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ABSTRACT
Compression has historically been used to reduce the cost of stor-
age, I/Os from that storage, and buffer pool utilization, at the ex-
pense of the CPU required to decompress data every time it is
queried. However, significant additional CPU efficiencies can be
achieved by deferring decompression as late in query processing
as possible and performing query processing operations directly on
the still-compressed data. In this paper, we investigate the benefits
and challenges of performing joins on compressed (or encoded)
data. We demonstrate the benefit of independently optimizing the
compression scheme of each join column, even though join predi-
cates relating values from multiple columns may require translation
of the encoding of one join column into the encoding of the other.
We also show the benefit of compressing “payload” data other than
the join columns “on the fly,” to minimize the size of hash tables
used in the join. By partitioning the domain of each column and
defining separate dictionaries for each partition, we can achieve
even better overall compression as well as increased flexibility in
dealing with new values introduced by updates. Instead of decom-
pressing both join columns participating in a join to resolve their
different compression schemes, our system performs a light-weight
mapping of only qualifying rows from one of the join columns to
the encoding space of the other at run time. Consequently, join
predicates can be applied directly on the compressed data. We call
this procedure encoding translation. Two alternatives of encoding
translation are developed and compared in the paper. We provide
a comprehensive evaluation of these alternatives using product im-
plementations of each on the TPC-H data set, and demonstrate that
performing joins on encoded and partitioned data achieves both su-
perior performance and excellent compression.

1. INTRODUCTION
Most commercial database management systems (DBMSs) cur-

rently provide some form of compression to reduce the volume of
data stored, saving both on the cost of the storage medium (usually
disk) and on the time to access data [1, 23]. Many of these systems
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compress the data via dictionary encoding [4], in which each value,
or portion of a value, of a column that would normally consume
many bytes is replaced by an encoded value requiring only a few
bits. For example, the 10-byte value “California” or its 2-byte ab-
breviation “CA” can be encoded in a 6-bit value “000101,” because
all 50 U.S. states can be encoded in 6 bits, and California is the
5th state alphabetically. Unlike text-oriented compression schemes
such as gzip [6], which require de-compressing an entire page to
access any part of it, encoding column values via dictionaries pre-
serves the column and row boundaries, so that individual rows can
be decompressed. Dictionaries may draw their values from either
an entire table [8], an individual column [14, 17, 18], or a storage
unit such as a page or extent [8, 13, 17].

Today’s dictionary-encoded systems typically de-compress the
data on a page as soon as it has been read into main memory, so
that query processing can be readily performed on the unencoded
data. For example, the encoded 6-bit value of “000101” would be
expanded back to the original 10-byte value “California” or perhaps
the 2-byte value “CA,” so that predicates could be applied to it,
sorting and/or grouping could be performed, and expressions such
as concatenation or substring could be computed. Consequently,
the space savings of compression enjoyed by the I/O system are
unfortunately not exploited by the internal data structures in main
memory, cache, and registers that perform query processing.

Recently, however, a few DBMSs have begun to realize substan-
tial performance improvement by frugally keeping values encoded
and performing query processing on the encoded values [1, 7, 10,
15, 18, 22]. In the above-mentioned example, a predicate such as
State = “California” can be applied on the encoded value as State
= 000101. Moreover, the compact encoding of the values permits
loading multiple values for a column into a register, so that a pred-
icate can be applied simultaneously to all those values in a vector
comparison [9, 12, 18, 22].

Intuitively, join predicates also benefit from operating on en-
coded data. For example, hash joins find matching values of join
columns via a hash table. Join column values from the “build”
table of the join are hashed to find a location in which they are
stored, and similarly the join column values from the “probe” side
are hashed to see if there is a match from the build side. So long as
the columns to be joined have the same encoding, the original, un-
encoded values of the join columns will find a match if and only if
the encoded values match. Performance of a hash join is dominated
by the random accesses needed to probe the hash table. Storing en-
coded values in this hash table reduces its size and allows it to fit
better in the memory hierarchy, thus improving probe performance,
reducing the need to spill the hash table to disk, etc.

For each join key (join column(s)), a hash table typically also
stores a “payload,” which is composed of so-called “auxiliary”
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columns that are used later in the query. Clearly these auxiliary
columns in the payload will consume less space in the hash table
when they too are retained in encoded form. Even the results of
expressions may benefit from encoding data “on the fly,” i.e., by
re-encoding the results of expressions as they are evaluated.

1.1 Contributions
This paper describes how joins are processed on encoded data in

the Informix Warehouse Accelerator (IWA), a main-memory accel-
erator to the disk-based Informix database server product, packaged
together as the Informix Ultimate Warehouse Edition (IUWE).1
IWA reads selected row-organized data that is stored on disk by
the Informix database server, encodes each column independently,
and stores that data in the memory of IWA using a PAX-like page
format [2]. A query posed to Informix is automatically routed to
IWA if the data referenced in that query is replicated in IWA; oth-
erwise the Informix data server executes on the original data. See
[3] for an overview of the IWA system.

During query processing, joins are performed on the encoded
columns without having to have a common dictionary between
those columns. Instead we translate the encoded value of one col-
umn to the encoded value of the other before we scan the second
table. Moreover, this translation supports a mix of compressed and
uncompressed values within a column. This approach provides us
with better compression and more flexible reorganization as the
data is incrementally updated, while still executing the join with
excellent performance.

Specifically, the contributions of this paper include:

1. We justify the benefit of performing joins on encoded columns.
2. We introduce a novel “on-the-fly” encoding scheme for payload

columns, using a new hash table data structure that assigns sta-
ble bucket positions to inserted values.

3. We explore the problem of adding values not found in the origi-
nal dictionary, and the benefit of partitioning the domain to deal
with this problem.

4. We describe a technique for performing hash joins on encoded
columns, each of which may have its own dictionary. For this
purpose, we propose a notion of encoding translation and de-
velop two variants: eager and deferred translations.

5. We conduct extensive experiments using IWA on the TPC-H
data set to demonstrate the advantages of our approach.

IWA has been generally available since March 2011 on the Linux
operating system on Intel processor-based servers; the IBM AIX
operating system on IBM POWER processor-based servers; the
HP-UX operating system on Intel Itanium processor-based servers;
and the Oracle Solaris operating system on Oracle SPARC servers.
When running on Linux, the database server and the accelerator
can be installed on the same or different computers, communicat-
ing via TCP/IP. During query processing, each query is executed in
parallel by worker processes on IWA, and merged and returned to
Informix by a coordinator process. When both Informix and IWA
are running on the same machine, the coordinator and worker nodes
simply become processes on the same machine that communicate
via loopback. Informix and IWA can be on distinct SMP hardware,
with IWA running both the coordinator and worker processes on
the same hardware. IWA can also be deployed on a blade server
for increased capacity and performance, such as Intel Xeon-based
IBM servers supporting up to 80 cores and 6 TB of DRAM. Nodes
1These techniques were also used in the IBM Smart Analytics Op-
timizer for DB2 for z/OS V1.1, a predecessor product to today’s
IBM DB2 Analytics Accelerator for DB2 for z/OS.

on IBM blade servers support up to 4 sockets and up to 640 GB
of DRAM. Since both the number of cores and memory capacity
of the hardware is increasing rapidly, the IUWE software has been
packaged flexibly enough to run directly on hardware or in a vir-
tualized/cloud environment. Each database server can have zero,
one, or more IWAs attached to it.

1.2 Outline
The rest of this paper is organized as follows. Section 2 explains

the basics of hash joins. Sections 3 and 4 then go into encoding, for
join columns and payload columns respectively. Sections 5 and 6
present our approach of partitioning a join column and two variants
of encoding translation. In Section 7, we present the results and
analysis of our experiments. We survey related work in Section 8
and conclude in Section 9.

