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ABSTRACT

In Dremel, data is stored as nested relations. The schema
for a relation is a tree, all of whose nodes are attributes,
and whose leaf attributes hold values. We explore filter and
aggregate queries that are given in the Dremel dialect of
SQL. Complications arise because of repeated attributes, i.e.,
attributes that are allowed to have more than one value.
We focus on the common class of Dremel queries that are
processed on column-stored data in a way that results in
query processing time that is linear on the size of the relevant
data, i.e., data in the columns that participate in the query.
We formally define the data model, the query language and
the algorithms for query processing in column-stored data.
The concepts of repetition context and semi-flattening are
introduced here and play a central role in understanding this
class of queries and their algorithms.

1. Introduction
Systems for managing “big data” often use tree-structured

data models. Two important examples of such models are
the JSON data format [1] and Google’s protocol buffers [2].
Similar models have been studied many years ago as nested
relations [16, 10]. Two recently developed systems, Dremel
[13] and F1 [18] use schemas that combine relational and
tree-structured features and have query languages that are
dialects of SQL. In these data models, the database consists
of one or more relations. The tuples of a relation share a
structured schema for that relation. The query language
uses SQL-style syntax but the evaluation techniques have
to be modified to fit the richer schema.
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We begin with a formal definition of tree-schemas and the
meaning of SQL-like queries on data matching a schema.
The necessary concepts include “flattening” [15] of the tree-
structured data, which expands the repeated groups found in
the schema, and “dummy” occurrences of repeated groups,
a necessary technical contrivance, allowing us to work with
unnormalized data without encountering deletion anomalies.

We explain the meaning of SQL-like queries on tree-struct-
ured data in terms of the effect of those queries on the flat-
tened data. Unfortunately, not all queries produce results
on the flattened data that can be described by modifying the
original tree-structured data and then flattening the mod-
ified tree. We therefore investigate when it is possible to
execute a filter query (selection of relational algebra) by
pruning the tree-structured data directly, and have a re-
sult, consistent with the execution of the same query on the
flattened version of the data. The key techical tool is the
“dominance” relation between nodes of the schema tree. It
turns out that the class of filter queries allowed in Dremel
[13] is a subset of these queries.

We then introduce a representation of tree-structured data
called “semi-flattening,” which better models the way Dremel
processes data and is usually much more compact than flat-
tened data. We show the class of filter queries that can be
executed by pruning the tree data can also be executed on
semi-flattened data. It is also possible to execute certain
queries involving aggregations on semi-flattened data. The
last part of the paper examines when it is possible to do
so, and relates the condition to the dominance relation on
schema nodes.

2. Trees as Data and as Data Types

We define data types recursively as:
1. A tuple type is a list of attribute names and a (previously

defined) type for each attribute.
2. The type of an attribute is either a basic type (integer,

real, string, etc.) or a tuple type. Further, attributes
within a tuple type can be either required (one occur-
rence), optional (zero or one occurrence), repeated (zero,
one, or more occurrences), or required and repeated (one
or more occurrences).

3. A relation type is a repeated tuple type. We shall refer
to the type of tuples (unrepeated) as the schema of the
relation.
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This structure of data appears in many places. Here are
some of the most common ones.

1. The nested relational model [5, 8, 11, 17].
2. The structure is described by DTD’s [7] without the

links implied by ID’s and IDREF’s.
3. It is the structure implied by JSON [1].
4. It is the hierarchical model [6] without links.
5. It is the essence of protocol buffers [2].

2.1 Representing Schemas

We use the conventional notation for types. For example,
int and string will denote the basic types integer and string.
A tuple type T with attributes A1, . . . , An whose types are
T1, . . . , Tn, respectively will be denoted

T = {A1 : T1, . . . , An : Tn}

The repeated type T will be denoted T ∗, the optional type
T will be denoted T?; we also use T+ to denote “one or
more occurrences.”

We shall use trees to represent schemas. The following
rules define how a tree is constructed from a data type.
Each node represents either the entire type (if the node is
the root) or one of the subtypes used to define that type.

1. A node that represents a tuple type has children for
each attribute of that tuple type, in order from the left.

2. The children are labeled by their corresponding attrib-
ute names.

3. In addition, each attribute has a repetition constraint.
An attribute that is repeated is labeled with a *; an
optional attribute is labeled with a ?, and an attribute
that is required and repeated is labeled by a +.

4. The root itself is labeled by the name of the type. Typ-
ically, the root type is starred, since it is the type of a
relation and the relation consists of zero or more tuples
of the root type.

5. Leaf nodes are of basic type. Technically we should
attach the type of each leaf to the leaf itself, but in ex-
amples these types will all be integers, reals, or strings,
and the choice among these will be both obvious and
irrelevant to the points we are trying to make.

Example 2.1. In Fig. 1 we see the tree schema for a hy-
pothetical data type that represents advertisers at a search
engine. The root is labeled Advertiser, the name of the type.
In queries, we shall also use Advertiser as the name of a
relation containing tuples of this type. Advertiser is a tuple
type, with three attributes: required attributes Name (of the
advertiser) and Email (of the advertiser) and a repeated at-
tribute Campaign. Each advertiser can thus have any num-
ber of Campaigns, including zero.

Name Email

CID Budget

Bid

WordSet* Clicks*

Campaign*

Word* Fee Date

Advertiser*

Figure 1: A relation schema represented as a tree

A Campaign comprises CID, a unique identifier for the
Campaign, a Budget, zero or more WordSets, and zero or

more Clicks. A WordSet is a tuple type consisting of a re-
quired Bid and a set of Words. The subtype Click is a tuple
type with two required attributes: the Fee collected for the
click and the Date of the click.

2.2 Instances of a Schema

An instance of a data type or schema consists of replace-
ment of each subtype by an appropriate number of instances
of that subtype. More formally:

1. An instance of a basic type is any single value of the
appropriate type.

2. An instance of a tuple type is a node whose children are
each instances of one of the types of one of its attributes.
The nodes for the attributes are sorted in the same
order as the attributes themselves. However, there can
be zero or more instances for each attribute, depending
on its repetition constraint, as follows.

a) A required attribute must have exactly one occur-
rence.

b) An optional attribute can have zero or one occur-
rence.

c) A repeated attribute can have any number of oc-
currences.

d) An attribute that is both required and repeated
can have one or more instances.

Example 2.2. Figure 2 suggests a possible instance of the
relation that is described by the schema of Fig. 1. The root,
labeled o, represents the relation with this type. For all other
instance nodes, we use a naming scheme that indicates to
which schema node it belongs. In this example we use one
or two letters and a subscript to designate an instance node,
and the letters will match the name of the schema node to
which the instance belongs.

The root has two children ad1 and ad2, representing two
Advertiser tuples. The second of these is just sketched, so
let us concentrate on ad1. The node for ad1 has children n1
and e1, the Name and Email for the first Advertiser.

o

a1 a2

n1 e1 ca1 ca2 e2n2

i1 bu1 s1 s2 cl1 cl2 cl3 i2 bu2 s3

bi1 w1 bi2w2 w3 f1 d1 f2 d2 f3 d3 bi3 w5w4 w6

. . .

Figure 2: An instance of the schema of Fig. 1

Then we see two instances of the Campaign attribute, rep-
resented by nodes ca1 and ca2. The first of these, ca1,
has two instances of Wordset and three instances of Clicks,
whereas the second, ca2, has one instance of WordSet and
zero instance of Clicks.

