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ABSTRACT
We survey permutation-based methods for approximate k-
nearest neighbor search. In these methods, every data point
is represented by a ranked list of pivots sorted by the dis-
tance to this point. Such ranked lists are called permuta-
tions. The underpinning assumption is that, for both metric
and non-metric spaces, the distance between permutations
is a good proxy for the distance between original points.
Thus, it should be possible to efficiently retrieve most true
nearest neighbors by examining only a tiny subset of data
points whose permutations are similar to the permutation
of a query. We further test this assumption by carrying
out an extensive experimental evaluation where permutation
methods are pitted against state-of-the art benchmarks (the
multi-probe LSH, the VP-tree, and proximity-graph based
retrieval) on a variety of realistically large data set from
the image and textual domain. The focus is on the high-
accuracy retrieval methods for generic spaces. Additionally,
we assume that both data and indices are stored in main
memory. We find permutation methods to be reasonably
efficient and describe a setup where these methods are most
useful. To ease reproducibility, we make our software and
data sets publicly available.

1. INTRODUCTION
Nearest-neighbor searching is a fundamental operation em-

ployed in many applied areas including pattern recognition,
computer vision, multimedia retrieval, computational bi-
ology, and statistical machine learning. To automate the
search task, real-world objects are represented in a com-
pact numerical, e.g., vectorial, form and a distance function
d(x, y), e.g., the Euclidean metric L2, is used to evaluate the
similarity of data points x and y. Traditionally, it assumed
that the distance function is a non-negative function that
is small for similar objects and large for dissimilar one. It
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is equal to zero for identical x and y and is always positive
when objects are different.

This mathematical formulation allows us to define the
nearest-neighbor search as a conceptually simple optimiza-
tion procedure. Specifically, given a query data point q, the
goal is to identify the nearest (neighbor) data point x, i.e.,
the point with the minimum distance value d(x, q) among
all data points (ties can be resolved arbitrarily). A natu-
ral generalization is a k-NN search, where we aim to find
k closest points instead of merely one. If the distance is
not symmetric, two types of queries are considered: left and
right queries. In a left query, a data point compared to the
query is always the first (i.e., the left) argument of d(x, y).

Despite being conceptually simple, finding nearest neigh-
bors in efficient and effective fashion is a notoriously hard
task, which has been a recurrent topic in the database com-
munity (see e.g. [42, 20, 2, 28]). The most studied instance
of the problem is an exact nearest-neighbor search in vec-
tor spaces, where a distance function is an actual metric
distance (a non-negative, symmetric function satisfying the
triangle inequality). If the search is exact, we must guaran-
tee that an algorithm always finds a true nearest-neighbor
no matter how much computational resources such a quest
may require. Comprehensive reviews of exact approaches
for metric and/or vector spaces can be found in books by
Zezula et al. [44] and Samet [34].

Yet, exact methods work well only in low dimensional
metric spaces.1 Experiments showed that exact methods can
rarely outperform the sequential scan when dimensionality
exceeds ten [42]. This a well-known phenomenon known as
“the curse of dimensionality”.

Furthermore, a lot of applications are increasingly relying
on non-metric spaces (for a list of references related to com-
puter vision see, e.g., a work by Jacobs et al. [25]). This is
primarily because many problems are inherently non-metric
[25]. Thus, using, a non-metric distance permits sometimes
a better representation for a domain of interest. Unfortu-
nately, exact methods for metric-spaces are not directly ap-
plicable to non-metric domains.

Compared to metric spaces, it is more difficult to design
exact methods for arbitrary non-metric spaces, in particular,
because they lack sufficiently generic yet simple properties
such as the triangle inequality. When exact search methods
for non-metric spaces do exist, they also seem to suffer from
the curse of dimensionality [10, 9].

1A dimensionality of a vector space is simply a number of
coordinates necessary to represent a vector: This notion can
be generalized to metric spaces without coordinates [12].
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Approximate search methods are less affected by the curse
of dimensionality [31] and can be used in various non-metric
spaces when exact retrieval is not necessary [37, 23, 13, 10,
9]. Approximate search methods can be much more efficient
than exact ones, but this comes at the expense of a reduced
search accuracy. The quality of approximate searching is
often measured using recall, which is equal to the average
fraction of true neighbors returned by a search method. For
example, if the method routinely misses every other true
neighbor, the respective recall value is 50%.

Permutation-based algorithms is an important class of ap-
proximate retrieval methods that was independently intro-
duced by Amato [3] and Chávez et al. [24]. It is based on
the idea that if we rank a set of reference points–called piv-
ots–with respect to distances from a given point, the pivot
rankings produced by two near points should be similar. A
number of methods based on this idea were recently pro-
posed and evaluated [3, 24, 19, 11, 2] (these methods are
briefly surveyed in § 2). However, a comprehensive evalu-
ation that involves a diverse set of large metric and non-
metric data sets (i.e., asymmetric and/or hard-to-compute
distances) is lacking. In § 3, we fill this gap by carrying
out an extensive experimental evaluation where these meth-
ods (implemented by us) are compared against some of the
most efficient state-of-the art benchmarks. The focus is on
the high-accuracy retrieval methods (recall close to 0.9) for
generic spaces. Because distributed high-throughput main
memory databases are gaining popularity (see., e.g. [27]),
we focus on the case where data and indices are stored in
main memory. Potentially, the data set can be huge, yet, we
run experiments only with a smaller subset that fits into a
memory of one server.

The acknowledgments are published separately.2

2. PERMUTATION METHODS

2.1 Core Principles
Permutation methods are filter-and-refine methods be-

longing to the class of pivoting searching techniques. Pivots
(henceforth denoted as πi) are reference points randomly
selected during indexing. To create an index, we compute
the distance from every data point x to every pivot πi. We
then memorize either the original distances or some distance
statistics in the hope that these statistics can be useful dur-
ing searching. At search time, we compute distances from
the query to pivots and prune data points using, e.g., the tri-
angle inequality [34, 44] or its generalization for non-metric
spaces [21].

