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ABSTRACT
Although researchers have devoted considerable attention to help-
ing database users formulate queries, many users still find it chal-
lenging to specify queries that involve joining tables. To help users
construct join queries for exploring relational databases, we pro-
pose ETable, a novel presentation data model that provides users
with a presentation-level interactive view. This view compactly
presents one-to-many and many-to-many relationships within a sin-
gle enriched table by allowing a cell to contain a set of entity ref-
erences. Users can directly interact with this enriched table to in-
crementally construct complex queries and navigate databases on
a conceptual entity-relationship level. In a user study, participants
performed a range of database querying tasks faster with ETable
than with a commercial graphical query builder. Subjective feed-
back about ETable was also positive. All participants found that
ETable was easier to learn and helpful for exploring databases.

1. INTRODUCTION
A considerable challenge for non-technical users of relational

databases is constructing join queries [29]. The join operation is re-
quired for even simple data lookup queries since relational databases
store information in multiple separate normalized tables. Although
database normalization provides many benefits for managing data
(e.g., avoiding update anomalies), it significantly decreases the us-
ability of database systems by forcing users to write many join
queries to explore databases.

Constructing join queries is difficult for several reasons. The
main reason is that users find it difficult to determine which re-
lations to join among many relations. Understanding the role of
each relation that represents a relationship of interest and finding
the right join attributes are not trivial tasks, even when a schema di-
agram is given. To tackle this challenge, users often write complex
queries by starting with a simpler query and iteratively adding oper-
ators [37]. Although this iterative strategy is helpful, it is still chal-
lenging because the format of join query results is hard to interpret.
For example, consider a query that joins two relations in many-
to-many relationships (e.g., Papers and Authors in Figure 3). A
result of this query produces a large number of duplications (e.g.,
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the title of each paper repeated as many times as the number of its
authors). People represent the same information differently when
they use a spreadsheet. For instance, they might create a cell con-
taining multiple values separated by commas. Relational databases
cannot represent data in this way because the relational model (as
implemented in most relational DBMSs) requires that data be at
least in the first normal form.

The usability challenge of writing complex queries has been stud-
ied by many researchers. Although visual query builders help peo-
ple formulate SQL queries [13], they separate query construction
and result presentation parts [29], introducing a usability gap be-
tween users’ actions and their results [42, 37]. To overcome this
limitation, researchers argue that database interfaces need to adopt
the direct manipulation principle [42], a well-known concept in the
human-computer interaction (HCI) area [29, 35]. It enables users
to iteratively specify operators by directly interacting with result in-
stances using simple interactions [35]. Researchers also argue that
join query results should be represented in an easier-to-understand
format that improves the interpretation of query results. Jagadish et
al. [30] proposed the notion of the presentation data model, which
they defined as a full-fledged layer above the logical and physical
schema. This presentation layer allows users to better understand
the query results without requiring full awareness of the schema.
All this research strongly suggests the need for developing database
interfaces that are usable, interactive, and interpretable.

We present ETable, a novel presentation data model with which
users can interactively browse and navigate databases on an entity-
relationship level without writing SQL. ETable presents a query
result as an enriched table in which each cell can contain a set of
entity references. By deliberately relaxing the first normal form, we
compactly represent one-to-many and many-to-many relationships
within a single table — a novel capability that enables users to more
easily browse and interpret query results consisting of multiple re-
lations. Figure 1 illustrates how ETable effectively presents a list
of SIGMOD papers containing the keyword “user” from an aca-
demic paper database collected from DBLP and the ACM Digital
Library (see Figure 3 for schema). Each row in ETable shows the
base attributes and relevant entities of a paper, such as its authors
and cited papers. If a relational database were used to obtain the
same information, 9 tables would need to be joined, and the results
produced would be hard to interpret (e.g., many duplicated cells).