2.3 Dummy Occurrences

For several reasons, including the way we flatten instances
in Section 3.1, we shall maintain a fiction about attributes
that are repeated or optional. We imagine that there is one
dummy occurrence of this attribute, all of whose descendant
leaves have the value NULL. Since this instance may have
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descendant interior nodes representing repeated or optional
groups, those descendants are consequently treated as if they
had only the dummy instance dummy instance.

We do not show this dummy instance in tree diagrams,
although as we shall see, there are reasons why it is use-
ful to imagine it is there, and able to appear when needed.
For instance, when we discuss querying, we shall see that
sometimes all the occurrences of some repeated attribute
are deleted. We do not want anything else in the tree to dis-
appear, so we replace the deleted occurrences by the dummy
occurrence. This viewpoint is consistent with the treat-
ment of tree-structured instances as an outerjoin of conven-
tional relations. It is also a reasonable way to avoid deletion
anomalies in non-first-normal-form relations.

Example 2.3. Consider Advertiser tuples with the sche-
ma of Fig. 1. Each advertiser has a dummy Campaign. The
dummy Campaign has NULL for the values of CID and Bud-
get. It has a dummy WordSet, with value NULL for its Bid.
This WordSet also has a dummy set of Words, with only the
NULL value for a Word. Finally, this dummy Campaign
has a dummy Clicks instance, with NULL as its value for
both Fee and Date.

3. Querying Tree-Structured Data
Query languages like XQuery [4] or XPath [3] are fun-

damentally navigation languages on trees. The same can
be said of older query languages that used the hierarchical
model [6]. A more recent approach to query languages at-
tempts to be more SQL-like, and to think of the instances
of a tree data type as if they were tuples of a relation. Ex-
amples include the SQL variants used in Dremel [13] and F1
[18]. It is this approach that we address in this paper.

3.1 Flattening

Flattening has always been regarded as a fundamental al-
gebraic operation on nested relations [10, 15]. Informally,
we flatten an instance of a tree data type by selecting one
from each repeated group of values in all possible ways. This
selection is made independently at all levels. If an attribute
at any level is repeated and has zero values, or an optional
attribute is not present, then the attribute’s value is taken to
be the dummy instance; that is, all its descendant leaves are
taken to be NULL. As mentioned in Section 2.3, this expan-
sion using NULL’s is necessary to avoid losing information
contained in non-first-normal-form relations.

Our goal in this paper is not only to represent tree-structured
tuples as rows of a relation. We next use an SQL-like lan-
guage which evaluates a query on rows using the standard
SQL evaluation algorithm. The output is a set of rows which
may or may not come from a data tree on a certain schema.
Here we investigate when this set of rows actually come from
a data tree on the same schema as the input data tree. Since
filtering (selection) queries can delete all occurrences of re-
peated or optional attributes, we are going to want to make
explicit the effect of the dummy occurrences discussed in
Section 2.3. Thus, we define the “full flattening” (or just
“flattening” when there is no ambiguity) of a tree instance
to include all the tuples that result when we include all
dummy instances in the flattening. The full flattening is
what we need to explain the effect of SQL queries on the
trees themselves. To save space, we can remove those rows

that are subsumed by another tuple of the flattened table. A
row r1 is subsumed by row r2 if r2 agrees with r1 wherever
r1 is not NULL. We call this relation the reduced flattening
of the tree.

More formally, if I is an instance of some schema, we de-
fine the (ordinary) relation flatten(I) recursively as follows.

1. If I is a single element of basic type, then flatten(I) is
the tuple with a single component; that component is
the value of I.

2. If I is an instance of some tuple type with attributes
A1, . . . , An: Divide the children of the root of I into n
groups, such that the first group is all the nodes that
are occurrences of A1, the second group is all the occur-
rences of A2, and so on. For the ith group, construct a
relation Ri that has attributes for all the leaves of the
schema tree rooted at Ai, as follows:

a) Recursively apply the flatten operation to the in-
stance represented by each node in the group for
Ai. However, if Ai is repeated or optional, include
the dummy instance in this set of instances.

b) Take the union of the relation produced for each
instance. The union is the relation Ri.

1. Finally, to get the relation flatten(I), take the Cartesian
product R1 ×R2 × · · · ×Rn.

The result is the full flattening of the given instance.

Example 3.1. Let us see how to flatten the instance in
Fig. 2, whose schema we saw in Fig. 1. First, let us observe
that the relation schema for the flattened relation is

(Name, Email, CID, Budget, Bid, Word, Fee, Date)
since these are the attribute names of the leaves of the schema,
from the left. In Fig. 3 we present the flattening of the part
of the instance with root a1. The entire result is the union
of the relation we get from a1 with the relations we get from
all the other instances of Advertiser.

The relation for ca1 is the cartesian product of the relation
for i1 (which is {(i1)}), the relation for bu1, the union of
the relations for s1 and s2 and, the union of the relations
for cl1, cl2 and cl3. The result appears in rows 1 through 25
of Fig. 3. Similarly, for ca2, the result appears in rows 26
through 30 of Fig. 3.

Finally, to construct the relation for a1, we take the prod-
uct of the relations {(n1)}, {(e1)}, and the relation of Fig. 3.
The result looks similar to Fig. 3, but there are two new at-
tributes at the left, Name and Email, and the value of each
of the 21 tuples of Fig. 3 has values n1 and e1 in those new
columns.

4. Filter Queries

A filter is a conjunction of comparisons AθB where A is
an attribute, B is an attribute or a constant and θ can be
any comparison for which given two values the outcome is
“true” or “false.” This include inequality, 6=, and arithmetic
comparisons in {≤, <,≥, >}.

4.1 Querying Flattened Data

If we imagine tree-structured tuples to be flattened, then
there is a natural interpretation of SQL-like queries that
refer to the attributes at the leaves of the tree: flatten the
tuples and apply the query to the ordinary relation that
results. There are two problems with this idea:
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CID Budget Bid Word Fee Date

1) NULL NULL NULL NULL NULL NULL
2) i1 bu1 NULL NULL NULL NULL
3) i1 bu1 NULL NULL f1 d1
4) i1 bu1 NULL NULL f2 d2
5) i1 bu1 NULL NULL f3 d3
6) i1 bu1 bi1 NULL NULL NULL
7) i1 bu1 bi1 NULL f1 d1
8) i1 bu1 bi1 NULL f2 d2
9) i1 bu1 bi1 NULL f3 d3

10) i1 bu1 bi1 w1 NULL NULL
11) i1 bu1 bi1 w1 f1 d1
12) i1 bu1 bi1 w1 f2 d2
13) i1 bu1 bi1 w1 f3 d3
14) i1 bu1 bi1 w2 NULL NULL
15) i1 bu1 bi1 w2 f1 d1
16) i1 bu1 bi1 w2 f2 d2
17) i1 bu1 bi1 w2 f3 d3
18) i1 bu1 bi2 NULL NULL NULL
19) i1 bu1 bi2 NULL f1 d1
20) i1 bu1 bi2 NULL f2 d2
21) i1 bu1 bi2 NULL f3 d3
22) i1 bu1 bi2 w3 NULL NULL
23) i1 bu1 bi2 w3 f1 d1
24) i1 bu1 bi2 w3 f2 d2
25) i1 bu1 bi2 w3 f3 d3
26) i2 bu2 NULL NULL NULL NULL
27) i2 bu2 bi3 NULL NULL NULL
28) i2 bu2 bi3 w4 NULL NULL
29) i2 bu2 bi3 w5 NULL NULL
30) i2 bu2 bi3 w6 NULL NULL

Figure 3: Tuples resulting from the full flattening of
the dummy Campaign (row 1), ca1 (rows 2–17) and
ca2 (rows 18–21) in data tree of Fig. 2

1. Flattening can expand greatly the amount of space need-
ed to hold a tuple. For example, instances of the schema
of Fig. 1 could have campaigns with hundreds of Words
among its WordSets, and many thousands of Clicks.
The flattened relation for a tree-structured tuple would
then be hundreds of times larger than the original tuple.

