
shown in Fig.4 since such a monitor is only focused on people
moving between different cities. Epidemic analysis aims at
building a predictive disease transmission model such as the
SEIR model [13]. The fine-grained data would be beneficial
for the estimation of parameters such as R0 (i.e., basic re-
production number). A location policy for epidemic analysis
is similar to the previous one, but more fine-grained, such
as Gb in Fig.4. Contact tracing attempts to find all contacts
of a diagnosed case in order to stop the spread of disease by

(North)

(East)

(North)

(East)

Ga (North)

(East)

(North)

(East)

GcGb Infected location

Figure 4: Location policy graphs for epidemic surveillance.
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Figure 5: PANDA Demonstration.

finding and isolating patients. A policy for contact tracing
can be “ensuring indistinguishability only if the user is not
in an infected area, but allowing disclosure of true location
if the user is in the vicinity or area of an infected location”,
which can be formally represented by a graph Gc in Fig.4.
We introduce more details about contact tracing below.

3.2 Demonstration Scenario
We demonstrate the system using Geolife [24] and Gowalla

[8] datasets. Interested readers can find a more detailed con-
figuration in [4]. We provide an interactive tool that allows
the attendees to explore and examine the usability of our
system: (1) the utility of location monitor and coronavirus
transmission model estimation, (2) the procedure of contact
tracing in our systems, and (3) the privacy-utility trade-offs,
as shown in Fig.5, w.r.t. different policy graphs. First, we
evaluate the utility of location monitoring as the Euclidean
distance between perturbed locations and real locations. We
test the accuracy of transmission model estimation using the
difference between (i.e., basic reproduction number) R0 esti-
mated over accurate locations and the perturbed locations,
respectively. Second, we demonstrate the procedure of con-
tact tracing using our system and dynamic policy graphs
(such as Gc in Fig.4). The goal is identifying the people who
have the risk of infection (the decision rule of suspected in-
fection could be advised by CDC or WHO; here we assume
a simple rule of two persons have been in the same loca-
tion at the same time at least twice). At each time point,
each user sends the perturbed location w.r.t. her policy
graph and stores the past two weeks of location history in
a local database. When the server confirms a diagnosed
patient’s location history, the Policy Graph Configuration
module will recommend an updated location privacy policy
for the users who have the risk of infection during the past
two weeks (according to our simple rule). Then, the cor-
responding user, upon accepting the policy, will re-send his
past location using the updated privacy policy (the places
where the diagnosed patient has been are allowed to be dis-
closed). In this way, the user can get alerted and tested
in case of infection. Third, similar to the previous utility
evaluation, we will also allow the attendees to evaluate the
empirical privacy that is measured by adversary error [18].
One can choose predefined policy graphs, as shown in Fig.4,
or randomly generate policy graphs to explore its effect on
the privacy-utility trade-off.
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