Alternatively, rather than relying on distance values di-
rectly, we can use precomputed statistics to produce esti-
mates for distances between the query and data points. In
particular, in the case of permutation methods, we assess
similarity of objects based on their relative distances to piv-
ots. To this end, for each data point x, we arrange pivots πi
in the order of increasing distances from x. The ties can be
resolved, e.g., by selecting a pivot with the smallest index.
Such a permutation (i.e., ranking) of pivots is essentially a
vector whose i-th element keeps an ordinal position of the
i-th pivot in the set of pivots sorted by their distances from
x. We say that point x induces the permutation.

2http://arxiv.org/abs/1506.03163
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Figure 1: Voronoi diagram produced by four pivots πi. The
data points are a, b, c, and d. The distance is L2.

Consider the Voronoi diagram in Figure 1 produced by
pivots π1, π2, π3, and π4. Each pivot πi is associated with
its own cell containing points that are closer to πi than to
any other pivot πj , i 6= j. The neighboring cells of two pivots
are separated by a segment of the line equidistant to these
pivots. Each of the data points a, b, c, and d “sits” in the
cell of its closest pivot.

For the data point a, points π1, π2, π3, and π4 are re-
spectively the first, the third, and the forth closest pivots.
Therefore, the point a induces the permutation (1, 2, 3, 4).
For the data point b, which is the nearest neighbor of a, two
closest pivots are also π1 and π2. However, π4 is closer than
π3. Therefore, the permutation induced by b is (1, 2, 4, 3).
Likewise, the permutations induced by c and d are (2, 3, 1, 4)
and (3, 2, 4, 1), respectively.

The underpinning assumption of permutation methods is
that most nearest neighbors can be found by retrieving a
small fraction of data points whose pivot rankings, i.e., the
induced permutations, are similar to the pivot ranking of
the query. Two most popular choices to compare the rank-
ings x and y are: Spearman’s rho distance (equal to the
squared L2) and the Footrule distance (equal to L1) [14,
24]. More formally, SpearmanRho(x, y) =

∑
i(xi − yi)

2 and
Footrule(x, y) =

∑
i |xi−yi|. According to Chávez et al. [24]

Spearman’s rho is more effective than the Footrule distance.
This was also confirmed by our own experiments.

Converting the vector of distances to pivots into a permu-
tation entails information loss, but this loss is not necessar-
ily detrimental. In particular, our preliminary experiments
showed that using permutations instead of vectors of origi-
nal distances results in slightly better retrieval performance.
The information about relative positions of the pivots can
be further coarsened by binarization: All elements smaller
than a threshold b become zeros and elements at least as
large as b become ones [38]. The similarity of binarized per-
mutations is computed via the Hamming distance.

In the example of Figure 1, the values of the Footrule
distance between the permutation of a and permutations of
b, c, and d are equal to 2, 4, and 6, respectively. Note that
the Footrule distance on permutations correctly “predicts”
the closest neighbor of a. Yet, the ordering of points based
on the Footrule distance is not perfect: the Footrule distance
from the permutation of a to the permutation of its second
nearest neighbor d is larger than the Footrule distance to
the permutation of the third nearest neighbor c.

Given the threshold b = 3, the binarized permutations in-
duced by a, b, c, and d are equal to (0, 0, 1, 1), (0, 0, 1, 1),
(0, 1, 0, 1), and (1, 0, 1, 0), respectively. In this example, the
binarized permutation of a and its nearest neighbor b are
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equal, i.e., the distance between respective permutations is
zero. When we compare a to c and d, the Hamming dis-
tance does not discriminate between c and d as their binary
permutations are both at distance two from the binary per-
mutation of a.

Permutation-based searching belongs to a class of filter-
and-refine methods, where objects are mapped to data points
in a low-dimensional space (usually L1 or L2). Given a per-
mutation of a query, we carry out a nearest neighbor search
in the space of permutations. Retrieved entries represent a
(hopefully) small list of candidate data points that are com-
pared directly to the query using the distance in the original
space. The permutation methods differ in ways of producing
candidate records, i.e., in the way of carrying out the filter-
ing step. In the next sections we describe these methods in
detail.

Permutation methods are similar to the rank-aggregation
method OMEDRANK due to Fagin et al. [20]. In OME-
DRANK there is a small set of voting pivots, each of which
ranks data points based on a somewhat imperfect notion of
the distance from points to the query (e.g., computed via a
random projection). While each individual ranking is imper-
fect, a more accurate ranking can be achieved by rank aggre-
gation. Thus, unlike permutation methods, OMEDRANK
uses pivots to rank data points and aims to find an unknown
permutation of data points that reconciles differences in data
point rankings in the best possible way. When such a con-
solidating ranking is found, the most highly ranked objects
from this aggregate ranking can be used as answers to a
nearest-neighbor query. Finding the aggregate ranking is
an NP-complete problem that Fagin et al. [20] solve only
heuristically. In contrast, permutation methods use data
points to rank pivots and solve a much simpler problem of
finding already known and computed permutations of pivots
that are the best matches for the query permutation.

2.2 Brute-force Searching of Permutations
In this approach, the filtering stage is implemented as a

brute-force comparison of the query permutation against the
permutations of the data with subsequent selection of the γ
entries that are γ-nearest objects in the space of permuta-
tions. A number of candidate entries γ is a parameter of
the search algorithm that is often understood as a fraction
(or percentage) of the total number of points. Because the
distance in the space of permutations is not a perfect proxy
for the original distance, to answer a k-NN-query with high
accuracy, the number of candidate records has to be much
larger than k (see § 3.4).