2. When you flatten a tree and then apply some filter to
the resulting relation, it is common for there to be no
way to prune (delete nodes of) the original tree to yield
a tree that would have produced the result of the fil-
tering the flattened relation. In the study of nested
relations, this problem is equivalent to the fact that
while one can flatten any nested relation, it is not al-
ways possible to apply the inverse of flattening – the
nest operator [10].

It is the purpose of this paper to resolve these two prob-
lems by:

a) Investigating when the result of filtering a flattened re-
lation is what we get by pruning the tree and then flat-
tening (i.e., when do pruning and flattening commute),
and

b) Giving an algorithm to perform the filtering on the tree
itself, whenever it is possible to do so.

Example 4.1. To see the problem concretely, consider
the schema in Fig. 4(a) and an instance of that schema in

Fig. 4(b). The values of B and C are integers, but we give
each occurrence of a B-value or C-value a name, such as b1,
to make clear which attribute, B or C, each integer comes
from. Suppose we apply to the instance of Figure 4 the query

A

B* b1=10 bC* 2=20 c1=5 c2=15 c3=25

a

(a) Schema (b) Instance

Figure 4: A schema and an instance

SELECT B, C FROM A WHERE B<C

We use this example to explain why we need a flattened
relation where NULL’s appear. We apply this query to the
flattened version of Fig. 4(b), which is shown in Fig. 5(a).
Note that this relation is a reduced flattened version, since we
have not shown the tuples where one or both of B and C are
NULL. However, in this case, the result would not change if
we considered the full flattening. We shall see in Section 4.2
where it becomes essential to use the full flattening.

B C
1) 10 5
2) 10 15
3) 10 25
4) 20 5
5) 20 15
6) 20 25

B C
1) 10 5
2) 10 15
3) 10 25
4) 20 5
5) 20 15
6) 20 25
7) NULL NULL
8) 10 NULL
9) 20 NULL

10) NULL 5
11) NULL 15
12) NULL 25

(a) Reduced flattening (b) Full flattening

Figure 5: Reduced and full flattening of Fig. 4(b)

Notice that the second, third and sixth tuples satisfy the
filter, while the others do not. Thus, the result of this query
is shown in Fig. 6. However, this relation is not the flatten-
ing of any tuple with the schema of Fig. 4(a). To see why,
notice that such a tree-structured tuple would have B-values
10 and 20 and also have C-values 15 and 25. But then, the
flattening of the tree would also yield the tuple (20, 15). We
conclude that this SQL query cannot be executed on tree-
structured tuples; it can only be executed on the flattened
version of the tree, and the result has a schema different
from the schema of the input tuples.

B C
2) 10 15
3) 10 25
6) 20 25

Figure 6: Result of SELECT B, C FROM A WHERE B<C

There is an interesting observation in Example 4.1: the
fact that Fig. 6 cannot be the flattening of any instance of
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the given schema may depend on a simple change: If the
schema of Fig. 4(a) had a * on the A, then we could view
Fig. 6 as an instance of such a schema: this instance would
have three occurrences of A, one for each of the three rows
in Fig. 6.

However, even in the more common case where the schema
has a * at the root and represents a relation with an ar-
bitrary number of tree-structured tuples, we want to rule
out the possibility of using more than one tuple to repre-
sent the result of a query applied to a single tuple. The
motivation comes from the Dremel strategy for processing
tree-structured tuples. That is, queries in Dremel are pro-
cessed by pruning nodes from the trees, not by creating new
trees. This strategy is efficient, simple, and avoids explosion
in the size of the data (imagine if the tree of Fig. 4(b) were
actually part of some much larger tree, which would have to
be replicated for each of the three rows in the result).

4.2 Handling NULL’s in Query Execution

Now, using the same schema and instance, Fig. 4, suppose
we have the query
SELECT *

FROM A

WHERE B = 10 AND C = 35;
According to the tree-pruning algorithm, the data leaves
that do not satisfy the filter will be deleted. The “AND”
is interpreted as two filters B = 10 and C = 35 Thus the
first component of the filter is checked on attribute B and
the second component on attribute C The first component
deletes b2 and leaves only b1 The second component deletes
all leaves on attribute C. Thus the output data tree has only
one leaf for attribute B and no leaves for attribute C. The
flattening, thus, contains only the row (10 NULL).

But if we apply the query to the relation of Fig. 5(a), we
get no tuples, since there are none with C = 35. Possibly, we
could resolve the problem by starting with the full flatten-
ing, because that table has the necessary NULL’s. The full
flattening corresponding to Fig. 5(a) is shown in Fig. 5(b).
We want row (8) to survive the filtering, since it represents
the one remaining B-value, paired with the NULL that rep-
resents the lack of any C-children. But according to the SQL
standard, the truth value of C = 35 is UNKNOWN when
C is NULL, and thus, when applied to row (8), the truth
value of the entire WHERE-clause is UNKNOWN. That is
not “true enough,” by the SQL standard, to reach the result
of the query, so we still get the wrong answer.

The resolution to this dilemma, we believe, is to deviate
from the SQL standard by allowing UNKNOWN to be “suf-
ficiently true” to allow a row to reach the result of the query.
If we do so, then rows 7 and 8 of Fig. 5(b) pass the filter.
However, when we reduce the relation, row 7 is subsumed
by row 8, so we get only the latter row as the answer.

5. The Dominance Relation
Now, we are going to show how to distinguish queries that

can be implemented on the tree-structured tuples directly,
from those that cannot. By “directly,” we mean that each
tuple is processed by pruning its tree, and not by creating
several tuples from one; the distinction and its importance
were introduced at the end of Section 4.1. We shall then
give several approaches to implementing those queries that
can be executed directly on the trees.

5.1 Motivation for the Dominance Relation

To begin, let us take a look at two queries on the schema
of Fig. 1 that look almost the same, but in fact behave quite
differently. Query Q1 is:
SELECT CID

FROM Advertiser

WHERE Budget < Fee;

Now consider query Q2:

SELECT CID

FROM Advertiser

WHERE Bid < Fee;

These two queries are very similar but they differ in an
important way, so that Q1 can be computed by tree pruning,
while Q2 can not. First, consider what happens when Q1

is applied to flattened tuples. All rows that have a Fee no
greater than the Budget in that row would be filtered out.

Consider the rows with CID = i1, like rows 2 through 25
of Fig. 3.1 All those rows that have a value of Fee no greater
than bu1 will be filtered out. For example, suppose that f2
is greater than bu1, but f1 and f3 are not. Then the even-
numbered rows 2, 4, . . . , 16 survive, while the odd numbered
rows 3, 5, . . . , 25 are filtered out. Rows 4, 8, 12, 16, 20, and
24 survive because bu1<f2, while rows 2, 6, 10, 14, 18, and
22 survive because the value of Fee in those rows is NULL,
and we have adopted the convention that rows with value
UNKNOWN for a filter condition pass the filter.