2. JOINS
IWA uses hash joins as its primary join method. A hash join is

composed of a build phase and a probe phase. Below we describe
the high-level procedure of joining one or more build tables with
one probe table.

During the build phase, one or more tables are each scanned,
applying predicates local to that table. Qualifying rows add their
join-column values to a hash table for that table. Optionally, pay-
load columns that will be used later in the query may also be in-
serted into the same bucket of the hash table with its join-column
values. This procedure is repeated for each build table to which the
probe table is joined.

During the probe phase, the probe table is scanned, applying any
predicates local to that table and then evaluating each join pred-
icate by probing the corresponding hash table that was built for
each build table, to check if each join-column value exists. If it
does, the payload columns will be fetched from the hash table to
do subsequent grouping and aggregation.

Although the encoding and partitioning techniques presented in
this paper are applicable generally, it is convenient and clearer to
present our encoded join technique using the terminology of star
schemas common in OLAP systems [16], in which one or more
dimension tables act as the build tables to be joined with a very
large fact table as the probe table. Similarly, the techniques of this
paper are not limited to joins between primary key (PK) and foreign
key (FK) columns, although we will find it clearer to reference the
join columns that way.

Example 1. Figure 1 shows an example of processing a simple
join query between LINEITEM and ORDERS. Local predicates are
specified on O_OrderDate and L_ShipDate, and grouping is
done by the values of O_OrderDate. Thus, the hash table from
ORDERS contains the values of the PK column O_OrderKey and
the payload column O_OrderDate of the qualifying rows. This
hash table is passed to the fact-table scan. �

For snowflake schemas having more than one level of dimension
tables, this technique may be applied recursively, starting from the
outermost dimension tables and joining inward. In such cases, a
table which is neither outer-most nor inner-most in the schema acts
as both a fact table and a dimension table in successive joins.

3. ENCODING JOIN COLUMNS
Past work on join processing over compressed data either fo-

cused on nested loop joins [1], which are not suitable for busi-
ness intelligence (BI) queries, or used simple approaches such as
encoding both join sides in exactly the same way, which sacrifice
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scan(ORDERS)

σ(O_OrderDate …)

scan(LINEITEM)

σ(L_ShipDate …)

σ(L_OrderKey IN …)

Look up the values of 
O_OrderDate

Group by, Aggregation

O_OrderKey O_OrderDate

Dimension

Fact

Hash Table

Figure 1: Example of star-join processing.

compression performance [7]. In this section, we will delve more
deeply into performing hash joins on compressed values, explor-
ing both the advantages and challenges, as well as practical tech-
niques for dealing with unencoded values and different compres-
sion schemes between the different join columns.

3.1 Why Join on Compressed Values?
Since joins consume the bulk of query processing time in most

BI queries, it seems almost obvious that keeping values compressed
while performing joins will significantly improve query perfor-
mance. By occupying less space, compressed values consume
fewer resources, such as space in hash tables, thereby reducing
cache-line misses. This applies to both join columns as well as
payload columns. We will address these two types of columns sep-
arately. Additionally, keeping values highly compressed permits
packing multiple values into a register and comparing them with
a single instruction, achieving increased parallelism through single
instruction, multiple data (SIMD) operations such as value compar-
isons [18].

3.2 Types of Compression
Columns in IWA are compressed by one of a few encoding

schemes. Dictionary encoding, in which each value is replaced by
its code, is used for columns with low cardinality and at least some
repetitions (and preferably some skew in those repetitions), such as
FK columns. Columns having no repetitions, such as a PK column,
will gain nothing from dictionary encoding and are usually com-
pressed with minus encoding, which stores the difference of a value
from a given entry in the dictionary. For string fields, we use a vari-
ant that applies XOR instead of difference, called prefix encoding.
Minus encoding still requires a dictionary with at least one element.
For example, the values 1543, 1540, 1550, 1547, and 1539 can be
more compactly represented (in just 4 bits) as the differences 4, 1,
11, 8 and 0 from a single dictionary value, 1539. Prefix encoding
removes a common leading portion and works well on URLs, inte-
gers with leading zeros, or other application-specific commonality
such as ‘CUST0004’, ‘CUST0047’, ‘CUST0101’, etc.

We considered but discarded many other compression methods.
Run-length encoding (RLE) counts the number of successive values
that are identical, so is most effective when instances are ordered,
as in C-Store’s projections [20]. Abadi’s “Null Compression” [1]
is a special case of RLE. Bit-vector encoding is effective only for
extremely low-cardinality columns. Lempel-Ziv (LZ) compression
works only when rows need not be accessed individually, e.g., for
compressing entire pages.

3.3 Matching Encoded Values
The encoding schemes described above assign a unique code to

each encoded value. Thus we can apply the join predicate on codes
instead of on values. But the join columns on both sides of the join
must be encoded identically. The basic idea for performing joins on

encoded values is quite simple: if the same compression mapping
M is applied to two values V1 and V2 that are equal, then their
encoded values are equal: M(V1) = M(V2). When the mapping
M is an isomorphism, then the converse is also true. That is, if the
encoded values M(V1) and M(V2) are equal, then the unencoded
values are equal: V1 = V2.

There are three options for realizing this identical encoding:

1. Encoding join columns identically on disk (per-domain en-
coding): It seems natural that two values V1 and V2 being tested
for equality, which are drawn from different columns, should be
encoded with the same mapping M . Abadi et al. [1] and many
previous authors have assumed this simple per-domain encod-
ing. Identically encoding both columns to be joined is ideal for
join speed, because the two columns can be compared directly.
But we found this approach to be unworkable. First of all,
would we know a prioi all the columns a user would join
on? DBAs do have a best practice of specifying referential in-
tegrity (RI) as constraints or as hints. Say that we have RIs from
the columns OrderDate and ShipDate of a PRODUCT ta-
ble to a DATE dimension. The RIs are suggestive of a join,
but which column’s distribution should we pick for deriving the
common encoding? The “hub” of the RIs will be a primary
key, effectively making all the codes fixed length, since the key
likely has a uniform distribution. Section 5.2 describes many
reasons why IWA uses variable encoding lengths.

2. Translating both join columns to a new common encoding
at runtime: This is the most flexible option, because we can
choose an encoding that is best for the subset of values that ac-
tually participate in the join, potentially compressing even bet-
ter than the original encoding of those columns. But we do pay
for the CPU cost of decoding and re-encoding values on both
columns. For numerical columns, we usually employ minus en-
coding, and it is fairly cheap to decode and re-encode since we
do not need to access the dictionary for every single code we are
decoding. With dictionary encoding, decode involves a random
access and re-encode involves a hash table lookup, so are quite
expensive to do on both sides of the join.

3. Encoding join columns independently and translating one
join column to the encoding of the other at runtime (per-
column encoding): As part of join processing, we can unify
the encoding of the join columns. In a hash join, we can either
convert the build side to the encoding used in the probe side,
or vice-versa. We chose this option for IWA, which enables us
to independently encode columns, because the values present in
each column are typically very different, even though they are
drawn from the same domain. We call this per-column encod-
ing. The downside to per-column encoding is that we must per-
form encoding translation. In IWA, we translate from the en-
coding of the build side to the encoding of the probe side, which
gives reduced translation cost for the usual case where the build
side is smaller. Translation is formally defined in Definition 1,
i.e., MFK(VFK) == MFK(MPK

−1(MPK(VPK))).

Definition 1. Consider two encoded values Ei = Mi(Vi) and
Ej = Mj(Vj) from different columns compressed with the map-
pings Mi and Mj , respectively. M−1 denotes de-compression
using the mapping. Encoding translation is performing either
Mj(M

−1
i (Ei)) or Mi(M

−1
j (Ej)) to be able to compare Vi and

Vj in the same encoding space. �

In this paper, we will show that it is possible to achieve
lightweight encoding translation while exploiting the benefits of
per-column encoding. Before we discuss encoding translation in
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detail, however, we first introduce “on-the-fly” encoding of pay-
load columns and the need for partitioning each column’s domain.