A straightforward implementation of brute-force searching
relies on a priority queue. Chávez et al. [24] proposed to use
incremental sorting as a more efficient alternative. In our
experiments with the L2 distance, the latter approach is
twice as fast as the approach relying on a standard C++
implementation of a priority queue.

The cost of the filtering stage can be reduced by using
binarized permutations [38]. Binarized permutations can be
stored compactly as bit arrays. Computing the Hamming
distance between bit arrays can be done efficiently by XOR-
ing corresponding computer words and counting the number
of non-zero bits of the result. For bit-counting, one can use
a special instruction available on many modern CPUs.

The brute-force searching in the permutation space, un-
fortunately, is not very efficient, especially if the distance

can be easily computed: If the distance is “cheap” (e.g.,
L2) and the index is stored in main memory, the brute-force
search in the space of permutations is not much faster than
the brute-force search in the original space.

2.3 Indexing of Permutations
To reduce the cost of the filtering stage of permutation-

based searching, three types of indices were proposed: the
Permutation Prefix Index (PP-Index) [19], existing methods
for metric spaces [22], and the Metric Inverted File (MI-file)
[3].

Permutations are integer vectors whose values are between
one and the total number of pivots m. We can view these
vectors as sequences of symbols over a finite alphabet and
index these sequences using a prefix tree. This approach is
implemented in the PP-index. At query time, the method
aims to retrieve γ candidates by finding permutations that
share a prefix of a given length with the permutation of the
query object. This operation can be carried out efficiently
via the prefix tree constructed at index time. If the search
generates fewer candidates than a specified threshold γ, the
procedure is recursively repeated using a shorter prefix. For
example, the permutations of points a, b, c, and d in Fig-
ure 1 can be seen as strings 1234, 1243, 2314, and 3241. The
permutation of points a and b, which are nearest neighbors,
share a two-character prefix with a. In contrast, permuta-
tions of points c and d, which are more distant from a than
b, have no common prefix with a.

To achieve good recall, it may be necessary to use short
prefixes. However, longer prefixes are more selective than
shorter ones (i.e., they generate fewer candidate records) and
are, therefore, preferred for efficiency reasons. In practice,
a good trade-off between recall and efficiency is typically
achieved only by building several copies of the PP-index
(using different subsets of pivots) [2].

Figueroa and Fredriksson experimented with indexing per-
mutations using well-known data structures for metric spaces
[22]. Indeed, the most commonly used permutation dis-
tance: Spearman’s rho, is a monotonic transformation (squar-
ing) of the Euclidean distance. Thus, it should be possible
to find γ nearest neighbors by indexing permutations, e.g.,
in a VP-tree [43, 40].

Amato and Savino proposed to index permutation using
an inverted file [3]. They called their method the MI-file.
To build the MI-file, they first select m pivots and compute
their permutations/rankings induced by data points. For
each data point, mi ≤ m most closest pivots are indexed
in the inverted file. Each posting is a pair (pos(πi, x), x),
where x is the identifier of the data point and pos(πi, x) is
a position of the pivot in the permutation induced by x.
Postings of the same pivot are sorted by pivot’s positions.

Consider the example of Figure 1 and imagine that we
index two most closest pivots (i.e., mi = 2). The point
a induces the permutation (1, 2, 3, 4). Two closest pivots
π1 and π2 generate postings (1, a) and (2, a). The point b
induces the permutation (1, 2, 4, 3). Again, π1 and π2 are
two pivots closest to b. The respective postings are (1, b)
and (2, b). The permutation of c is (2, 3, 1, 4). Two closest
pivots are π1 and π3. The respective postings are (2, c) and
(1, c). The permutation of d is (3, 2, 4, 1). Two closest pivots
are π2 and π4 with corresponding postings (2, d) and (1, d).

At query time, we select ms ≤ mi pivots closest to the
query q and retrieve respective posting lists. If ms = mi =
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Table 1: Summary of Data Sets

Name Distance # of rec. Brute-force In-memory Dimens. Source
function search (sec) size

Metric Data

CoPhIR L2 5 · 106 0.6 5.4GB 282 MPEG7 descriptors [7]
SIFT L2 5 · 106 0.3 2.4GB 128 SIFT descriptors [26]
ImageNet SQFD[4] 1 · 106 4.1 0.6 GB N/A Signatures generated from

ImageNet LSVRC-2014 [33]

Non-Metric Data

Wiki-sparse Cosine sim. 4 · 106 1.9 3.8GB 105 Wikipedia TF-IDF vectors
generated via Gensim [32]

Wiki-8 KL-div/JS-div 2 · 106 0.045/0.28 0.13GB 8 LDA (8 topics) generated
from Wikipedia via Gensim [32]

Wiki-128 KL-div/JS-div 2 · 106 0.22/4 2.1GB 128 LDA (128 topics) generated
from Wikipedia via Gensim [32]

DNA Normalized 1 · 106 3.5 0.03GB N/A Sampled from the Human Genome3

Levenshtein with sequence length N (32, 4)

m, it is possible to compute the exact Footrule distance (or
Spearman’s rho) between the query permutation and the
permutation induced by data points. One possible search
algorithm keeps an accumulator (initially set to zero) for ev-
ery data point. Posting lists are read one by one: For every
encountered posting (pos(πi, x), x) we increase the accumu-
lator of x by the value |pos(πi, x) − pos(πi, q)|. If the goal
is to compute Spearman’s rho, the accumulator is increased
by |pos(πi, x)− pos(πi, q)|2.

If ms < m, by construction of the posting lists, using
the inverted index, it is possible to obtain rankings of only
ms < m pivots. For the remaining, m −ms pivots we pes-
simistically assume that their rankings are all equal to m
(the maximum possible value). Unlike the case mi = ms =
m, all accumulators are initially set to ms · m. Whenever
we encounter a posting posting (pos(πi, x), x) we subtract
m− |pos(πi, x)− pos(πi, q)| from the accumulator of x.