For the subtree rooted at ca2, which is represented by
rows 18 through 21 in Fig. 3, notice that there are no Clicks,
and so all these rows come from the dummy Click and have
NULL for the value of Fee. Therefore, they all survive. The
effect on the tree-structured instance of Fig. 2 is that the
subtrees rooted at cl1 and cl3 are removed, but other than
that, the tree, shown in Fig. 7, remains the same.

o

a1 a2

n1 e1 ca1 ca2 e2n2

i1 bu1 s1 s2 cl2 i2 bu2 s3

bi1 w1 bi2w2 w3 f2 d2 bi3 w5w4 w6

. . .

Figure 7: Result of eliminating Fees that are not
greater than the Budget for their Campaign

It turns out that regardless of the instance to which it is
applied, the effect of query Q1 can always be implemented
by pruning the tree for each tuple. On the other hand, we
cannot normally do that for query Q2. The difference is
expressed by the concept of “dominance” between nodes of
the schema tree.

5.2 Definition of the Dominance Relation

Definition 5.1. A path in a schema tree from an ances-
tor A to a descendant D is star free if none of the nodes
on the path, with the possible exception of A, is repeated or
required-and-repeated.
1Recall that to become rows of the full Advertiser relation,
these rows are padded with Name = n1 and Email = e1,
but these attributes are irrelevant to our discussion.
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Definition 5.2. An attribute A dominates another at-
tribute B if, in the schema tree, the path from A to the
lowest common ancestor (LCA) of A and B is star free.

Example 5.3. Consider the schema of Fig. 1. The low-
est common ancestor of Budget and Fee is Campaign. The
path from Budget to Campaign has no stars, except for the
star at Campaign. Since Campaign itself is the LCA, its
star is not considered part of the path. Since the path from
Budget to Campaign thus is deemed to have no stars, we say
that Budget dominates Fee. Fee does not dominate Budget.
The reason is that the path from Fee to the LCA includes
the node Clicks, which is starred. Now, consider the two at-
tributes Bid and Fee involved in query Q2. Again the LCA is
Campaign. But now, Bid and Fee each have a star on their
paths to the LCA, namely the nodes WordSet and Clicks,
respectively. Therefore, neither dominates the other.

For a final example, consider nodes Fee and Date. Their
LCA is Clicks. Neither has a star on their path to the LCA;
again, the star at the LCA itself does not matter. Therefore,
Fee and Date each dominate the other.
The key observation to be made from Example 5.3 is: in
any instance of the schema in Figure 1, there is only one
Budget node in any subtree rooted at an instance of Cam-
paign, the LCA of Budget, and Fee. This fact makes query
Q1 implementable by tree pruning. But for Q2 a single in-
stance of Campaign, which is also the LCA of Bid and Fee,
can have multiple Bid descendants and also multiple Fee
descendants. Since awkward combinations of the Bid and
Fee descendants can survive the filtering, it is impossible, in
general, to implement Q2 by tree pruning.

5.3 Tree-Pruning Algorithm for Filter Queries

We can now give an algorithm for modifying the tree in
the way suggested by Example 5.3. The algorithm works
only for certain filter queries, but for this class of queries it
produces a tree whose (full) flattening is the same as what
we get by flattening the tree first, and then applying the
query to the flattened relation. Moreover, in cases where
this algorithm is inapplicable, the result of applying the filter
to the flattened relation cannot, in general, be expressed as
the flattening of a tree that is derived from the original tree
by deleting nodes.

The class of filters allowed by the algorithm is those that
are the AND of one or more comparisons. Each comparison
is either:

1. A comparison involving only one leaf attribute (e.g.,
comparison between the attribute and a constant, or
some user-defined predicate applied to only that at-
tribute), or

2. A comparison involving two leaf attributes, one of which
dominates the other.

If we have the AND of two or more comparisons of these
types, we can apply one comparison at a time. As long as
each comparison can be implemented by tree pruning, the
cascade of pruning steps will result in a tree that satisfies all
of the comparisons. Therefore, we shall describe only how
to prune the tree for a single comparison.

For either type of comparison, there is a node-deletion
step followed by a recursive deletion process for ancestors of
the deleted nodes. We shall start with the initial deletion.
Case 1: If the comparison involves only one leaf attribute
A, delete all leaves in the instance tree that are instances of
A and that do not satisfy the predicate.

Case 2: If the comparison involves leaf attributes A and B,
where A dominates B, let C be the LCA of A and B in the
schema tree. In the instance tree, look at all occurrences of
A and B such that the LCA of these nodes in the instance
tree is an occurrence of C. (Intuitively, these are pairs of A-
and B-nodes that are sufficiently closely related in the tree
that they would be part of the same flattened tuple.) If the
values of the A- and B-nodes in the instance tree are such
that the comparison is not satisfied, then delete the B-node
from the instance tree.

Now, having deleted certain nodes from the instance tree,
we need to propagate these deletions up the tree. In par-
ticular, if we delete a required node, then we have to delete
the entire subtree rooted at its parent. Also, suppose n is a
node in the instance tree, and it has some children that are
occurrences of some attribute A, which is of kind required-
and-repeated. If all these children have been deleted, then
n must also be deleted. These rules can propagate up the
instance tree indefinitely.

Example 5.4. Let us consider some possible comparisons
involving the schema tree of Fig. 1 and the instance tree of
Fig. 2. First, suppose the comparison involves Fee and Date,
and we have chosen to regard Fee as dominating Date (note
that in this case, either could have been chosen as the domi-
nating attribute). The LCA of these attributes is Clicks. In
Fig. 2, the pairs of Fee and Date that have a Clicks node
as LCA are (f1, d1), (f2, d2), and (f3, d3). Note, for ex-
ample, that f1 and d2 are not compared, because their LCA
is ca1, which is not a Clicks instance. Suppose further that
the first two pairs satisfy the comparison, but (f3, d3) does
not. Then, because we have chosen to regard Fee as domi-
nating, we delete the d3 node. Now, we must propagate the
deletion upward. Because Date is a required child of Clicks,
we must delete its Clicks parent, cl3 and its entire subtree.
That deletion causes f3 to be deleted as well.2 We next need
to consider the parent of the newly deleted node cl3. That
parent is the campaign occurrence ca1. However, Clicks is a
repeated child of Campaign, the deletion of cl3 has no effect
on ca1; the latter simply has one fewer Clicks child in the
instance tree.

The tree pruning algorithm can also handle Boolean formu-
las of comparisons. It does so by viewing them as a conjunc-
tion of disjunctions. The tree-pruning algorithm is modified
for each conjunct (that now is not a single comparison but
a disjunction of comparisons) as follows: if, for a certain as-
signment of data leaves at the attributes of the disjunction,
the disjunction is not satisfied then, all these data leaves are
deleted. For filter queries with filters that are Boolean for-
mulas of comparisons, the following theorem states that if
we apply the query Q to flattened data flatten(I) of I then
we get in the output the flattening of the output Q(I) of the
tree-pruning algorithm.