4. ENCODING PAYLOAD DATA: ON-THE-
FLY ENCODING

Need for On-the-Fly Encoding
Our focus so far has been on encoding of join columns. But what

about the payload columns, which are the columns used later in the
query, such as for grouping? The payload of a join typically has
columns from the dimension tables that are used in grouping. For
example, a query to find the average order price grouped by the
customer city and the product brand will pick those columns from
joins with the CUSTOMER and PRODUCT dimensions. The join
key is usually just an integer, whereas the payloads are often wider
strings. Keeping them compressed reduces the size of the hash
table for both join and group-by: only after applying the HAVING
predicates we need to decompress them.

The original encoding of a payload column is insufficient to
achieve this goal, for the reasons listed below. Thus, IWA re-
encodes the payload values on-the-fly (OTF).

1. Updates: It is unrealistic to assume that all values will be en-
codable with a fixed dictionary. Over time, new values for a col-
umn get inserted, and they will be stored unencoded. So each
payload column has at least two representations—encoded and
unencoded—and potentially more if the distribution has skew.
But hash table data structures do not directly handle variable-
length payloads2. So we either have to pad them all to unen-
coded values or have 2N different hash tables where N is the
number of payload columns. This issue arises for the join keys
too, but it is easier to handle since N is small (often 1).

2. Expressions: OTF encoding can be applied not just to columns,
but also expressions. For example, grouping is often per-
formed on a coarsified form of a dimension column, such as
MONTH(Shipdate). Normally this expression result would
be left unencoded, but with OTF encoding we can exploit the
small cardinality of months and encode it very compactly.

3. Correlation: OTF encoding can also exploit correlations. It
is common to group on correlated columns, such as City,
State, ZIPCode, and Country. During load, these
columns will be encoded individually. But at query time, we can
exploit the correlation among them to produce a tighter code.

4. Predicates: Local and/or join predicates will likely reduce the
cardinality of each column, allowing a more compact represen-
tation in a reduced dictionary. For example, predicates on the
month and year would likely reduce the cardinality of all re-
maining date columns by an order of magnitude or more.

OTF Mapping Table with Stable Hash Positions
OTF encoding is a mapping from a value to a fixed-length code,

and we need to construct this mapping in a single pass over the
input (i.e., as part of the operator pipeline for the build side of the
join). IWA uses a novel OTF mapping table to construct this map-
ping. As we encounter unencoded values, they are inserted into
this mapping table. If a new value (one not seen until then) is en-
countered, an insert call adds it to the mapping table and outputs
an OTF code, which is actually an index into the bucket where the
value was inserted. If an existing value is encountered, an insert
call returns the index of the existing value.
2We did not use a pointer to a heap object because that costs an-
other pointer as well as more fragmentation in the memory pool
and incurs latch contention in the memory allocator.

We cannot implement this mapping table as a straight hash table,
because the OTF code assigned to a value can never be changed,
even if the hash table is resized. So the OTF mapping table is im-
plemented as a list of hash tables, each double the capacity of the
previous. Each hash table is a standard (linear probing) hash table
holding the unencoded values. The OTF code assigned to a value
is calculated from the hash bucket it falls into, cumulatively adding
the capacity of all earlier hash tables and the size of the original
dictionary itself.

Example 2. Consider a mapping table made up of three hash
tables of capacity 1024, 2048, and 4096 entries. Suppose that the
original dictionary has 600 entries. Then, a value that goes into the
bucket 40 in the third hash table will get an OTF code 600+1024+
2048 + 40 = 3712. �

The hash tables within the mapping table are implemented as
lock-free data structures. The list of hash tables is a lock-free array
of pointers, and concurrent inserts to the hash tables use compare-
and-swap on flags (one flag per bucket) for synchronization.

Compaction of the OTF Code
This OTF code is initially sized to the log of the maximum num-

ber of unencoded values we might encounter. IWA maintains this
upper bound as unencoded values are inserted. For OTF encoding
over expressions, we use a 64-bit number. After the build side of
the join has been fully scanned and all possible unencoded values
have been seen, we know exactly how wide the OTF code needs
to be. So we can revisit the values and “compact” the OTF codes
further.

DB2 with BLU acceleration [18] also employs OTF encoding.
Here, the build side of hash joins uses partitioning, so we have an
opportunity, after the input has been partitioned, to do this com-
paction as part of entering the payloads into the join hash table
itself. Each OTF hash table is just a bitmap (there is no payload),
so this compaction requires only a simple linear scan of the bitmap
to compute a prefix population count for each occupied bucket, and
then a scan over the partition with lookup into the OTF hash table
to reassign OTF codes.
Performance Improvement by OTF Encoding

To investigate the impact of the OTF encoding on query perfor-
mance, we ran queries obtained from real customer workloads that
reference both join and payload columns. The queries were exe-
cuted with the OTF encoding enabled and disabled, respectively,
on a 100GB TPC-DS data set. Figure 2 shows that OTF encoding
improved the performance of all queries—by 17% on average and
up to 52%.
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Figure 2: Impact of the OTF encoding.

5. PARTITIONING COLUMN DOMAINS
This section describes why and how IWA partitions data before

encoding and storing it.
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5.1 Problem of Uncompressed Values
Any compression scheme using a dictionary has a fundamental

challenge: how to deal with new values not present when the dic-
tionary was created. Two common solutions are:
1. Leave Room: One common approach to dealing with new val-

ues is to leave sufficient room in the initial dictionary for future
values. However, this has a number of problems associated with
it. How much space is enough? Overestimating the number of
future values means that bit combinations will be wasted. For
example, doubling the dictionary size from N values to 2N
values adds one bit to all values, which would always be 0 for
values in the initial dictionary and would be unnecessary if no
new values ever occurred. Conversely, once N values have
been added, there is no way to add additional values without
re-encoding every value. Furthermore, if the initial dictionary
is defined to be order-preserving, so that range predicates can
be applied to compressed values [9], then adding new values
after the initial values destroys this order-preserving property,
as there’s usually no assurance that values will be added to the
database in any particular order, nor any way to predict where
new values will occur.

2. Partition the Encoded Domain: A second approach to dealing
with new values is to partition the domain and create separate
dictionaries for each partition. In this way, the impact of adding
new values can be isolated from the dictionary(s) of any ex-
isting partition(s). The initial dictionary D0 for a partition P0

can be optimized for the values present at the time of its cre-
ation, and new values can simply be added to a partition P1

using a completely separate dictionary D1 that will be created
on the fly, as values arrive. The characteristics of the two dic-
tionaries, and thus the encoding schemes, can be completely
different, allowing the compression of any domain to adapt to
the characteristics of the new values. For example, P0 could
use dictionary encoding, and P1 delta encoding. Partitioning
also isolates and limits the impact of changing the compression
scheme. For example, since the values added to P1 arrived in
no particular order, at some point (e.g., when it is full) we might
want to re-assign the values in dictionary D1 to make it order-
preserving. Doing so would affect only the values stored in
P1. Alternatively, we could leave the values in the second par-
tition P1 unencoded to avoid the cost of encoding them twice—
once when they arrived and a second time when the partition
has filled. This unencoded partition would of course have to be
processed differently than the encoded partition(s), increasing
code complexity. We will discuss this type of partitioning more
in subsequent sections.

Note that partitioning a domain is very different from block-
or page-based compression, which merely compresses whatever
values happen to occur within a physical chunk. Unlike block
compression, domain partitioning, by construction, guarantees
that a particular value can occur in at most one dictionary, which
can significantly simplify searching for a single value.