Consider again the example of Figure 1. Let mi = ms = 2
and a be the query point. Initially, the accumulators of b, c,
and d contain values 4·2 = 8. Because ms = 2, we read post-
ing lists only of the two closest pivots for the query point a,
i.e., π1 and π2. The posting lists of π1 is comprised of (1, a),
(1, b), and (2, c). On reading them (and ignoring postings
related to the query a), accumulators b and c are decreased
by 4−|1−1| = 4 and 4−|1−2| = 3, respectively. The post-
ing lists of π2 are (2, a), (2, b), and (2, d). On reading them,
we subtract 4− |2− 2| = 4 from each of the accumulators b
and d. In the end, the accumulators b, c, d are equal to 0, 5,
and 4. Unlike the case when we compute the Footrule dis-
tance between complete permutation, the Footrule distance
on truncated permutations correctly predicts the order of
three nearest neighbors of a.

Using fewer pivots at retrieval time allows us to reduce
the number of processed posting lists. Another optimiza-
tion consists in keeping posting lists sorted by pivots posi-
tion pos(πi, x) and retrieving only the entries satisfying the
following restriction on the maximum position difference:
|pos(πi, x) − pos(πi, q)| ≤ D, where D is a method param-
eter. Because posting list entries are sorted by pivot posi-
tions, the first and the last entry satisfying the maximum
position difference requirement can be efficiently found via

the binary search.
Tellez et al. [39] proposed a modification of the MI-file

which they called a Neighborhood APProximation index
(NAPP). In the case of NAPP, there also exist a large set
of m pivots of which only mi < m pivots (most closest
to inducing data points) are indexed. Unlike the MI-file,
however, posting lists contain only object identifiers, but no
positions of pivots in permutations. Thus, it is not possible
to compute an estimate for the Footrule distance by read-
ing only posting lists. Therefore, instead of an estimate for
the Footrule distance, the number of most closest common
pivots is used to sort candidate objects. In addition, the
candidate objects sharing with the query fewer than t clos-
est pivots are discarded (t is a parameter). For example,
points a and b in Figure 1 share the same common pivot π1.
At the same time a does not share any closest pivot with
points d and c. Therefore, if we use a as a query, the point
b will be considered to be the best candidate point.

Chávez et al. [24] proposed a single framework that unifies
several approaches including PP-index, MI-file, and NAPP.
Similar to the PP-index, permutations are viewed as strings
over a finite alphabet. However, these strings are indexed
using a special sequence index that efficiently supports rank
and select operations. These operations can be used to sim-
ulate various index traversal modes, including, e.g., retrieval
of all strings whose i-th symbol is equal to a given one.

3. EXPERIMENTS

3.1 Data Sets and Distance Functions
We employ three image data sets: CoPhIR, SIFT, Ima-

geNet, and several data sets created from textual data. The
smallest data set (DNA) has one million entries, while the
largest one (CoPhIR) contains five million high-dimensional
vectors. All data sets derived from Wikipedia were gener-
ated using the topic modelling library GENSIM [32]. The
data set meta data is summarized in Table 1. Below, we
describe our data sets in detail.

CoPhIR is a five million subset of MPEG7 descriptors
downloaded from the website of the Institute of the National
Research Council of Italy[7].
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SIFT is a five million subset of SIFT descriptors (from
the learning subset) downloaded from a TEXMEX collection
website[26].4

In experiments involving CoPhIR and SIFT, we employed
L2 to compare unmodified, i.e., raw visual descriptors. We
implemented an optimized procedure to compute L2 that
relies on Single Instruction Multiple Data (SIMD) opera-
tions available on Intel-compatible CPUs. Using this imple-
mentation, it is possible to carry out about 20 million L2

computations per second using SIFT vectors or 10 million
L2 computations using CoPhIR vectors.

ImageNet collection comprises one million signatures ex-
tracted from LSVRC-2014 data set [33], which contains 1.2
million high resolution images. We implemented our own
code to extract signatures following the method of Beecks [4].
For each image, we selected 104 pixels randomly and mapped
them into 7-dimensional feature space: three color, two po-
sition, and two texture dimensions.

The features were clustered by the standard k-means algo-
rithm with 20 clusters. Then, each cluster was represented
by an 8-dimensional vector, which included a 7-dimensional
centroid and a cluster weight (the number of cluster points
divided by 104).

Images were compared using a metric function called the
Signature Quadratic Form Distance (SQFD). This distance
is computed as a quadratic form, where the matrix is re-
computed for each pair of images using a heuristic similarity
function applied to cluster representatives. It is a distance
metric defined over vectors from an infinite-dimensional space
such that each vector has only finite number of non-zero ele-
ments. For further details, please, see the thesis of Beecks [4].
SQFD was shown to be effective [4]. Yet, it is nearly two
orders of magnitude slower compared to L2.

Wiki-sparse is a set of four million sparse TF-IDF vec-
tors (created via GENSIM [32]). On average, these vectors
have 150 non-zero elements out of 105. Here we use a cosine
similarity, which is a symmetric non-metric distance:

d(x, y) = 1−

(
n∑
i=1

xiyi

)(
n∑
i=1

x2i

)−1/2( n∑
i=1

y2i

)−1/2

.

Computation of the cosine similarity between sparse vec-
tors relies on an efficient procedure to obtain an intersection
of non-zero element indices. To this end, we use an all-
against-all SIMD comparison instruction as was suggested
by Schlegel et al. [35]. This distance function is relatively
fast being only about 5x slower compared to L2.