To discover which relevant entities should be shown for each
row, ETable uses a novel graph-based model called the typed graph
model (TGM), which frees users from concerning themselves with
the complexity of the logical schema; users may instead focus on
exploring and understanding the data set at the conceptual (or entity-
relationship) level. The typed graph model stores relational data as
graphs in which nodes represent entities (e.g., authors, papers) and
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Papers filtered by Paper_keywords.keyword like '%user%' AND Conferences.acronym = 'sigmod'

id  title  year  page_start page_end
Conferences
acronym

Authors
names 

Papers (referencing)
titles 

Papers (referenced)
titles 

Paper_keywords
keywords 

2575 Making
database
systems usable

2007 13 24 SIGMOD

7

H. V. Jaga…, Adriane
Ch…, Aaron Elki…,
Magesh Jay…, Yunyao
Li 12

XRANK: Ran…, NaLIX:
an…, DaNaLIX: a…,
Assisted q…, Towards
a… 25

QueryViz:…,
Exploring…,
Efficient…, Homebrew
d…, The intera…

6

user inter…, human
fact…, general ,
usability , design

2628 Addressing
diverse user
prefer…

2007 641 652 SIGMOD 2Zhiyuan Ch…, Tao
Li

10

Adaptive w…, Enhanced
w…, Context‐se…,
Automatic…, Ordering
t… 13

Making dat…,
Supporting…, Skimmer:
r…, Diversity…,
Efficient… 5

informatio…, user
prefe…, data explo…,
human fact…,
algorithms

2701 Assisted
querying using
instan…

2007 1156 1158 SIGMOD
2

Arnab Nand…, H. V.
Jaga…

8

Predicting…, The
intera…, FreeQ: an…,
Efficient…, Location‐
a… 8

query, keyword,
interface,
autocomple…, user
inter…

1928 SkewTune:
mitigating
skew in m…

2012 25 36 SIGMOD

4

YongChul K…,
Magdalena…, Bill
Howe, Jerome A.… 3

A platform…, A
latency…, Highly‐Ava…

6

Minimal Ma…,
SpongeFile…, Shark:
SQL…, Fast data…,
Effective…

9

skew, parallel d…,
design, query proc…,
performanc…

1953 Towards a
unified
architecture…

2012 325 336 SIGMOD

4

Xixuan Fen…, Arun
Kumar, Benjamin R…,
Christophe… 4

Towards a…, MCDB: a
mo…, MauveDB: s…,
Large‐scal…

6

Sparkler:…, Learning
G…, A performa…,
Knowledge…, Shark:
SQL…

10

theory, user‐defin…,
measuremen…,
incrementa…,
design

2326 Efficiently
incorporating
user…

2009 87 100 SIGMOD

4

Xiaoyong C…, Ba‐Quy
Vuo…, AnHai Doan,
Jeffrey F.…

7

Provenance…, Pay‐as‐
you…, An Interac…, To
search…, Interactiv…

5

Building,…,
Automatica…,
Integratin…,
Provenance…, Deco:
decl…

8

informatio…, user
feedb…, systems ,
informatio…, design

1875 Interactive
data mining
with 3…

2013 1009 1012 SIGMOD

4

Elke Achte…, Hans‐
Peter…, Erich Schu…,
Arthur Zim…

3
Efficient…, Finding
Ge…, Computing…

3

SigniTrend…,
Subsamplin…,
Representa… 4

visualizat…, user
inter…, high‐dimen…,
parallel c…

2688 MashMaker:
mashups for
the mas…

2007 1116 1118 SIGMOD
2

Robert Enn…, Minos N.
G… 3

VizDeck: s…, VizDeck:
a…, Exploring… 3

human fact…, end‐
users , design

2317 Crowds,
clouds, and
algorithms…

2010 1259 1260 SIGMOD

5

Sihem Amer…, AnHai
Doan, Jon M. Kle…,
Nick Kouda…, Michael
J.…

2
Early onli…, Pay‐as‐
you… 2

CrowdDB: a…,
StreamRec:…

16

security,
experiment…,
economics,
user/machi…,
reliabilit…

2219 Load‐balanced
query
disseminat…

2010 471 482 SIGMOD

4

Emiran Cur…, Alin
Deuts…, K. K. Rama…,
Divesh Sri… 3

Speeding u…,
Distribute…, P‐ring:
an…

1Privacy pr…

12

online com…,
publisher…, load
balan…, design, user
censo…

2675 ConEx: a 2007 1076 1078 SIGMOD Chaitanya…, Maksims Toward a P…, 1ParaTimer:… graphical…, design ,

HISTORY

1. Open 'Papers' table

2. Filter 'Papers' table by
(Paper_keywords like '%user%')

3. Sort table by # of Papers
(referenced)

4. Filter 'Papers' table by
(Paper_keywords like '%user%' &
Conferences = 'sigmod')

5. Sort table by # of
Paper_keywords

6. Sort table by # of Papers
(referenced)

ETABLE BUILDER Choose a table

Figure 1: ETable integrates multiple relations into a single enriched table that helps users browse databases and interactively specify operators
for building complex queries. This example presents a list of SIGMOD papers containing the keyword “user” from an academic paper
database collected from DBLP and the ACM Digital Library. Each column represents either a base attribute of a paper or a set of relevant
entities obtained from other tables (e.g., Conferences, Authors). If a relational database were used to obtain the same information, 9 tables
would need to be joined, and the results produced can be hard to interpret because of many duplicated cells.