5.2 Better Compression
Although providing a home for new values is our primary rea-

son for partitioning the domain of each column, there can be other
benefits to domain partitioning, most notably better compression.
Raman et al. [19] described a domain partitioning scheme called
frequency partitioning that exploits skew in a domain to encode
more frequent values in fewer bits and less frequent values in more
bits, as in Huffman encoding, while still defining and operating on
fixed-length codes within each partition. Frequency partitioning is
automatically done by IWA without intervention of the DBA.

Example 3. Consider a fact table of the sales of products hav-
ing various countries of origin in Figure 3. At load time, for each
column, frequency partitioning independently builds a histogram
of the value occurrences and partitions the histogram into column
partitions according to the frequencies of those occurrences. Then,
the values in each partition are encoded using the same number of
bits. In the Origin column, China and the USA are the most fre-
quent and need only one bit to represent them. The European Union
countries are next most frequent and are representable using 5 bits.
The remaining 196 (or so) nations would require 8 bits. If there
were 1,000,000 sales originating from China and the USA, 100,000
from the EU countries, and 10,000 from others, all values could be
represented by only 1×1, 000, 000+5×100, 000+8×10, 000 =
1.58M bits, over 5.6 times better compression than the 8.88 M bits
required if every nation was represented by eight bits needed to en-
code all possible nations. Similarly, we can partition the Product
column into the top-64 products, representable using six bits, and
all the rest. �

Top 64 
traded goods
–6 bit code

Rest

origin

pr
od

uc
t

China
USA

GER,
FRA,

… Rest

Column partitions

Cell 4Cell 1

Cell 2

Cell 3

Cell 5 Cell 6

Sales
vol prod origin

Figure 3: Example of frequency partitioning.

The compression efficiency achievable by frequency partitioning
becomes more prominent in skewed data, as we will show in the
following two examples.

Example 4. Suppose that a retail store is running a data ware-
house whose schema is similar to the TPC-DS benchmark. In this
data warehouse, the fact tables store the dates when the products
were shipped, sold, or returned; and the DATE dimension table
stores the detailed information for each calendar day. Obviously,
the amounts of shipments, sales, or returns are not distributed uni-
formly: these amounts are usually higher on the weekend than dur-
ing the week and are especially high on holidays such as Thanks-
giving Day and Christmas.

Table 1 shows the column sizes of a 1GB TPC-DS data set when
compressed by per-column encoding and per-domain encoding.
Since these columns are FK columns in the fact tables, the dates
in the columns are skewed and have many repetitions. For com-
pression, we use Huffman encoding to measure the lower bound of
frequency partitioning on the number of bits. In per-column encod-
ing, the encoding of a column is done by using its own dictionary
to take advantage of data skew. On the other hand, in per-domain
encoding, the encoding of a column is done by the dictionary for its
PK column where there is no repetition. The gains in compression
achieved by exploiting data skew (the differences between the third
and fourth columns) are shown to be significant (33%∼50%) in the
TPC-DS data set. �

Example 5. Let’s consider a data warehouse that stores the en-
tire population of the U.S. According to the U.S. census3, the top-
1000 frequently occurring last names occupy 40.6% of the entire
3http://www.census.gov/genealogy/www/data/2000surnames/

1359



Table 1: Benefit of frequency partitioning in skewed data.

Column Original
Size (bits)

Compressed
with Using
Skew (bits)

Compressed
without Using
Skew (bits)

TPC-DS Data Set
ss sold date sk 92,172,928 29,335,719 44,520,246

sr returned date sk 9,200,448 3,016,765 4,492,594
cs sold date sk 46,129,536 15,327,881 23,219,100
cs ship date sk 46,129,536 15,460,990 23,221,450

cr returned date sk 4,610,144 1,568,780 2,332,695
ws sold date sk 23,020,288 7,653,072 11,643,858
ws ship date sk 23,020,288 7,774,634 11,645,361

wr returned date sk 2,296,416 750,204 1,111,444
inv date sk 375,840,000 94,410,000 190,260,000

U.S. Census Data Set
last name 7,747,874,336 3,299,326,711 4,175,255,724

population. Thus, last names are skewed and have many repeti-
tions. The sizes of the column compressed in the same way as in
Example 4 are reported in Table 1, and the gain achieved by ex-
ploiting data skew is also quite significant (21%). �

We note that Table 1 indeed shows the advantages of per-column
encoding over per-domain encoding. That is, with an existence of
data skew, per-column encoding, which uses its own dictionary and
thus can exploit data skew, allows us to improve compression ratio
significantly than per-domain encoding, which could not exploit
data skew. Examples 4 and 5 indicate that skewed data are common
in practice.

5.3 Challenges for Partitioning
When the partitioned columns in Example 3 are stored in a row

store or are stored together as a column group because they are
frequently accessed together (such as Street, City, State,
ZIPCode, and Country), then the intersection of these partitions
defines cells. These cells contain the rows having one of the values
from each corresponding partition, in which each row is formed
by concatenating the fixed-length code for each of its columns. In
Figure 3, Cell 1 contains all rows having either China or the USA
as its origin, represented using only one bit, and one of the top-
64 products, denoted by a six-bit code. Note that code lengths are
fixed within cells, but would vary from cell to cell.

When each of these columns in a column group or row is parti-
tioned, the number of cells is the product of the number of partitions
for each of its columns. In Figure 3, the 3 partitions for Origin
and the 2 partitions for Product induce 3 × 2 = 6 cells. This
quickly gets out of hand: even if each column has only 2 parti-
tions, one for all encoded values and one for unencoded values, a
column group having C columns would have 2C cells, whose con-
tents would likely be very skewed and sparse. This is because 2C−1

of those cells would contain rows having one or more unencoded
values.

One way to limit this proliferation of cells in column groups or
row stores is to have just one cell, called the catch-all cell, to which
we will assign any row that has at least one unencoded value in
any column. Example 6 shows an example of the catch-all cell.
This scheme minimizes the number of cells needed for unencoded
values, but complicates join processing because now we always
have to consult the catch-all cell, in addition to its encoded cell, as
Example 6 illustrates.

Example 6. Consider a portion of the TPC-H schema in Figure
4. Only two columns of the LINEITEM table are shown in the
figure. Suppose the dictionary of LINEITEM has two partitions
for L_OrderKey and one partition for L_ShipDate, owing to

frequency partitioning. Thus, two (2 × 1) encoded cells and the
catch-all cell are created. The encoded cells have the data in the
form of codes. In contrast, for uniformity the catch-all cell stores
the entire row unencoded, even if some column values are encod-
able. For example, although the value 100 of L_OrderKey of the
fifth row is encodable, the entire row is stored unencoded in the
catch-all cell, since the value 5/1/2010 of L_ShipDate is not en-
codable due to a missing dictionary entry. Thus, the value exists in
two forms: 0 in encoded form and 100 in unencoded form. �

LINEITEM

Encoding

100
200
100
300
100
400

8/2/2010
9/4/2010
9/4/2010
8/2/2010
5/1/2010
8/2/2010

Cell 0: K0 X D0

Cell 1: K1 X D0

Catch-All Cell

0
0

0
1

0
1

1
0

100
400

5/1/2010
8/2/2010Dictionary of LINEITEM

L_OrderKey
Partition K0: 100
Partition K1: 200 300

L_ShipDate
Partition D0:  8/2/2010  9/4/2010

L_OrderKey L_ShipDateL_OrderKey L_ShipDate

Figure 4: Example of data encoding with the catch-all cell.

6. ENCODING TRANSLATION
Recall from Section 3 that join columns are better encoded in-

dividually (“per-column encoding”), necessitating encoding trans-
lation, defined in Definition 1. Since hash joins typically build the
hash table from the smaller table to minimize the hash table’s size,
particularly if its join column is a PK, it is usually cheaper to re-
encode the qualifying rows of the build table(s), using the encoding
of the larger probe table. In a star schema, this means that each PK
of each dimension table is decoded and then re-encoded using the
dictionary of the corresponding FK in the fact table, and again we
will use this terminology without loss of generality.