Wiki-i consist of dense vectors of topic histograms cre-
ated using the Latent Dirichlet Allocation (LDA)[6]. The
index i ∈ {8, 128} denotes the number of topics. To create
these sets, we trained a model on one half of the Wikipedia
collection and then applied it to the other half (again using
GENSIM [32]). Zero values were replaced by small num-
bers (10−5) to avoid division by zero in the distance cal-
culations. Two distance functions were used for these data
sets: the Kullback-Leibler (KL) divergence:

∑n
i=1 xi log xi

yi

and its symmetrized version called the Jensen-Shannon (JS)
divergence:

d(x, y) =
1

2

n∑
i=1

[
xi log xi + yi log yi − (xi + yi) log

xi + yi
2

]
.

4http://corpus-texmex.irisa.fr/

Both the KL- and the JS-divergence are non-metric dis-
tances. Note that the KL-divergence is not even symmetric.

Our implementation of the KL-divergence relies on the
precomputation of logarithms at index time. Therefore, dur-
ing retrieval it is as fast as L2. In the case of JS-divergence,
it is not possible to precompute log(xi + yi) and, thus, it is
about 10-20 times slower compared to L2.

DNA is a collection of DNA sequences sampled from the
Human Genome 5. Starting locations were selected ran-
domly and uniformly (however, lines containing the symbol
N were excluded). The length of the sequence was sam-
pled from N (32, 4). The employed distance function was
the normalized Levenshtein distance. This non-metric dis-
tance is equal to the minimum number of edit operations
(insertions, deletions, substitutions), needed to convert one
sequence into another, divided by the maximum of the se-
quence lengths.

3.2 Tested Methods
Table 2 lists all implemented methods and provides infor-

mation on index creation time and size.
Multiprobe-LSH (MPLSH) is implemented in the li-

brary LSHKit 6. It is designed to work only for L2. Some
parameters are selected automatically using the cost model
proposed by Dong et al. [17]. However, the size of the hash
table H, the number of hash tables L, and the number of
probes T need to be chosen manually. We previously found
that (1) L = 50 and T = 10 provided a near optimal per-
formance and (2) performance is not affected much by small
changes in L and T [9]. This time, we re-confirmed this ob-
servation by running a small-scale grid search in the vicinity
of L = 50 and T = 50 for H equal to the number of points
plus one. The MPLSH generates a list of candidates that
are directly compared against the query. This comparison
involves the optimized SIMD implementation of L2.

VP-tree is a classic space decomposition tree that recur-
sively divides the space with respect to a randomly chosen
pivot π[43, 40]. For each partition, we compute a median
value R of the distance from π to every other point in the
current partition. The pivot-centered ball with the radius
R is used to partition the space: the inner points are placed
into the left subtree, while the outer points are placed into
the right subtree (points that are exactly at distance R from
π can be placed arbitrarily).

Partitioning stops when the number of points falls below
the threshold b. The remaining points are organized in a
form of a bucket. In our implementation, all points in a
bucket are stored in the same chunk of memory. For cheap
distances (e.g., L2 and KL-div) this placing strategy can
halve retrieval time.

If the distance is the metric, the triangle inequality can
be used to prune unpromising partitions as follows: imag-
ine that r is a radius of the query and the query point is
inside the pivot-centered ball (i.e., in the left subtree). If
R − d(π, q) > r, the right partition cannot have an answer,
i.e., the right subtree can be safely pruned. If the query
point is in the right partition, we can prune the left subtree
if d(π, q) − R > r. The nearest-neighbor search is simu-
lated as a range search with a decreasing radius: Each time
we evaluate the distance between q and a data point, we

5http://hgdownload.cse.ucsc.edu/goldenPath/hg38/
bigZips/
6Downloaded from http://lshkit.sourceforge.net/
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Table 2: Index Size and Creation Time for Various Data Sets

VP-tree NAPP LSH Brute-force filt. k-NN graph

Metric Data

CoPhIR 5.4 GB (0.5min) 6 GB (6.8min) 13.5 GB (23.4min) 7 GB (52.1min)
SIFT 2.4 GB (0.4min) 3.1 GB (5min) 10.6 GB (18.4min) 4.4 GB (52.2min)
ImageNet 1.2 GB (4.4min) 0.91 GB (33min) 12.2 GB (32.3min) 1.1 GB (127.6min)

Non-Metric Data

Wiki-sparse 4.4 GB (7.9min) 5.9 GB (231.2min)
Wiki-8 (KL-div) 0.35 GB (0.1min) 0.67 GB (1.7min) 962 MB (11.3min)
Wiki-128 (KL-div) 2.1 GB (0.2min) 2.5 GB (3.1min) 2.9 GB (14.3min)
Wiki-8 (JS-div) 0.35 GB (0.1min) 0.67 GB (3.6min) 2.4 GB (89min)
Wiki-128 (JS-div) 2.1 GB (1.2min) 2.5 GB (36.6min) 2.8 GB (36.1min)
DNA 0.13 GB (0.9min) 0.32 GB (15.9min) 61 MB (15.6min) 1.1 GB (88min)

Note: The indexing algorithms of NAPP and k-NN graphs used four threads.
In all but two cases (DNA and Wiki-8 with JS-divergence), we build the k-NN graph using the Small World algorithm [29].
In the case of DNA or Wiki-8 with JS-divergence, we build the k-NN graph using the NN-descent algorithm [16].
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Figure 2: Distance values in the projected space (on the y-axis) plotted against original distance values (on the x-axis). Plots
2a and 2b use random projections. The remaining plots rely on permutations. Dimensionality of the target space is 64. All
plots except Plot 2b represent projections to L2. In Plot 2b the target distance function is the cosine similarity. Distances
are computed for pairs of points sampled at random. Sampling is conducted from two strata: a complete subset and a set of
points that are 100-nearest neighbors of randomly selected points. All data sets have one million entries.
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Figure 3: A fraction of candidate records that are necessary to retrieve to ensure a desired recall level (10-NN search). The
candidate entries are ranked in a projected space using either the cosine similarity (only for Wiki-sparse) or L2 (for all the
other data sets). Two types of projections are used: random projections (rand) and permutations (perm). In each plot, there
are several lines that represent projections of different dimensionality. Each data (sub)set in this experiment contains one
million entries.
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compare this distance with r. If the distance is smaller, it
becomes a new value of r. In the course of traversal, we first
visit the closest subspace (e.g., the left subtree if the query
is inside the pivot-centered ball).