Theorem 5.5. Let I be an instance tree and let flatten(I)
be the flattened relation of I. Then, for any query Q which
uses a filter such that one attribute in a comparison domi-
nates the other, the following holds:

flatten(Q(I)) = Q(flatten(I))

2Note that had we chosen to regard Date as dominating Fee,
we would have deleted f3 first, but then would have deleted
cl3 and d3, leading to the same tree.
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6. Semi-flattening and Repetition Con-
text

In this section we introduce the concepts of semi-flattening
and repetition context and then identify a class of filter and
aggregate queries computed on semi-flattened data. Semi-
flattening is the appropriate model for how Dremel processes
tree-structured tuples. As described in [13] (and in Section 7
here), Dremel data is stored by columns (leaf attributes),
with structure information to indicate how the values in a
column are distributed throughout the tree. When process-
ing a query, the needed columns are read, but at different
rates so a value in one column may be “current” while many
values of another column are read, one-at-a-time. The semi-
flattened representation actually has one row for every step
of this column-reading process. That is, every combination
of attribute values that exists at some time during Dremel
processing is represented by exactly one row of the semi-
flattened table.

6.1 Repetition Context

The definition of semi-flattening is based on the domi-
nance relation plus a new concept, the “repetition context.”
Actually we shall see in this section that if we confine the
query to a single repetition context then flattening and semi-
flattening coincide. Let us motivate these concepts with an
example query that can be implemented by tree pruning but
not by semi-flattening. Here is a query Q; it refers to our
running example schema of Fig. 1:

SELECT CID

FROM Advertiser

WHERE CID <> Word AND Budget <> Fee;

This query can be answered by applying the tree pruning
algorithm to each condition separately. However we shall see
it is not answerable from the semi-flattened relation. The
reason is there are two dominated attributes Word and Fee
among the conditions, but neither of the two dominates the
other. We begin by defining the class of queries for which we
can apply semi-flattening. We say that all attributes should
belong to the same “repetition context” which we define as
follows.

Definition 6.1. The repetition context of leaf attribute
V , denoted CV , is the set of leaf attributes that dominate V .

Example 6.2. In the query Q Word and Fee do not have
the same repetition context. In particular the two contexts
are:

CWord = {Name, Email, CID, Budget, Bid, Word}
CFee = {Name, Email, CID, Budget, Date, Fee}

As we shall see, the fact that these repetition contexts have
an intersection that is not equal to one of them is what makes
the query Q ineligible for the semi-flattening algorithm.

Lemma 6.3. Let V be a leaf attribute and CV its repeti-
tion context. Then the following hold:

1. The attributes in CV can be put in a total order with
respect to the dominance relation. That is, the members
of CV can be put in a sequence V1, V2, . . . , Vm such that
Vi dominates Vj if i < j. Note that there may be several
orders possible, since required or optional children of the
same node can be placed in the sequence in any order.

2. Suppose in some tree schema, V is a leaf and U is a
member of CV . Further, let X be the LCA of V and
U , and let Y be any node in the schema tree on the
path from U upward to X. Then if T is a subtree of an
instance tree that is rooted at an occurrence of Y , then
there is only one occurrence of U in T .

Proof. To prove the first part of the lemma we observe
that we can find all attributes that dominate V if we do
the following: We focus on the path (in the schema tree)
from V to the root, and we call it the primary path. If V ′

dominates V , then the LCA of V and V ′ is on the primary
path, and the path upward from V ′ to the primary path
is star free (except possibly for the node on the primary
path). Thus for two attributes that dominate V , the one
that meets the primary path higher dominates the other. If
they meet the primary path at the same node, then they
dominate each other. The proof of the second part of the
lemma is a consequence of the fact that there is a star free
path from U to Y .

Example 6.4. For the schema in Figure 1, the primary
path for Budget includes Campaign and Advertiser. In the
repetition context of Budget we have Name, Email and CID.

The primary path for Fee includes Clicks, Campaign, and
Advertiser. All leaf attributes belong to the repetition context
of Fee except for the attributes Word and Bid. The reason
is that both Word and Bid encounter WordSet before their
path to the root reaches Campaign (which is on the primary
path of Fee). Actually Word would not be in the repetition
context of Fee even if the schema were modified by making
WordSet required, because Word is itself repeated.

6.2 Semi-Flattening

The properties that render semi-flattening important are
stated formally in lemmas 6.7,6.8 and 6.9 where it is shown
that, for special schemas, unlike full flattening, uses a num-
ber of NULLs in dummy occurrences of attributes that only
depends on the size of the schema, not on the size of the
data tree. The idea of semi-flattening is illustrated in the
following example.

Consider a schema consisting of a root with three children
that are leaves: one required (A), and two repeated (B and
C). Suppose the data tree has value a for A, b1 and b2 for B,
and c1, c2, and c3 for C. We can represent this information
by the following four rows (instead of the 12 rows that would
appear in the full flattening):

a b1 c1
a b2 c2
a NULL c3
a NULL NULL

The way we formed these rows, which we shall see is an
example of semi-flattening, is by focusing on having all com-
binations of a with each of the values of B and C. Since B
and C are repeated, we need the dummy NULL for each.
In fact, since there are fewer B’s than C’s, we used NULL
twice in the B column so each row has a B-value. The com-
binations of B and C are random, in the sense that b1 and
c1 appear in the same row, but we could just as well have
chosen to pair b1 with c2 or c3 instead.

But, now we can not compute a tree query whose filter
has two comparisons, one comparing A and B and the other
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comparing A and C. The reason is that when we delete
rows, because a B value fails to satisfy the comparison, we
may delete a C value that should not to be deleted, just
because it happens to be in the same row.

However, as we will explain next, a quite broad subclass
of tree queries can be computed using semi-flattened data.
Formally, if I is an instance of some schema, we define the
(ordinary) relation s-flatten(I) recursively as follows.

1. If I is a single element of basic type, then s-flatten(I)
is the tuple with a single component; that component
is the value of I.

2. If I is an instance of some tuple type with attributes
A1, . . . , An: Divide the children of the root of I into n
groups, such that the first group is all the nodes that
are occurrences of A1, the second group is all the occur-
rences of A2, and so on. For the ith group, construct a
relation Ri that has attributes for all the leaves of the
schema tree rooted at Ai, as follows:

1. Recursively apply the s-flatten operation to the in-
stance represented by each node in the group for
Ai. However, if Ai is repeated or optional, include
the dummy instance in this set of instances.

2. Take the union of the relation produced for each
instance. The union is the relation Ri.

3. Finally, to get the relation s-flatten(I), take a “hori-
zontal concatenation” of R1, R2, . . . , Rn as follows. The
first row of the result is the concatenation of the first
rows of R1, R2, . . . ; the second row of the result is the
concatenation of the second rows of R1.R2, . . . , and, in
general, the ith row of the result is the concatenation
of the ith rows of R1, R2, . . . . Of course the Rj ’s may
not have the same number of rows. In this case we pad
the short tables with extra rows that contain NULL’s.

4. As an exception to the matter mentioned above for
padding short tables with NULL’s, for each attribute
that has a star free path to the current root (the root
excluded) we keep its value. Since it has a star free
path to the root, it has only one value in all the rows.

The result is the semi-flattening of the given instance.

Example 6.5. Consider the schema and the data in Fig-
ure 8. The values, denoted by lowercase letters, correspond
to attributes with the corresponding uppercase letter.