For row stores or column stores having column groups, the pres-
ence of a catch-all cell, introduced in Section 5.3, complicates this
translation somewhat, because a particular value can occur in the
fact table both in its encoded form (in encoded cells) and in its un-
encoded form in the catch-all cell (e.g., the two representations for
the FK value 100 in Example 6). These multiple representations
for the same value induce two alternative approaches for encoding
translation: DTRANS (Dimension TRANSlation), which resolves
the multiple representations during the dimension-table scan; and
FTRANS (Fact TRANSlation), which resolves them during the fact-
table scan. Each has its pros and cons, and is applicable in different
situations. Note that DTRANS puts more weight on reducing the
overhead of processing fact tables, whereas FTRANS stresses re-
ducing that of processing dimension tables.

6.1 The DTRANS Approach
In this approach, multiple representations of the same FK value

are resolved at the stage of the dimension-table scan.

6.1.1 Hash Table Construction
One hash table is built for (all cells in) each partition of the FK,

plus one (the last) for the catch-all cell. The hash tables for en-
coded partitions are likely to be very compact because: (i) the val-
ues are compressed, and (ii) each hash table is responsible for only
one partition, not the entire table. This compact size is helpful for
improving the probing performance in the probe stage. The hash
table for the catch-all cell contains all qualifying key values in un-
encoded form. An encodable value therefore must be put into two
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hash tables because, in the dimension-table scan, we do not know
which FK values will have multiple representations.

Algorithm 1 shows the pseudocode for building the hash tables.
For each qualifying row of the dimension table, the PK4 is decoded
using its dictionary in the dimension table, and then re-encoded
using the dictionary of the fact table (Lines 3∼6). If this PK value
is encodable with the FK dictionary, its code is added to the hash
table corresponding to that FK partition (Lines 7∼11). The PK is
always added to the hash table for the catch-all cell in unencoded
form (Line 12). This is because any FK value can exist in the catch-
all cell of the fact table.

Algorithm 1 Building the hash tables in DTRANS.
INPUT: a dimension table, dictfact, dictdim /* dictfact (or

dictdim) is a dictionary of a fact (or dimension) table */
OUTPUT: a set of hash tables HT [0∼numpart]
1: numpart ⇐ # of encoded partitions in dictfact;
2: for each qualifying row r in the dimension table do
3: pk ⇐ loadColumn(r, primaryKey);
4: valpk ⇐ decode(pk, dictdim);
5: /* If encoding fails, partId is set to numpart */
6: 〈codepk, partId〉 ⇐ encode(valpk, dictfact);
7: /* If valpk is encodable using dictfact */
8: if partId < numpart then
9: /* HT [n] indicates the n-th hash table */

10: addKey(codepk, HT [partId]); /* encoded */
11: end if
12: addKey(valpk, HT [numpart]); /* catch-all */
13: end for

Example 7. Figure 5 shows the output of processing a scan
on the ORDERS table. Only relevant columns are shown in the
figure. Suppose a predicate is specified to select the rows with
O_Orderstatus = “S”. According to the dictionary of the fact
table in Figure 4, two hash tables are built for the encoded parti-
tions, and one for the catch-all cell. Here, 0 in HT[0] represents
100, whereas 0 and 1 in HT[1] represent 200 and 300, respectively.
The last hash table contains all—four in this example—qualifying
key values. �

ORDERS
O_OrderKey O_OrderStatus

"S"
"S"
"S"
"S"
"R"

100
200
300
400
500

0 0
1

100
200
300
400

Hash Tables

HT[0]         HT[1]        HT[2]

Figure 5: Example of a dimension table scan using DTRANS.

If the catch-all cell of the fact table is ever completely empty,
this means that all values of all rows of the fact table are encoded,
guaranteeing that every FK value has only one representation. As
a result, the full duplication of the PKs is unnecessary, and Line 12
in Algorithm 1 can be bypassed.

6.1.2 Hash Table Probe
During the fact-table scan, the hash tables constructed during the

dimension-table scan will be probed. In the DTRANS approach,
which hash table to probe for each partition is pre-determined, be-
cause there exists a one-to-one correspondence between each par-
tition of the FK and its hash table. The corresponding hash table is
4We assume that a PK consists of a single column, for ease of pre-
sentation. For a composite key, the step of concatenating codes or
values should precede, which has been fully implemented in IWA.

directly probed without decoding or re-encoding the FK value. For
encoded partitions, this probing can be done efficiently, since the
hash table is likely to fit in the L2 or L3 cache.

Algorithm 2 shows the pseudocode for probing the hash tables.
The algorithm first derives the FK partition of the cell currently be-
ing scanned (Line 2) and thus the hash table to probe for each quali-
fying row to check whether its FK satisfies the join condition (Lines
3∼8).

Algorithm 2 Probing the hash tables in DTRANS.
INPUT: a fact table, a set of hash tables HT [0∼numpart]
OUTPUT: a bit vector V ec[ ] indicating matching rows
1: for each cell c in the fact table do
2: partId⇐ the partition which c belongs to;
3: for each qualifying row r in c do
4: fk ⇐ loadColumn(r, foreignKey);
5: /* If a key is found, “true” is returned */
6: V ec[i] ⇐ lookupKey(fk, HT [partId]);
7: i ⇐ i+ 1;
8: end for
9: end for

Example 8. Figure 6 shows the process of executing a scan on
the LINEITEM table using the set of hash tables in Figure 5. Note
that the FK value 100 has multiple representations as the code 0 in
the first partition and as the value 100 in the catch-all cell. These
multiple representations are handled by the duplication of the PKs
into the hash table HT[2] for the catch-all cell. �

Partition 0

Partition 1

Catch-All Cell

0
0

0
1

100
400

HT[0]         HT[1]        HT[2]
0 0

1
100
200
300
400

Hash Tables

Direct Probes

Data

Figure 6: Example of a fact table scan using DTRANS.

6.2 The FTRANS Approach
The main drawback of DTRANS is the high cost of the full du-

plication of PKs. This cost becomes prohibitive when dimension
tables are very large. In contrast, the FTRANS approach aims at
avoiding that duplication by paying an additional cost in the fact-
table scan.

6.2.1 Hash Table Construction
The FTRANS approach constructs the hash tables in the same

way as those in the DTRANS approach except the last one contain-
ing unencoded values. Whereas DTRANS keeps all PK values—
even though many of them are encodable—in the catch-all hash
table, the FTRANS approach inserts only unencodable PK values
into that hash table. In FTRANS, the encoded values and the un-
encoded values are disjoint, unlike those in Section 6.1. Since no
duplication is required, the hash tables are smaller and faster to
construct.

Algorithm 3 shows the pseudocode for building the hash ta-
bles. Until Line 6, it is identical to Algorithm 1. In Lines 7∼8,
if partId = numpart, the PK value is unencodable using the
dictionary of the fact table; otherwise, it is encodable. Thus,
HT [0 ∼ numpart − 1] keeps encodable keys in the same way
as in Algorithm 1, but HT [numpart] contains only unencodable
keys (Line 8).
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Algorithm 3 Building the hash tables in FTRANS.
INPUT: a dimension table, dictfact, dictdim /* dictfact (or

dictdim) is a dictionary of a fact (or dimension) table */
OUTPUT: a set of hash tables HT [0∼numpart]
1: numpart ⇐ # of encoded partitions in dictfact;
2: for each qualifying row r in the dimension table do
3: pk ⇐ loadColumn(r, primaryKey);
4: valpk ⇐ decode(pk, dictdim);
5: /* If encoding fails, partId is set to numpart */
6: 〈codepk, partId〉 ⇐ encode(valpk, dictfact);
7: /* HT [0 ∼ numpart−1] hold encodable keys,

but HT [numpart] unencodable keys */
8: addKey(codepk, HT [partId]);
9: end for

Example 9. The hash tables built by the FTRANS approach for
Example 7 is the same as Figure 5 except that HT [2] has only the
value 400. �

6.2.2 Hash Table Probe
The FTRANS approach resolves the multiple representations of

the same FK value during the fact-table scan. To find the FK val-
ues that are actually encodable but were left unencoded, we attempt
to encode each (unencoded) FK value in the catch-all cell. If the
encoding succeeds, the query engine needs to probe the appropri-
ate encoded hash table for that encoded FK value. Otherwise, the
query engine probes the catch-all hash table for the unencoded key.