For a generic, i.e., not necessarily metric, space, the prun-
ing conditions can be modified. For example, previously we
used a liner “stretching” of the triangle inequality [9]. In
this work, we employed a simple polynomial pruner. More
specifically, the right partition can be pruned if the query is
in the left partition and (R − d(π, q))βαleft > r. The left
partition can be pruned if the query is in the right partition
and (d(π, q)−R)βαright > r.

We used β = 2 for the KL-divergence and β = 1 for every
other distance function. The optimal parameters αleft and
αright can be found by a trivial grid-search-like procedure
with a shrinking grid step [9] (using a subset of data).
k-NN graph (a proximity graph) is a data structure in

which data points are associated with graph nodes and k
edges are connected to k nearest neighbors of the node. The
search algorithm relies on a concept “the closest neighbor of
my closest neighbor is my neighbor as well.” This algorithm
can start at an arbitrary node and recursively transition to a
neighbor point (by following the graph edge) that is closest
to the query. This greedy algorithm stops when the current
point x is closer to the query than any of the x’s neighbors.
However, this algorithm can be trapped in a local minima
[15]. Alternatively, the termination condition can be defined
in terms of an extended neighborhood [36, 29].

Constructing an exact k-NN graph is hardly feasible for
a large data set, because, in the worst case, the number of
distance computations is O(n2), where n in the number of
data points. While there are amenable metric spaces where
an exact graph can be computed more efficiently than in
O(n2), see e.g. [30], the quadratic cost appear to be un-
avoidable in many cases, especially if the distance is not a
metric or the intrinsic dimensionality is high.

An approximate k-NN graph can be constructed more ef-
ficiently. In this work, we employed two different graph con-
struction algorithms: the NN-descent proposed by Dong et
al. [16] and the search-based insertion algorithm used by
Malkov et al. [29]. The NN-descent is an iterative proce-
dure initialized with randomly selected nearest neighbors.
In each iteration, a random sample of queries is selected to
participate in neighborhood propagation.

Malkov et al. [29] called their method a Small World
(SW) graph. The graph-building algorithm finds an inser-
tion point by running the same algorithm that is used during
retrieval. Multiple insertion attempts are carried out start-
ing from a random point.

The open-source implementation of NN-descent is publicly
available online.7. However, it comes without a search algo-
rithm. Thus, we used the algorithm due to Malkov et al. [29],
which was available in the Non-Metric Space Library [8].
We applied both graph construction algorithms. Somewhat
surprisingly, in all but two cases, NN-descent took (much)
longer time to converge. For each data set, we used the
graph-construction algorithm that performed better on a
subset of the data. Both graph construction algorithms are
computationally expensive and are, therefore, constructed
in a multi-threaded mode (four threads). Tuning of k-NN
graphs involved manual selection of two parameters k and

7https://code.google.com/p/nndes/

the decay coefficient (tuning was carried out on a subset of
data). The latter parameter, which is used only for NN-
descent, defines the convergence speed.

Brute-force filtering is a simple approach where we ex-
haustively compare the permutation of the query against
permutation of every data point. We then use incremental
sorting to select γ permutations closest to the query per-
mutation. These γ entries represent candidate records com-
pared directly against the query using the original distance.

As noted in § 2, the cost of the filtering stage is high.
Thus, we use this algorithm only for the computationally
intensive distances: SQFD and the Normalized Levenshtein
distance. Originally, both in the case of SQFD and Normal-
ized Levenshtein distance, good performance was achieved
with permutations of the size 128. However, Levenshtein
distance was applied to DNA sequences, which were strings
whose average length was only 32. Therefore, using uncom-
pressed permutations of the size 128 was not space efficient
(128 32-bit integers use 512 bytes). Fortunately, we can
achieve the same performance using bit-packed binary per-
mutations with 256 elements, each of which requires only 32
bytes.

The optimal permutation size was found by a small-scale
grid search (again using a subset of data). Several values of
γ (understood as a fraction of the total number of points)
were manually selected to achieve recall in the range 0.85-
0.9.

NAPP is a neighborhood approximation index described
in § 2 [39]. Our implementation is different from the propo-
sition of Chávez et al. [24] and Tellez et al. [38] in at least
two ways: (1) we do not compress the index and (2) we
use a simpler algorithm, namely, the ScanCount, to merge
posting lists [13]. For each entry in the database, there is a
counter. When we read a posting list entry corresponding to
the object i, we increment counter i. To improve cache uti-
lization and overall performance, we split the inverted index
into small chunks, which are processed one after another.
Before each search counters are zeroed using the function
memset from a standard C library.

Tuning NAPP involves selection of three parameters m
(the total number of pivots), mi (the number of indexed
pivots), and t. The latter is equal to the minimum number of
indexed pivots that has to be shared between the query and
a data point. By carrying out a small-scale grid search, we
found that increasing m improves both recall and decreases
retrieval time, yet, improvement is small beyond m = 500.
At the same time, computation of one permutation entails
computation of m distances to pivots. Thus, larger values
of m incur higher indexing cost. Values of m between 500
and 2000 provide a good trade-off. Because the indexing
algorithm is computationally expensive, it is executed in a
multi-threaded mode (four threads).