R

M C*

A B*

r1

m1 c10 c11 c12 c13 c14

a b1 b2

(a) Schema (b) Instance

Figure 8: Schema and Data

The root in the schema has two attributes as children, M
and C. In the instance, the occurrence r1 of the root has one
occurrence of M and five occurrences of C. We get the union
of the five occurrences of C and get the column in Fig. 9(a).
We call this relation FC . Then we consider the instance
subtree with m1 as root. Its relation, which we call FM ,
is shown in Fig. 9(b). When we horizontally concatenate
FM and FC , we get the semi-flattened representation for the
entire instance, which is shown in Figure 9(c).

c10
c11
c12
c13
c14

NULL

a b1
a b2
a NULL

a b1 c10
a b2 c11
a NULL c12
a NULL c13
a NULL c14
a NULL NULL

(a) Table for C (b) Table for M (c) Table for R

Figure 9: Construction of semi-flattening for data
in Fig. 8

Theorem 6.6. The number of rows in the semi-flattening
of instance I is at most equal to the product of the number of
leaves in the data tree multiplied by the depth of the schema
tree and by the number of leaves in the schema tree.

Call a schema linear if the only non star free path is a single
path from the root to a single leaf; we call this leaf the
primary leaf.

Lemma 6.7. For any data tree in a linear schema, full
flattening and semi-flattening coincide.

Proof. The first observation is that when we have a lin-
ear schema in each inductive step of the definition of flatten-
ing (full or semi) we have only one regular relation and the
other children have degenerate relations with only one tuple
for each such relation. The second observation is: The only
difference between the definitions of full flattening and semi-
flattening is: in full flattening we have a cartesian product
whereas in semi flattening we have a horizontal concatena-
tion. In the case of linear schema, the cartesian product
in the definition of full flattening reduces to the horizontal
concatenation in the definition of the semi-flattening.

Lemma 6.8. The schema subtree of any repetition context
is a linear schema.

Lemma 6.9. The number of NULLs that appear in dummy
instances of repeated attributes in semi-flattening is at most
quadratic on the number of nodes in the schema.

Semi-flattening can be used in a limited way for filter queries.
For instance, in Example 6.5, suppose the filter compares at-
tributes A and B, and suppose value b1 is filtered out, then
the output of the filter will be (a, b2, c11). It is still use-
ful information because it give us the correct answer if we
have only attributes A and B in the SELECT clause. This
is also true if the filter is on attributes A and C and we
have only A and C in the SELECT clause. Its usefulness is
made formal in the following lemma which is a consequence
of Lemma 6.7:

Lemma 6.10. If we restrict the semi-flattened data only
to the columns that comprise a repetition context C (in which
case, they can be thought of as being on a linear schema),
then the set of rows that we get is the same as the set of
rows we get if we restrict full-flattened data (of the same
data tree) to repetition context C.

The way we answer queries in context C on semi-flattened
data is: a) first we restrict the columns to only the columns
of C and b) then we answer the query as we explained in
earlier sections. Hence, the above lemma and Theorem 5.5
give us the following theorem:
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Theorem 6.11. Let I be an instance tree and let s-flatten(I)
be the semi-flattened relation of I. Then, for any query Q
which uses a filter in a single repetition context the following
holds:

s-flatten(Q(I)) = Q(s-flatten(I))

6.3 Aggregate Queries

The aggregate functions we consider are SUM, MAX, MIN,
COUNT, AVG and COUNT-DISTINCT, under the follow-
ing constraints:
(a) All aggregated attributes should be dominated by all

grouping attributes, and
(b) The SELECT clause should include only the grouping

attributes and the aggregation(s).
Note that (a) implies that the repetition contexts of the
aggregated attributes have an intersection which contains
the grouping attributes. When these constraints are met in
queries, we call them legitimate aggregate queries.

We give the algorithm to compute an aggregate query with
grouping attribute A1 and aggregated attribute A0, where
A1 dominates A0. The output will be a normal relation
with two attributes, one attribute is the grouping attribute
A1 and the other is a new attribute Aagg which stores the
result of applying the aggregate function on bags, one bag
for each value of A1. This is the description of the tree-
aggregating algorithm that does the computation:

1. Suppose the attribute that is the lowest common ances-
tor of A1 and A0 in the schema tree is A01. For each
value u of A1, let {v1, v2, . . . , } be all nodes in the data
tree with value u, and let {v01, v02, . . . , } be the “corre-
sponding” values of attribute A01 (i.e., v1 has ancestor
v01, v2 has ancestor v02 and so on).

2. For each value u of A1, we form a bag of values of the
aggregated attribute A0. This bag stores all values for
each data leaf which is a) an occurrence of A0 and b)
is a descendant of a node in {v01, v02, . . . , }.

3. Then we aggregate over the values in each bag (which
corresponds to a value of A0) and store the result in
the new attribute Aagg.

Of course, we need not form bags explicitly. We compute
the aggregation function on the fly, except for the average
function, where we need to compute both count and sum on
the fly and divide at the end and the count-distinct function
where we need to compute a set instead of a bag.

Example 6.12. We refer to the data tree in Figure 2 and
we consider the query:

SELECT Budget, SUM(Bid)

FROM Advertiser

GROUP BY Budget;
If bu1 6= bu2, the answer to this query is on the left below.
However, if bu1 = bu2 then the answer to the query is on
the right (it contains only one row):

Budget SUM(Bid)
bu1 bi1+bi2
bu2 bi3

Budget SUM(Bid)
bu1 bi1+bi2+bi3

When there is more than one grouping attribute, there
is at least one grouping attribute that is dominated by all
other grouping attributes; call one of them arbitrarily the
most dominated attribute. We form one bag for each tuple
of values of the grouping attributes. In this case, the com-
putation is led by the most dominated attribute as to which

subtrees we consider for all their aggregated attribute val-
ues to go in the same bag. That is, the tree-aggregating
algorithm considers the lowest common ancestor of the ag-
gregated attribute and the most dominated attribute.

All legitimate aggregate queries can be conceptually com-
puted on semi-flattened data. The way to compute them is:
First NULLs are ignored. Second, for MIN and MAX we ap-
ply standard SQL semantics. However, for SUM and other
duplicate-sensitive aggregate functions, we need to be more
careful. We observe that flattening (full or semi) may use
the same data leaf in more than one rows. E.g., in Figure 10,
we have the semi-flattening of Figure 2 and we observe that
bi1 appears in 3 rows, whereas in an aggregate with Bid as
the aggregated attribute we should take bi1 only once. Thus
we need to do duplicate elimination in that sense. Concep-
tually, this is achieved by adding a new attribute for each
aggregated attribute, we call this attribute Tag. The value
of Tag is either 0 (meaning we ignore this value of the ag-
gregated attribute because it is a duplicate) or 1 (meaning
we include this value). The value of Tag is 1 in a row of
semi-flattened data if the value of the aggregated attribute
in the query is the value of data leaf a and it is the first
row (we conveniently imagine a total order on the rows)
where the value of data leaf a appears in the semi-flattened
data. Otherwise it is 0. Thus, when we compute the ag-
gregate function, we compute it on two grouping attributes:
the grouping attribute we started with and the additional
(rather trivial) one, which we constrain to have value equal
to 1. This does not introduce any additional complication,
because, as we will explain in Section 7, we store the data
in columnar storage in such a way that when we retrieve
them it is easy to treat this extra attribute implicitly with-
out having it being materialized.

Example 6.13. We compute aggregate query of Exam-
ple 6.12 on semi-flattened data. Semi-flattened relation of
the data tree in Figure 2 is in Figure 10. We do not record
all the tags (in the first column here), only the one that refer
to the aggregated attribute in our query, i.e., for Bid.