Algorithm 4 shows the pseudocode for probing the hash tables.
For encoded partitions (until Line 8), it is identical to Algorithm 2.
Lines 9∼23 are added to process the catch-all cell differently from
Algorithm 2. For each qualifying row, we check if its FK value can
be encoded using the dictionary of the fact table (Lines 13∼14).
Depending on the encodability, which hash table to probe is deter-
mined to be either one of the encoded ones HT [0 ∼ numpart−1]
or the unencoded one HT [numpart] (Lines 15∼20).

Example 10. Figure 7 shows the process of executing a scan on
the LINEITEM table in the previous example. The FK values in
the encoded partitions are treated in the same way as in Example 8.
Then, in the catch-all cell, the FK value 100 is actually encodable
and is converted to the code 0 of the first partition. So the encoded
hash table HT[0] is probed for the code. In contrast, since the FK
value 400 is not encodable at all, the unencoded hash table HT[2]
is probed for the value. �

Partition 0

Partition 1

Catch-All Cell

0
0

0
1

100
400

0
Fail: 400

Data

0 0
1

400

Hash Tables

HT[0]         HT[1]        HT[2]

Encoding

Figure 7: Example of a fact table scan using FTRANS.

7. EVALUATION
Using the IWA product code, we now verify that joining encoded

data is beneficial (Section 7.2.1). We then contrast the performance
of per-column versus per-domain encoding (Section 7.2.2). Fi-
nally, for column groups and row stores that use per-column encod-
ing and partitioning to isolate new values in a “catch-all” cell, we
compare our two approaches to encoding translation, DTRANS and
FTRANS (Section 7.2.3).

Algorithm 4 Probing the hash tables in FTRANS.
INPUT: a fact table, a set of hash tables HT [0∼numpart]
OUTPUT: a bit vector V ec[ ] indicating matching rows
1: for each cell c in the fact table do
2: if c is an encoded cell then
3: partId⇐ the partition which c belongs to;
4: for each qualifying row r in c do
5: fk ⇐ loadColumn(t, foreignKey);
6: V ec[i] ⇐ lookupKey(fk, HT [partId]);
7: i⇐ i+ 1;
8: end for
9: else

10: /* c is the catch-all cell */
11: for each qualifying row r in c do
12: fk ⇐ loadColumn(r, foreignKey);
13: /* If encoding fails, partId is numpart */
14: 〈codefk, partId〉 ⇐ encode(fk, dictfact);
15: /* If fk is encodable using dictfact */
16: if partId < numpart then
17: V ec[i] ⇐ lookupKey(codefk, HT [partId]);
18: else
19: V ec[i] ⇐ lookupKey(fk, HT [numpart]);
20: end if
21: i ⇐ i+ 1;
22: end for
23: end if
24: end for

7.1 Experimental Setting
To measure the performance on a real system, we implemented

five alternative configurations, shown in Table 2, in an early ver-
sion of IWA.5 DTRANS and FTRANS have already been explained
in detail in Section 6. DECODE simulates traditional query pro-
cessing by decoding the column values immediately before join
processing. 1DICT uses the same encoding for both of the join
columns as in [7], so does not require encoding translation. Finally,
UNENCODE does not encode values at all.

Table 2: Five configurations used for the experiments.

Name Description

DTRANS
Encoding translation during dimension query
processing (Section 6.1)

FTRANS
Encoding translation during fact query process-
ing (Section 6.2)

DECODE Run-time decoding before joining

1DICT
Per-domain encoding, i.e., using only one dic-
tionary without encoding translation

UNENCODE No encoding at all

Two versions of the standard TPC-H data set were used for our
experiments.
1. To more readily vary parameters and observe their effects,

we initially constructed a simplified TPC-H data set com-
posed of only one “fact” table LINEITEM and one “dimen-
sion” table ORDERS, each containing only the two or three
columns referenced in the queries we ran. To focus on join
performance and exclude other expensive operations such as
GROUP BY and ORDER BY, we used the SQL query below.
It simply joins O_Orderkey, which has a uniqueness con-
straint, with L_Orderkey, which has a (roughly) uniform dis-
tribution drawn from O_Orderkey. The local predicate on

5Only DTRANS is included in the released product.
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L_Orderkey was omitted whenever we set its selectivity to
1. To test the effects of scaling, we generated two sizes of the
fact table—100M and 500M rows—and five sizes of the dimen-
sion table—1K, 10K, 100K, 1M, and 10M rows. The results are
presented in Section 7.2.

SELECT COUNT(*)
FROM LINEITEM, ORDERS
WHERE L Orderkey = O Orderkey

AND NOT ISNULL O OrderKey
[AND L Orderkey < constant]

2. To verify that our simplified data set didn’t bias our results, we
also tested a wider set of queries on a standard TPC-H scale
factor 10 data set, whose results are presented in Section 7.3.

The experiments were designed to vary four parameters: (i) the
number of rows in the dimension table (sizedim), (ii) the number
of rows in the fact table (sizefact), (iii) the ratio of the number of
unencoded rows to the total number of rows (ratiounenc), and (iv)
the selectivity of a local predicate on the fact table (selfact). The
parameters sizedim and sizefact were discussed earlier. We varied
ratiounenc among 0, 1/16, 1/8, 1/4, and 1/2, re-loading the entire
data set for each. We controlled selfact by varying the constant in
the SQL query above.

Each experiment ran the same query seven times. To omit possi-
bly spurious outliers, we removed the minimum and the maximum
of the seven runs, and averaged the rest. Recall that IWA is a main-
memory accelerator, so there is no disk I/O in any of these results.
This execution time is decomposed into three component times:
tprobe, tbuild, and tbase. tprobe measures the time for probing the
hash tables, and tbuild that for building the hash tables. tbase is
the base cost of just scanning the fact table without performing
joins, which is the same for all alternatives except UNENCODE. It is
measured by running a single table query—not a join query—that
contains the same predicates on the fact table. tbase is useful for
visualizing variable portions of the total execution time. In Fig-
ures 9∼12, these three component times are distinguished by the
fill types: the dark-solid portion indicates tprobe, the light-solid
portion tbuild, and the cross-hatched portion tbase, as below.

: tprobe : tbuild : tbase

All experiments were conducted on an IBM System x equipped
with two quad-core Xeon CPUs and 48 GB of main memory. The
CPU has 8 MB of shared L3 cache. The server runs on SUSE
Linux Enterprise 10. Hyper-threading is disabled. Our system is
implemented in C++ using GCC 4.2.

7.2 Simplified TPC-H Results
Until Section 7.2.2, all the rows are encoded (ratiounenc = 0) to

concentrate on the benefits of compression. After that, some rows
remain unencoded (ratiounenc > 0) to dig into the differences
between DTRANS and FTRANS. selfact is always set to be 1, to
avoid unnecessary predicates, except when varying the number of
qualifying rows in the fact table.

7.2.1 Joining Encoded vs. Unencoded Data
Increasing Join Predicates

First, we show the benefit of joining encoded versus unencoded
join columns as the number of those join predicates increases.6
Figure 8 contrasts the wall clock time of the join with encoded
6This experiment required slightly varying both the data to add join
columns and the query to add join predicates.

columns (DTRANS) versus unencoded columns (UNENCODE) as
the number of join columns varies from 1 to 4, where sizefact
= 100M, sizedim = 100K, ratiounenc = 0, and selfact = 1.0.
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Figure 8: Benefit of encoding data.