Increasing mi improves recall at the expense of retrieval
efficiency: The larger is mi, the more posting lists are to
be processed at query time. We found that good results are
achieved for mi = 32. Smaller values of t result in high recall
values. At the same time, they also produce a larger number
of candidate records, which negatively affects performance.
Thus, for cheap distances, e.g. L2, we manually select the
smallest t that allows one to achieve a desired recall (using
a subset of data). For more expensive distances, we have an
additional filtering step (as proposed by Tellez et al. [38]),
which involves sorting by the number of commonly indexed
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pivots.
Our initial assessment showed that NAPP was more ef-

ficient than the PP-index and at least as efficient MI-file,
which agrees with results of Chávez et al. [11]. We also com-
pared our NAPP implementation to that of Chávez et al. [11]
using the same L1 data set: 106 normalized CoPhIR descrip-
tors. At 95% recall, Chávez et al. [11] achieve a 14x speed
up, while we achieve a 15x speed up (relative to respective
brute-force search implementations). Thus, our NAPP im-
plementation is a competitive benchmark. Additionally we
benchmark our own implementation of Fagin et al.’s OME-
DRANK algorithm [20] and found NAPP to be more effi-
cient. We also experimented with indexing permutations
using the VP-tree, yet, this algorithm was either outper-
formed by the VP-tree in the original space or by NAPP.

3.3 Experimental Setup
Experiments were carried out on an Linux Intel Xeon

server (3.60 GHz, 32GB memory) in a single threaded mode
using the Non-Metric Space Library [8] as an evaluation
toolkit. The code was written in C++ and compiled using
GNU C++ 4.8 with the -Ofast optimization flag. Addi-
tionally, we used the flag -march=native to enable SIMD
extensions.

We evaluated performance of a 10-NN search using a pro-
cedure similar to a five-fold cross validation. We carried
out five iterations, in which a data set was randomly split
into two parts. The larger part was indexed and the smaller
part comprised queries 8. For each split, we evaluated re-
trieval performance by measuring the average retrieval time,
the improvement in efficiency (compared to a single-thread
brute-force search), the recall, the index creation time, and
the memory consumption. The retrieval time, recall, and the
improvement in efficiency were aggregated over five splits.
To simplify our presentation, in the case of non-symmetric
KL-divergence, we report results only the for the left queries.
Results for the right queries are similar.

Because we are interested in high-accuracy (near 0.9 re-
call) methods, we tried to tune parameters of the methods
(using a subset of the data) so that their recall falls in the
range 0.85-95. Method-specific tuning procedures are de-
scribed in respective subsections of Section 3.2.

3.4 Quality of Permutation-Based Projections
Recall that permutation methods are filter-and-refine ap-

proaches that map data from the original space to L2 or
L1. Their accuracy depends on the quality of this mapping,
which we assess in this subsection. To this end, we explore
(1) the relationship between the original distance values and
corresponding values in the projected space, (2) the rela-
tionship between the recall and the fraction of permutations
scanned in response to a query.

Figure 2 shows distance values in the original space (on
the x-axis) vs. values in the projected space (on the y-axis)
for eight combinations of data sets and distance functions.
Points were randomly sampled from two strata: a complete
subset and a set of points that are 100-nearest neighbors
of randomly selected points. Of the presented panels, 2a
and 2b correspond to the classic random projections. The
remaining panels show permutation-based projections.

8For cheap distances (e.g., L2) the query set has the size
1000, while for more expensive ones (such as the SQFD), we
used 200 queries for each of the five splits.

Classic random projections are known to preserve inner
products and distance values [5]. Indeed, the relationship
between the distance in the original and the projected space
appears to be approximately linear in panels 2a and 2b.
Therefore, it preserves the relative distance-based order of
points with respect to a query. For example, there is a high
likelihood for the nearest neighbor in the original space to re-
main the nearest neighbor in the projected space. In princi-
ple, any monotonic relationship—not necessarily linear–will
suffice [37]. If the monotonic relationship holds at least ap-
proximately, the projection typically distinguishes between
points close to the query and points that are far away.

For example, the projection in panel 2e appears to be quite
good, which is not entirely surprising, because the original
space is Euclidean. The projections in panels 2h and 2d
are also reasonable, but not as good as one in panel 2e.
The quality of projections in panels 2f and 2c is somewhat
uncertain. The projection in panel 2g–which represents the
non-symmetric and non-metric distance–is obviously poor.
Specifically, there are two clusters: one is close to the query
(in the original distance) and the other is far away. However,
in the projected space these clusters largely overlap.

Figure 3 contains nine panels that plot recall (on x-axis)
against a fraction of candidate records necessary to retrieve
to ensure this recall level (on y-axis). In each plot, there
are several lines that represent projections of different di-
mensionality. Good projections (e.g., random projections
in panels 3a and 3b) correspond to steep curves: recall ap-
proaches one even for a small fraction of candidate records
retrieved. Steepness depends on the projection dimension-
ality. However, good projection curves are steep even in
relatively low dimensions.

The worst projection according to Figure 2 is in panel
2g. It corresponds to the Wiki-128 data set with distance
measured by KL-divergence. Panel 3f in Figure 3, corre-
sponding to this combination of the distance and the data
set, also confirms the low quality of the projection. For
example, given a permutation of dimensionality 1024, scan-
ning 1% of the candidate permutations achieves roughly a
0.9 recall. An even worse projection example is in panel 3e.
In this case, regardless of the dimensionality, scanning 1%
of the candidate permutations achieves recall below 0.6.

At the same time, for majority of projections in other
panels, scanning 1% of the candidate permutations of di-
mensionality 1024 achieves an almost perfect recall. In other
words, for some data sets, it is, indeed, possible in most cases
to obtain a tiny set of candidate entries containing a true
near-neighbor by searching in the permutation space.

3.5 Evaluation of Efficiency vs Recall
In this section, we use complete data sets listed in Table 1.

Figure 4 shows nine data set specific panels with improve-
ment in efficiency vs. recall. Each curve captures method-
specific results with parameter settings tuned to achieve re-
call in the range of 0.85-0.95.