edges represent relationships (e.g., those that relate authors to pa-
pers). This transformation enables ETable to retrieve other related
entities through simple graph operations. For example, a given pa-
per’s authors, stored as direct neighbors, can be retrieved through a
quick neighbor-lookup.

As the construction of complex queries and the exploration of
data are inherently iterative processes, database exploration tools
should provide easy-to-use operations to help users incrementally
revise queries [16, 37, 35]. ETable’s direct manipulation interface
enables users to directly work with and modify an existing enriched
table to update its associated queries. For example, imagine a user,
Jane, who would like to further explore the result in Figure 1. To
see the detailed information about the authors of a particular paper,
she clicks on its “author count” button (Figure 2-b). This simple
interaction of tapping the button is translated into a series of prim-
itive operators behind the scene, such as Select, as in selecting the
row associated with a paper; and Add, as in adding and joining the
Authors table with the Papers table. With a few rounds of similar
interactions, Jane can incrementally build complex queries.

ETable’s novel ideas work together to address an important, of-
ten overlooked problem in databases. The seminal vision paper by
Jagadish et al. [29] introduced the notion of the presentation data
model and argued the importance of direct manipulation interface.
However, designing an easy-to-use system that meets these require-
ments is challenging. ETable is one of the first instantiations of this
important idea, filling a critical research gap, by effectively inte-
grating HCI principles to greatly improve database usability. To
enable the creation of such a usable tool, ETable tightly integrates:
(1) a novel hybrid data model representation, which advances over
the relational and nested-relational models, to naturally represent
entities and relationships; and (2) a novel set of interactions that
closely work with the representation to enable users to specify ex-
pressive queries through direct manipulation. With ETable’s user
interface, non-experts can easily and naturally explore databases
without writing SQL, while ETable internally performs queries un-
der the hood.

Through ETable, we contribute:
• A novel presentation data model that presents a query result

as an enriched table for users to easily browse and explore

relational databases (Section 3, 5);
• A graph-based model, called typed graph model (TGM) that

provides an abstraction of relational databases, for users to
explore data in ETable at a conceptual level (Section 4);
• A set of user-level actions, operations that users can directly

apply to an enriched table to incrementally construct com-
plex queries and navigate databases (Section 6.1);
• The usable interface of ETable that outperforms a commer-

cial graphical query builder in a user study, in both speed
and subjective ratings across a range of database querying
tasks (Section 6, 7).

2. RELATED WORK

2.1 Database Usability & Query Specifications
Since Query-by-Example (QBE) was developed in 1970s [48],

database researchers have studied fairly extensively the usability
aspect of database systems [29, 12, 2, 28]. Usability is important,
especially because not all database users have expertise in writ-
ing complex queries; many non-technical users find it challenging
to write even very simple join queries [29, 1]. Many existing ap-
proaches are aimed at assisting users with formulating queries. One
representative method is the visual query builder, which enables
users to visually manipulate schema elements on a graphical in-
terface [13]. However, most visual querying systems require that
users have precise knowledge of a schema, which makes it difficult
for non-experts to use. This limitation can be relieved in keyword
search systems, studied extensively in the last decade [27, 10, 4,
19], or natural language interfaces [33]. However, most of existing
approaches [31, 23] separate queries and results so that users can-
not directly refine query results, which decreases the usability of
the systems. Nandi and Jagadish [37] argued that users’ querying
process is often iterative, so database systems should guide users
toward interactively formulating and refining queries.