Clearly, the advantage of joining encoded data (DTRANS) ver-
sus unencoded data (UNENCODE) increases with the number of join
predicates. The initial jump in the execution time of DTRANS from
1 to 2 is caused by the triggering of the logic that concatenates
multiple join-column values into chunks (each 16, 32, or 64 bits).
Thereafter, its performance remains constant in the range between 2
and 4 join predicates, because the compression of the join-column
values keeps the composite key within only one chunk. In con-
trast, the time for UNENCODE increases steadily as join columns
are added, because the unencoded values increase the number of
chunks.
Increasing Dimension Table Size

Next, we demonstrate the benefit of joining encoded versus un-
encoded data as the size of the dimension table increases from 1K
to 10M rows, as shown in Figure 9. The fact table remains fixed at
500M rows (sizefact = 500M and selfact = 1.0). Each bar, denot-
ing the time for a particular configuration, is composed of tprobe,
tbuild, and tbase in the order of appearance from top to bottom.
Joins on encoded data (DTRANS and FTRANS, the first and second
bars) outperform traditional joins (DECODE, the third bar) that de-
code the data before a join by up to 40%. The reasons are twofold.
First, DTRANS or FTRANS defer decoding until after the join is
done. Second, the compressed values of DTRANS or FTRANS re-
sult in relatively smaller hash tables than for DECODE, reducing the
number of cache misses when probing the hash tables. Further in-
vestigation reveals that the latter reason is far more significant than
the former, since decoding is a simple look-up in the dictionary,
so is quite fast. In this figure, DTRANS and FTRANS are identical
because all data is encoded (ratiounenc = 0).

The relative improvement in tprobe becomes particularly dra-
matic when the hash tables of DTRANS fit in the cache, but those
of DECODE do not, e.g., when sizedim = 1M. Here, the size of
the encoded join column is below 32 bits, so the hash tables of
DTRANS or FTRANS can fit in the L3 cache, because 32 bits × 1M
× 2 = 8 MB7 (≈ the size of the L3 cache). In contrast, the hash
tables of DECODE are about twice as big, and hence will not fit in
L3. For dimension tables smaller than 1M rows, both the encoded
and decoded hash tables fit in the L3 cache. For larger ones, how-
ever, neither of them fit. This is the reason why the margin reaches
its maximum at sizedim = 1M.

7.2.2 Per-Domain vs. Per-Column Encoding
Next, we compare the encoding of the join columns using

the same dictionary (per-domain) versus separate dictionaries (per-
column). Table 3 summarizes the consequences to both the com-
pression ratio of the 10M-row dimension table ORDERS and the

7The total number of buckets is by construction about two times
the actual number of PK values, to minimize collisions.
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Figure 9: Encoded vs. decoded joins, and
per-column vs. per-domain dictionaries.
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Figure 10: Effects of the size of the dimen-
sion table on encoding translation.
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Figure 11: Effects of the ratio of unen-
coded rows on encoding translation.
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Figure 12: Effects of the size of the fact table on encoding translation.

join performance of both encoding schemes. The original and com-
pressed sizes of the table ORDERS are shown in parentheses in the
second column. These sizes roughly indicate the sizes of the PK
column O_OrderKey since the two other columns occupy just
11% of the table in this simplified TPC-H data set.

As expected from our earlier explanation, DTRANS shows a
compression ratio 16% better than 1DICT, because applying the
encoding scheme of the FK to the PK column creates unnecessary
partitions for the PK, thereby wasting space. We expect that this
difference in compression ratio will only increase for a skewed data
set, compared with the TPC-H data set, which has a (roughly) uni-
form distribution. Recall that Table 1 reported much larger differ-
ences in compression ratio.

Table 3: Effects of different encoding schemes across tables.

Alternative Compression Ratio Performance (sec)
DTRANS 1.80 12.75

(per-column) (158.89 / 88.09 MB) (tbuild = 6.26)
1DICT 1.55 12.49

(per-domain) (158.89 / 102.77 MB) (tbuild = 6.01)

With regard to performance, even though 1DICT omits the de-
coding and re-encoding that DTRANS does while scanning dimen-
sion tables, the third column in Table 3 shows little difference be-
tween the two, and then only in the tbuild portion, which is shown
in parentheses. Not surprisingly, we found that tbuild was dom-
inated by the cost of adding keys into hash tables and occasion-
ally resizing those tables. These results come from the dimsize =
10M point in Figure 9, but we get similar results for other values of
dimsize.

These results demonstrate that we can achieve the compression
and flexibility benefits of having different encoding schemes for the
join columns, with only a tiny penalty in execution time.

7.2.3 DTRANS vs. FTRANS
We now compare our two variants of encoding translation,

DTRANS and FTRANS, as a function of three key parameters: the
size of the dimension table, the ratio of unencoded values, and the
size of the fact table.
Increasing Dimension Table Size

We first investigate the effect that the size of a dimension table
has on the relative performance of DTRANS and FTRANS. Figure
10 shows the wall clock time as sizedim varies from 1K to 10M
rows, holding sizefact constant at 100M rows with selfact = 1.0.
To exaggerate the differences between DTRANS and FTRANS, we
use a nonzero fraction of unencoded rows (ratiounenc = 1/16)
for the first time in our evaluation. As expected, tbuild grows as
sizedim increases, since more keys are inserted into hash tables,
and tprobe also increases, since more cache misses may occur be-
cause of the larger hash tables. However, note that tbuild increases
more rapidly in DTRANS than in FTRANS as sizedim increases,
because DTRANS inserts all qualifying PK values into the catch-
all hash table, if the catch-all cell of the fact table is not empty,
whereas FTRANS does not. This overhead of DTRANS is afford-
able when the dimension table is small, but becomes prohibitive
when sizedim ≥ 10M. Thus, DTRANS is preferred if the dimen-
sion table is small enough.
Increasing Unencoded Values in Fact Table

What happens to the relative performance of DTRANS versus
FTRANS as more unencoded values are inserted into the catch-all
cell of the fact table? FTRANS is shown to increasingly lose to
DTRANS in Figure 11, for sizedim = 1M rows, sizefact = 100M
rows, and selfact = 1.0. As the ratio of unencoded rows in the
fact table, ratiounenc, increases from 0 to 1/2, the wall clock time
of FTRANS—and especially the tprobe portion—increases steeply.
Recall that this is because FTRANS tries to encode each unencoded
FK value in the catch-all cell and determines the hash table to
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probe, depending on whether it is encodable or not, adding a branch
as well as overhead. In short, the number of rows in the catch-all
cell is the most crucial parameter for FTRANS. Thus, DTRANS is
preferred if a large fraction (e.g., > 0.5) of rows are unencoded. In
fact, Figure 11 shows that FTRANS is even worse than DECODE,
once ratiounenc > 1/8, because DECODE eliminates these over-
heads and branches in FTRANS. But DTRANS totally dominates
the other two approaches in this experiment.

Note also in Figure 11 that tbuild of DTRANS (the light-solid
portion of the first bar) jumps from 0.28 at ratiounenc = 0 to 0.47 at
ratiounenc = 1/16. This is due to the cost of inserting all PK values
into the catch-all hash table, which was affordable with sizedim =
1M in this figure.
Increasing Fact Table Size

We next investigate the effect of the size of the fact table on the
relative performance of DTRANS and FTRANS, by varying the se-
lectivity of the local predicate (L_Orderkey< constant) on the
fact table to simulate fact tables of various sizes. Figures 12(a) to
12(c) show the wall clock time as the portion selfact of sizefact =
100M rows varies from 0.1 to 1.0, where ratiounenc is either 1/16
or 1/8, and sizedim is either 1M or 100K. In these figures, both
tbase and tprobe increase as selfact increases, which are expected
because more rows satisfy the selection predicate and more rows
need to be checked for the join, respectively.