Tag CID Budget Bid Word Fee Date

1 i1 bu1 bi1 w1 f1 d1
0 i1 bu1 NULL NULL f1 d1
0 i1 bu1 bi1 w2 f2 d2
0 i1 bu1 NULL NULL f2 d2
0 i1 bu1 bi1 NULL NULL NULL
1 i1 bu1 bi2 w3 f3 d3
0 i1 bu1 NULL NULL f3 d3
0 i1 bu1 bi2 NULL NULL NULL
0 i1 bu1 NULL NULL NULL NULL
1 i2 bu2 bi3 w4 NULL NULL
0 i2 bu2 bi3 w5 NULL NULL
0 i2 bu2 bi3 w6 NULL NULL
0 i2 bu2 bi3 NULL NULL NULL
0 i2 bu2 NULL NULL NULL NULL

Figure 10: Semi-flattening for the data tree in Fig. 2;
the Tag is with respect to Bid.

If bu1 6= bu2, then for grouping-attribute value bu1 we
use the first and the third rows and have as a result of the
aggregation b1+b2. For the value bu2, we use only the fourth
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column and have as a result b3. If, however, bu1 = bu2, then
we have only one tuple in the result with values bi1+bi2+bi3.

6.3.1 Filter And Aggregate Queries
So far we have discussed aggregate queries without filters.

We can also have a filter in the query but we allow com-
parisons among the grouping attributes only. Because of
Lemma 6.3 any comparison is guaranteed to be among two
attributes where one of them dominates the other attribute.

The computation algorithm now, applies first the filter by
using the tree pruning algorithm and in the output data tree
applies the tree-aggregating algorithm to obtain the final
output. Semi-flattening can be used to compute aggregate
queries with filters. The following theorem is a straightfor-
ward consequence of the definitions of the algorithm for com-
puting aggregates and semi-flattening. ByQ(I) we mean the
output of the query when we apply the tree pruning followed
by the tree-aggregating algorithm on the data tree.

Theorem 6.14. Let I be an instance tree and s-flatten(I)
be the semi-flattened relation of I. Then, for any legitimate
aggregate-and-filter query Q, the following holds:

Q(s-flatten(I)) = Q(I)

7. Efficient Data Storage and Retrieval
Dremel is designed to deal with relations that have many

attributes, only a few of which are referenced in any one
query. In such an environment, columnar storage is the
appropriate structure, and Dremel is optimized for when the
data data is stored column-wise. We explain in this section:
• How Dremel stores a data tree in columnar storage in

a space-efficient way.
• How to retrieve the data from the columnar storage to

implement legal Dremel SQL queries.
We shall refer to a schema and its instances by its sequen-

tial description, thus maintaining an order that will be im-
plicit when we store the data in columnar storage. Thus the
schema in Figure 8 is referred to as R{M{A,B∗}, C∗}. The
data in Figure 8 is referred to as R{M{A : a,B : b1, b2}, C :
10, 11, 12, 13, 14}

For a given data schema, we view columnar storage as a
number of lists (it is rather a stack because of the way it
is retrieved), one list for each column/attribute. Given a
data tree over the schema, we store the values of the leaf
attributes in the appropriate column/list. The columns are
synchronized. This is not sufficient information to retrieve
the data tree for the purpose of computing queries in the
class we described. So, together with the value of each leaf
node we store its repetition and definition levels. They tell
us how to traverse the data tree to go from an occurrence
of leaf attribute A to its next occurrence in the tree. E.g.,
in Fig. 2, the next occurrence of attribute Word after w2
is w3. In order to go from w2 to w3 in the data tree, we
have to go up to ca1 (which is an occurrence of Campaign,
so we say that the repetition level of w3 is Campaign), and
then travel down to s2 and w3 is a child of an occurrence of
WordSet.

7.1 Repetition Level

• The repetition level of a data leaf v is the attribute name
of the lowest common ancestor of v and the previous
data leaf stored it its column (i.e., the previous leaf with

CID Budget Bid Word Fee Date

i1 r bu1 r bi1 r w1 r f1 r d1 r
i2 Ad bu2 Ad bi2 Ca w2 WS f2 Ca d2 Ca

bi3 Ad w3 Ca f3 Ca d3 Ca
w4 Ad
w5 WS
w6 WS

Figure 11: Columns and repetition levels

the same attribute as v). By convention when a leaf is
the first for its attribute in the record, its repetition
level is root.

Example 7.1. For the tree in Figure 2, the values are
stored in 6 columns, for CID, Budget, Bid, Word, Fee, and
Date. The column CID stores the values i1, i2, the column
Budget stores the values bu1, bu2, etc. Columns and repeti-
tion levels are shown in Fig. 11 (we use r for root, Ad for Ad-
vertiser, etc.). E.g., the repetition level for w2 is WordSet
because the LCA of w2 and w1 (its previous element in the
column) is s1 (an occurrence of WordSet).

Theorem 7.2. The repetition level suffices to reconstruct
the data tree if for each occurrence of an attribute, there is at
least one occurrence (in the data tree) for each of its children
(in the schema tree).

7.1.1 Producing the Semi-flattening
When the conditions of Theorem 7.2 are met, we can build

semi-flattening of a data tree stored in columns by using only
the repetition level. We describe here the algorithm.

Each time we read the next element from a column, we
will say that this column makes a move. We produce a
semi-flattening of a relation from its columns by selecting,
for each row produced, from which columns we should read
a new value and from which columns we should take the
current value. There is a reader that gets a new row of the
semi-flattening whenever it is called upon to do so by the
query-processing engine. The algorithm by which the reader
decides whether to use the current value from a column V or
to move to the next value in its column is as follows:

1. As long as there is a column dominated by V whose
current repetition level does not go above or at the rep-
etition level of V , the reader for V remains in the same
place and outputs in each constructed row the current
value of V .

2. Otherwise, if all its dominating attributes move to cur-
rent repetition level, it goes to step 3 below. If not, it
contributes NULLs (and repeats this step).

3. If V is a required attribute, the reader first produces an
extra row with the current values in column V and in all
the columns dominating V , whereas all other columns
have NULL’s. If V is not required it does not produce
this row. In either case, the reader then moves to the
next value in the column for V .

Example 7.3. We consider the data tree in Fig. 2. For
better insight, we confine ourselves to one repetition context,
the repetition context of Word. Then we can ignore Fee and
Date and we get the semi-flattening of the rest, shown in
Fig.12 (N stands for NULL) which also is part of Fig. 10.

Figure 12 has the attributes of the repetition context in the
“correct” order as concerns dominance; i.e., CID dominates
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CID Budget Bid Word

1) i1 r bu1 r bi1 r w1 r
2) i1 bu1 bi1 w2 WS
3) i1 bu1 bi1 N
4) i1 bu1 bi2 Ca w3 Ca
5) i1 bu1 bi2 N
6) i1 bu1 N N
7) i2 Ad bu2 Ad bi3 Ad w4 Ad
8) i2 bu2 bi3 w5 WS
9) i2 bu2 bi3 w6 WS

10) i2 bu2 bi3 N
11) i2 bu2 N N

Figure 12: Rows generated, in order

Budget, Budget dominates Bid, and Bid dominates Word.
The repetition levels are also shown in Fig. 12. We will show
how to use repetition level to produce the semi-flattening in
Fig.12. The first row in Fig.12 is formed by the top elements
in each column.