2.2 Direct Manipulation & Iterative Querying
Several database researchers argued that the usability of database

querying systems can improve by adopting the direct manipula-
tion paradigm [42], a well-established design principle in the HCI
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and information visualization areas. Acknowledging that users’
needs are often ambiguous rather than precisely specifiable, re-
searchers have developed many tools that enable users to interac-
tively browse and explore databases [28, 11, 43]. Although they are
not specifically designed for relational databases, a number of inter-
active visualization systems for entity-relationship data have been
developed by information visualization researchers [32, 22, 21, 36].
For example, NetLens [32] visualizes relationships between two
selected entity types in many-to-many relationships, and Graph-
Trail [22] visually summarizes each entity type and enables users
to switch between entities. Although these visualization systems
provide an overview of data sets, they are not suited for examining
database instances along with attributes. In exploring and analyz-
ing instance-level information, tabular interfaces, including spread-
sheets, are better suited and often preferred by database users [24,
46, 35, 17, 25]. Tyszkiewicz [46] argued that spreadsheets can play
a role as a database engine by using functions and macros. Liu
and Jagadish [35] formally defined operators that interactively per-
form grouping operations within a spreadsheet. However, since the
rigid tabular structure does not effectively present many-to-many
relationships, the spreadsheet suffers from the same problems that
relational databases have (i.e., a large number of duplications). To
overcome this limitation, Jagadish et al. [30] proposed using a pre-
sentation view layer on top of underlying databases, which is the
notion of the presentation data model, defined as a full-fledged
layer on top of the logical and physical models. The challenge is to
design presentation data models that help people easily understand
join query results and interact with them.

2.3 Data Models for Effective Presentation
To develop an intuitive structure for presentation data models, we

review a number of data models that conceptualize the mini-world
represented in databases. One such example is the nested relational
model, studied in the 1980s, which allows each cell to contain an-
other table that presents one-to-many relationships in a single ta-
ble [40, 39]. The nested model has been used in several studies for
designing database interfaces. Bakke et al. [7] recently designed
a direct manipulation interface for nested-relational databases, and
DataPlay [3] also used the nested model for presenting query re-
sults. However, the model suffers from scalability issues because
the sizes of the nested tables often become huge when an inner ta-
ble contains a large number of associated rows or columns [8]. One
way to tackle this problem is to replace the inner table with a set of
pointers. For example, the object-relational model lets attributes be
user-defined types that include pointers [44]. We adapt this idea by
introducing an entity reference which compactly represents related
entities. Another class of the data models that effectively concep-
tualize the real-world is the graph data model [6, 26, 14, 45]. It
represents entities as nodes and relationships as edges based on the
entity-relationship model [18, 9]. Catarci et al., [15] used a graph-
style translation layer for their visual querying system. To pro-
vide users with an easy-to-understand view at an entity-relationship
level, we also maintain a graph-style model, transformed from re-
lational databases, under the presentation view.

3. INTRODUCING ETABLE
Before we describe the technical details of the proposed data

models, we introduce ETable by describing what users see and how
they can interact with it.

Representation. Figure 1 illustrates an enriched table that we
call Etable. As mentioned earlier, it presents a list of SIGMOD
papers containing the keyword “user” from our collected database
(see Figure 3 for schema). Each row of Etable represents a single

Results for each of the three actions:

Click count

a

b

c

Click 

Pivot button

b c
Click 

reference

a

Figure 2: Users can iteratively specify user-level actions by inter-
acting with ETable. In this example, users can examine further
information about paper authors in three ways: (a) clicking on an
author’s name; (b) clicking a paper’s author count; (c) clicking on
the pivot button.

entity of the selected entity type (i.e., Papers); its column rep-
resents either a base attribute of the entity (e.g., year) or a set of
relevant entities (e.g., authors, keywords). This representation is
formed by pivoting a query result of a join of multiple tables (e.g.,
Papers, Paper keywords, Authors) to a user-selected entity type
(e.g., Papers). One advantage of this representation is that it can
simultaneously present all relevant information about an entity in
a single row (e.g., authors, keywords, citations). The relational
model cannot represent all of this information in a single relation
without duplications because every attribute value must be atomic.
For instance, when the Papers table is joined with the Authors

table, the paper information is repeated as many times as the num-
ber of authors, which prevents users from quickly interpreting the
results. We integrate information spread across multiple tables into
a single table by allowing each cell to contain a set of references to
other entities.