However, note that tprobe increases more rapidly in
FTRANS than in DTRANS as selfact increases. When unencoded
rows of the fact table are processed, FTRANS requires additional
operations for encoding translation, whereas DTRANS does not.
Here, a larger number of unencoded rows are included in query
processing as selfact increases. For this reason, FTRANS outper-
forms DTRANS for low selectivity, and the opposite is true for high
selectivity. Thus, FTRANS is preferred if the fact table is small
enough or if any local predicates on the fact table are sufficiently
selective.

The point at which the performance of the two alternatives cross
depends on several parameters. The crossing point appears at 0.4
in Figure 12(b), earlier than at 0.8 in Figure 12(a) owing to a higher
value of ratiounenc. The higher ratiounenc is, the higher the over-
head of encoding translation in FTRANS is. The crossing point ap-
pears at 0.3 in Figure 12(c), owing to a smaller value of sizedim in
comparison with Figure 12(a). The smaller sizedim is, the lower
the overhead of encoding translation in DTRANS is.

7.3 Standard TPC-H Results
We now show the results for the standard TPC-H data set, on a

wider range of queries. Since the first version of IWA was not yet
able to handle nested queries, we limited our experiments to those
six TPC-H queries not having nested query blocks, then eliminated
GROUP BY, ORDER BY, and other expensive clauses (e.g., CASE)
from these queries to concentrate on join performance. Tables 4
and 5 report the results when ratiounenc is 0 and 0.01, respec-
tively; i.e., in Table 5 we force 1% of the rows to be unencoded
at initial loading to see the difference between the two alternatives.
The first number of each entry indicates the time for processing the
dimension tables, and the second that for processing the fact table.

In Table 4, DTRANS and FTRANS (in bold) are identical because
all rows are encoded, and both outperform DECODE. However, the
difference isn’t very significant here, since the hash tables from the
dimension-table scan are either much smaller or larger than the L3
cache. Hence, either both the encoded and unencoded hash tables
fit in the L3 cache, or neither of them does.

In Table 5, FTRANS still outperforms DECODE. However the
performance of DTRANS becomes poor, with the cost of the build

phase (the first number for each query) consistently being about
twice that of the other two methods. This is because the first
four queries—Q3, Q5, Q10, and Q12—reference the dimension
ORDERS, which contains 15M rows, and the last two queries—Q14
and Q19—reference the dimension PART, containing 2M rows.
These two dimension tables are large enough that the cost of dupli-
cating their PK values into the hash tables becomes the dominating
cost in DTRANS.

Table 4: Times, in seconds, to process the dimension tables and
the fact table in TPC-H queries, when ratiounenc = 0.

DTRANS FTRANS DECODE
Q3 4.559, 1.168 4.530, 1.163 4.635, 1.394
Q5 4.572, 1.472 4.592, 1.459 4.688, 1.899
Q10 4.533, 1.166 4.561, 1.170 4.650, 1.385
Q12 4.063, 1.165 4.076, 1.157 4.076, 1.388
Q14 0.418, 1.086 0.419, 1.097 0.421, 1.352
Q19 0.417, 1.083 0.419, 1.075 0.426, 1.358

Table 5: Times, in seconds, to process the dimension tables and
the fact table in TPC-H queries, when ratiounenc = 0.01.

DTRANS FTRANS DECODE
Q3 9.293, 1.175 4.562, 1.173 4.638, 1.398
Q5 9.396, 1.474 4.583, 1.465 4.682, 1.906
Q10 9.316, 1.180 4.567, 1.169 4.618, 1.384
Q12 8.500, 1.167 4.063, 1.159 4.093, 1.387
Q14 0.840, 1.077 0.416, 1.064 0.419, 1.339
Q19 0.839, 1.077 0.417, 1.069 0.419, 1.335

7.4 Summary of the Results
Our results can be summarized as follows:

1. Our DTRANS or FTRANS outperforms traditional DECODE for
most cases by up to 40%.

2. DTRANS or FTRANS improves the compression ratio by at least
16% (or up to 50% in Table 1), with negligible overhead in
query processing, in comparison with having one dictionary for
both join columns (1DICT).

3. DTRANS is preferred when the dimension tables are small.
4. FTRANS is preferred when the fact tables are small or local

predicates on the fact tables are very selective.
5. DTRANS is preferred when a large fraction of rows are left un-

encoded.

8. RELATED WORK
Compression in DBMSs has been actively studied in both the

database industry and academia. There are two main research di-
rections. One direction is to develop compression schemes that
achieve better (de)compression speed and/or a better compression
ratio. The other direction is to develop query processing methods
that take advantage of compressed data. Our work represents a
blend of both directions.

Existing methods for joins on compressed data can be classified
as in Table 6. The horizontal axis represents whether data is com-
pressed at load time or not, and the vertical one whether the data is
decompressed at run time or not. Traditional database systems that
do not support compression belong to the lower-right category. Our
framework falls into the upper-left category, and it also contributes
to the upper-right category through our on-the-fly encoding.

Most commercial DBMSs store data compressed, but they usu-
ally decompress the data before it is processed, so belong to
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Table 6: Classification of query processing on compressed data.
�

�
�

�
�

��
Run time

Loading Compressed Uncompressed

Compressed Decompress after
query processing

Compress before or
during query process-
ing; decompress after

Uncompressed Decompress before
query processing No compression

the lower-left category. Storing the data compressed reduces the
amount of disk I/O’s, but decompressing immediately means that
even non-qualifying rows incur the cost of decompression and the
uncompressed data consumes more memory and cache throughout
query processing. Chen et al. [4] proposed a query optimization
method that takes a decompression cost into account. Westmann
et al. [21] discussed how compression can be integrated into a re-
lational query engine. Specifically, they suggested an extension of
the iterator model to avoid repeated decompressions.

Motivated by the high decompression cost, Graefe and
Shapiro [7] claimed that query processing on compressed data can
improve query performance. To simplify the system, they use only
a single compression scheme for each domain. By requiring all
values from the same domain to be compressed with the same dic-
tionary, join columns are compressed in exactly the same way, and
compressed key values can be directly compared with each other to
find matches during join processing. This approach eliminates the
need for any decompression during a join, but it can result in subop-
timal compression decisions and encodings for individual columns,
as shown earlier.

Abadi et al. [1] proposed an architecture of a column-oriented
database system that supports direct operations on compressed
data. The architecture is prototyped in C-Store [20], whose ordered
“projections” primarily favor run-length encoding. Their query
processing algorithms therefore focus on how to exploit compres-
sion schemes that represent multiple values in a single field. In such
schemes, multiple results can be generated simultaneously by a sin-
gle operation. This work, however, does not address the problem
of how to handle different compression schemes on the columns
being joined. Thus, this work, like that of Graefe and Shapiro, cor-
responds to our 1DICT scheme.

In SAP HANA [5], every column is compressed using a sorted
dictionary. That is, each value is mapped to an integer value (code).
These codes are further compressed by several techniques such as
run-length encoding (RLE), prefix coding, sparse coding, and clus-
ter coding. The standard query operators are directly applied to the
compressed data structures. Lemke et al. [11] proposed scan and
aggregation operators that are designed to operate on top of com-
pressed data. However, it is not known how joins are processed for
independently compressed columns. In addition, HANA does not
support a mix of compressed and uncompressed values.

9. CONCLUSIONS
In this paper, we proposed a technique for processing joins on

encoded and partitioned data. First, we demonstrated the benefit of
independently optimizing the compression scheme of each column
and the benefit of partitioning a column to deal with incremental
updates. Then, two variants of encoding translation were devel-
oped to execute the join under this environment. Next, an on-the-
fly encoding scheme was developed to encode non-join columns
as well. Last, by conducting extensive experiments with our prod-
uct system, we showed that our technique achieves both superior
performance and excellent compression.
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