Producing the Second Row

The repetition level for each of the second elements in columns
Bid and Word stays below3 Advertiser, which is the repeti-
tion level of the second element in columns CID and Budget.
Thus these two columns stall (according to step 1 of the al-
gorithm) and emit i1 and bu1, respectively, the second time
the reader is called. The second element in column Word
has repetition level WordSet, which is below the repetition
level of the second element in column Bid (which is Cam-
paign). Hence for the second row, column Bid stalls too and
emits bi1. Column Word is allowed by steps 1 and 2 of the
algorithm to go to step 3 and make a move. Thus second
row is formed.

Producing Rows 3 and 4

w3’s repetition level is Campaign, and so is the repetition
level of bi2. So, since Bid dominates Word, the column
Bid can now make a move to bi2 because all its dominated
columns (actually, only the one column Word) have repeti-
tion levels at or above its own repetition level (step 1). Bid
is required and it forms the extra row before moving to the
next element (this is row 3). Row 4 includes the new val-
ues after the moves that are allowed at this stage. Columns
CID and Budget still stall since the repetition levels of their
next elements (i2 and bu2) are above Campaign (which is the
current repetition level of some of its dominated attributes).

Producing Rows 5, 6 and 7

Next, all current (i.e., for data values i2, bu2, bi3 and w4)
repetition levels are at or above Advertiser, so columns CID,
Budget and Bid move to their next element. So does column
Word. Columns 5 and 6 are the extra columns created by
the move of CID, Budget and Bid (they are all required at-
tributes). Column 7 contains the new values.

Producing Rows 8, 9, 10 and 11

Rows 10 and 11 are the extra rows. Rows 8 and 9 are formed
by Word making one move for each column and CID and
Budget stalling.

3we use “below” and “above” to mean descendant and an-
cestor respectively

Interesting observation: Observe how in each row in Fig.12,
the repetition levels from left to right are in non-ascending
order, e.g., in row 1, we have (r,r,r,r), in row 2 we have
(r,r,r,ws), in row 3 we have (r,r,Ca,-), etc. This is always
the case if we confine ourselves to a single repetition context.

Finally, the restriction in step 2 of the algorithm only
manifests itself if we go beyond a single repetition context.
E.g., imagine that w3 had five siblings. It that case, for five
rows, columns Fee and Date would emit NULL.

We say that a data leaf v covers another data leaf u if
the attribute V for v dominates attribute U for u, and data
nodes u and v are descendants of the same occurrence of
their LCA in the schema tree. When a data leaf covers an-
other data leaf, the repetition level of the former is the same
as or above the repetition level of the latter. For instance,
b1 covers w1 and w2.

The algorithm we presented to produce semi-flattening
from columnar storage only retains the covering relation. It
does not care, for example, to show any interrelationship
between data leaves for Fee and Word, because in the class
of queries supported by semi-flattening, we do not have a
query where values of Word and Fee are compared or where
Word is the grouping attribute and Fee is the aggregated
attribute.

Finally, a note about the functionality of the extra row
that the algorithm creates before a column makes a move.
An example of such an extra row in Fig. 12 is (i1 bu1 NULL
NULL). Suppose this row did not exist. Then if neither
bi1 nor bi2values of the Bid attribute satisfy the filter, the
values i1 and bu1 would not appear in the result of the query.
This is wrong according to the tree-pruning algorithm. It is
worth mentioning here that this extra row is in accordance
with discussion Sec. 2.3 where we mentioned how we treat
NULLs (and why we treat them this way). The correctness
of the algorithm is a consequence of the lemma:

Lemma 7.4. If leaf v covers leaf u in the data tree, then
the repetition level of u is either the same as the repetition
level of v, or a descendant of the repetition level of v.

7.2 Definition Level

The definition level is a second parameter stored along
with the repetition level. Its purpose is to avoid having to
store NULL’s explicitly in the columns. The definition level
tells how many subtrees between the current value and the
previous value of the same column have zero occurrences.
We must specify the root of these subtrees for attribute A.
The root, denoted LCAA, is the “closest” nonleaf attribute
to A which has a descendant that dominates A.

Lemma 7.5. Let B be an attribute that dominates A. Let
LCA(A,B) be the LCA of B and A. Suppose a data leaf v of
A and a data leaf u of B occur within (i.e., are descendants
of) the same occurrence x of LCA(A,B). The repetition
and the definition levels are sufficient to tell that v and u
are descendants of the same occurrence of LCA(A,B).

Producing the Semi-flattening
The algorithm in Sec. 7.1 is now modified so that whenever
a column A is due for a move, it stalls for as many moves of
star-free descendants of LCAA as tells the definition level of
A. Given a query Q, we call the attributes appearing in the
query relevant attributes of Q. Given a semi-flattening of an
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instance I and a query Q, suppose we delete from the semi-
flattening all columns of attributes that are not relevant to
Q. What remains may contain duplicate rows, which we
delete and obtain the relevant semi-flattening of Q.

Theorem 7.6. The data retrieval from columnar storage
(of a data instance I) as described in this section for the
purposes of computing a query Q requires a number of data-
value retrievals that is at most equal to the number of rows
in the relevant semi-flattening of Q multiplied by the number
of relevant attributes.

Finally, it is easy to observe that by the techniques ex-
plained in this paper, we can handle queries on multiple
repetition contexts as long as these contexts are pairwise
disjoint.

Experiments We run experiments to compare the pro-
cessing time of a query on flattened data versus semi-flattened
data. First, we use artificial schema and data: the schema
of Fig. 1 and the data tree of each record is of rather small
size, similar to Fig. 2. We run: a) Filter query Q1 in Sec 5.1.
The ratio of the processing times was 1.3:1. Observe that
for the relevant attributes of this query flattening and semi-
flattening coincide. b) Aggregate query like in Example 6.12
only with two aggregated attributes. The ratio is 4:1. The
second set of experiments uses Google logs data and query is
from Google production: we had a larger schema where the
tree is of depth 6 and some of the attributes having as many
as a few tens children. Each record had often as many as a
few hundreds data leaves and rarely a few thousands. Then,
depending on the number of repetition contexts we have a
remarkable improvement (as expected): a) 2 contexts, ratio
is 7:1, b) 4 context, ratio 25:1, c) 5 contexts, ratio 250:1.

8. Conclusions and Related Work
We presented the data model and query language of Dremel,

a query engine used in Google. We defined the conditions
for queries to be legitimate, introducing, for this purpose,
the dominance relation. Dremel was first discussed in [13]
where the focus was on the systems part of the engine. The
schema and the data tree in Dremel are described as protocol
buffers. The data tree is stored in columnar storage asso-
ciating with each data value the two levels. When a query
is issued, the data of the relevant (to the query) columns
are retrieved in semi-flattening format, and a standard SQL
evaluation algorithm is applied to compute the query. Thus
the syntax of the Dremel language is SQL syntax, the eval-
uation algorithm on the data tree is the tree-pruning and
the tree-aggregating algorithm, but the actual computation
is carried out as standard SQL computation.

There is a large body of work about tree-like structures,
storing and querying them. Much of it stems from XML doc-
uments, and the query languages examined are fragments of
XQuery, not SQL. Dominance relation and its manifesta-
tion in allowing semi-flattening are introduced for the first
time in this paper. A flattening technique is proposed in
[12] to map XML data into relational tables. [19] builds
on[12] and proposes three approaches to map efficiently an
XML document to a relational database. Other approaches
have been used, e.g., [14] is native algebraic based. As con-
cerns columnar storage, [9] supports a uniform interface for
querying efficiently both the structure and the data values
for highly regular data. Techniques to avoid storing NULLs
are developed.
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