It can be seen that in most data sets the permutation
method NAPP is a competitive baseline. In particular, pan-
els 4a and 4b show NAPP outperforming the state-of-the art
implementation of the multi-probe LSH (MPLSH) for recall
larger than 0.95. This is consistent with findings of Chávez
et al. [11].

In that, in our experiments, there was no single best
method. k-NN graphs substantially outperform other meth-
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Figure 4: Improvement in efficiency vs. recall for various data sets (10-NN search). Each plot includes one of the two
implemented k-NN graph algorithms: Small World (SW) or NN-descent (NN-desc).
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ods in 6 out of 9 data sets. However, in low-dimensional data
sets shown in panels 4d and 4e, the VP-tree outperforms the
other methods by a wide margin. The Wiki-sparse data set
(see panel 4i), which has high representational dimensional-
ity, is quite challenging. Among implemented methods, only
k-NN graphs are efficient for this set.

Interestingly, the winner in panel 4f is a brute-force filter-
ing using binarized permutations. Furthermore, the brute-
force filtering is also quite competitive in panel 4c, where it is
nearly as efficient as NAPP. In both cases, the distance func-
tion is computationally intensive and a more sophisticated
permutation index does not offer a substantial advantage
over a simple brute-force search in the permutation space.

Good performance of k-NN graphs comes at the expense of
long indexing time. For example, it takes almost four hours
to built the index for the Wiki-sparse data set using as many
as four threads (see Table 2). In contrast, it takes only 8
minutes in the case of NAPP (also using four threads). In
general, the indexing algorithm of k-NN graphs is substan-
tially slower than the indexing algorithm of NAPP: it takes
up to an order of magnitude longer to build a k-NN graph.
One exception is the case of Wiki-128 where the distance is
the JS-divergence. For both NAPP and k-NN graph, the in-
dexing time is nearly 40 minutes. However, the k-NN graph
retrieval is an order of magnitude more efficient.

Both NAPP and the brute-force searching of permutations
have high indexing costs compared to the VP-tree. This
cost is apparently dominated by time necessary to compute
permutations. Recall that obtaining a permutation entails
m distance computations. Thus, building an index entails
N ·m distance computations, where N is the number of data
points. In contrast, building the VP-tree requires roughly
N · log2N/b distance computations, where b is the size of the
bucket. In our setup, m > 100 while log2N/b < 20. There-
fore, the indexing step of permutation methods is typically
much longer than that of the VP-tree.

Even though permutation methods may not be the best
solutions when both data and the index are kept in main
memory, they can be appealing in the case of disk-resident
data [2] or data kept in a relational database. Indeed, as
noted by Fagin et al. [20], indexes based on the inverted files
are database friendly, because they require neither complex
data structures nor many random accesses. 9 Furthermore,
deletion and addition of records can be easily implemented.
In that, it is rather challenging to implement a dynamic
version of the VP-tree on top of a relational database.

We also found that all evaluated methods perform rea-
sonably well in the surveyed non-metric spaces. This might
indicate that there is some truth to the two folklore wis-
doms: (1) “the closest neighbor of my closest neighbor is my
neighbor as well”, (2) “if one point is close to a pivot, but
another is far away, such points cannot be close neighbors”.
Yet, these wisdoms are not universal. For example, they
are violated in one dimensional space with the “distance”
e−|x−y||x − y|. In this space, points 0 and 1 are distant.
However, we can select a large positive number that can be
arbitrarily close to both of them, which results in violation
of both property (1) and (2).

It seems that such a paradox does not manifest in the
surveyed non-metric spaces. In the case of continuous func-
tions, there is non-negative strictly monotonic transforma-

9The brute-force filtering of permutations is a simpler ap-
proach, which is also database friendly.

tion f(x) ≥ 0, f(0) = 0 such that f(d(x, y)) is a µ-defective
distance function. Thus, the distance satisfies the following
inequality:

|f(d(q, a))− f(d(q, b))| ≤ µf(d(a, b)), µ > 0 (1)

Indeed, a monotonic transformation of the cosine similarity
is the metric function (i.e, the angular distance) [41]. The
square root of the JS-divergence is metric function called
Jensen-Shannon distance [18]. The square root of all Breg-
man divergences (which include the KL-divergence) is µ-
defective as well [1]. The normalized Levenshtein distance
is a non-metric distance. However, for many realistic data
sets, the triangle inequality is rarely violated. In particular,
we verified that this is the case of our data set. The nor-
malized Levenshtein distance is approximately metric and,
thus, it is approximately µ-defective (with µ = 1).

If Inequality (1) holds, due to properties of f(x), d(a, b) = 0
and d(q, a) = 0 implies d(q, b) = 0. Similarly if d(q, b) = 0,
but d(q, a) 6= 0, d(a, b) cannot be zero either. Moreover,
for a sufficiently large d(q, a) and sufficiently small d(q, b),
d(a, b) cannot be small. Thus, the two folklore wisdoms are
true if the strictly monotonic distance transformation is µ-
defective.

4. CONCLUSIONS
We benchmarked permutation methods for approximate

k-nearest neighbor search for generic spaces where both data
and indices are stored in main memory (aiming for high-
accuracy retrieval). We found these filter-and-refine meth-
ods to be reasonably efficient. The best performance is
achieved either by NAPP or by brute-force filtering of per-
mutations. For example, NAPP can outperform the multi-
probe LSH in L2. However, permutation methods can be
outstripped by either VP-trees or k-NN graphs, partly be-
cause the filtering stage can be costly.

We believe that permutation methods are most useful in
non-metric spaces of moderate dimensionality when: (1)
The distance function is expensive (or the data resides on
disk); (2) The indexing costs of k-NN graphs are unaccept-
ably high; (3) There is a need for a simple, but reasonably
efficient, implementation that operates on top of a relational
database.
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[12] E. Chávez, G. Navarro, R. Baeza-Yates, and J. L.
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