Interactions. Users can interact with Etable to explore further
information. For instance, to examine further information about
the authors of the papers in Figure 1, users can create a new Etable
that lists authors in several ways, as depicted in Figure 2: (1) If
users are interested in one of the authors (e.g., Arnab Nandi), they
can click on his name to create a new Etable consisting of one row
that presents its attributes; (2) if users want to list the complete
set of authors (e.g., all seven authors of the paper titled “Making
database systems usable”), they can click on the author count in
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Form Source Determining factor for mapping from a relational table

Node types Entity tables Relation with a single-attribute primary key
Multi-valued attributes Relation with two attributes; one of them is a foreign key of an entity relation
Single-valued categorical attributes Attribute of low cardinality

Edge types One-to-many relationships Foreign key between two entity relations
Many-to-many relationships Relation with a composite primary key; both are foreign keys of entity relations
Multi-valued attributes From an entity table to a multi-valued attribute
Single-valued categorical attributes From an entity table to a categorical attribute

Table 1: Categories of node and edge types based on how they are translated from relational schema

Paper_Authors

paper_id author_id order

Authors

id name institution_id

Papers

id conference_id title year page_start page_end

Paper_Keywords

paper_id keyword

Paper_References

paper_id ref_paper_id

Foreign key

Primary key

Conferences

id short title

Institutions

id name country

id

Figure 3: The relational schema of the academic data set used in
this work, 7 relations in total.

the right corner of the cell (i.e., 7); and (3) if users want to list
and sort the entities across the entire rows in a column (e.g., Who
wrote the most papers about “user” in SIGMOD?), they can click
on the pivot button on the column menu, which groups and sorts
the authors based on the number of papers they have written. By
gradually applying these operations, users can incrementally make
sense of data and build complex queries.

4. TYPED GRAPH MODEL
In this section, we define a typed graph model (TGM) which en-

ables users to explore relational databases on a conceptual entity-
relationship level without having to know a logical schema. A rela-
tional schema and instances are translated into a database schema
graph and database instance graph as a preprocessing step, and all
operations specified by users on the ETable interface are executed
over these graphs, not relational databases.

We represent entities and relationships as a graph with types and
attributes. Each entity forms a node, and relationships among the
entities become edges. A typed graph database (TGDB) consists
of a TGDB schema graph, GS , and a TGDB instance graph, GI .

Definition 1. Schema Graph. A TGDB schema graph GS is
a tuple (T ,P), where T represents a set of node types (or entity
types1), and P ⊆ T × T represents a set of edge types (or rela-
tionship types). Each node type τi ∈ T is a tuple (αi,Ai, βi),
where αi denotes the name of a node type, Ai is a set of single-
valued attributes, and βi is a label attribute chosen from one of the
attributes and used to represent node instances of this type. Each
edge type ρ ∈ P also has a name and a set of attributes. We denote
the source and target node types of ρ as source(ρ) and target(ρ),
respectively. All the edge types, except self loops, are bidirectional.

1We use the words “node” and “entity” interchangeably. A node
is used more formally; an entity is used more for presentation to
users.

Institutions Institutions: country

PapersConferences

Authors

Papers: year
Paper_keywords: 

keyword

Figure 4: TGDB schema graph constructed from the relational
schema in Figure 3. Each rectangle represents a node type, and
each edge is an edge type.

Papers

Institutions

Paper_Keywords: 

keyword

Authors

Papers: year

Institutions: country

Conferences

……

…

…

…

… …

2014

2007

2011

H. V. Jagadish

Arnab Nandi

Jeff Heer S. Korea

KDD

CHI

Univ. of Washington

Univ. of Michigan

Seoul National Univ.

data cleaning

usability

user interface

USA

SIGMOD Making database system...

Schema-free SQL

Wrangler: interactive vis...

India

Figure 5: A part of the TGDB instance graph constructed from
the academic data set used in this paper, following the schema in
Figure 4. Node types shown in blue italic font.

Definition 2. Instance Graph. A TGDB instance graph GI , is
a tuple (V,E), where V represents a set of nodes (or entities) and
E represents a set of edges (or relationships) between two nodes.
Every instance graph GI has a corresponding schema graph GS ,
and the instance graph has a node type mapping function typeτ :
V → T and an edge type mapping function typeρ : E → P that
partition nodes V into V1, ..., VnT and edges E into E1, ..., EnP .
Each node v ∈ V consists of a set of attribute values v[Aij ] for the
attributes of the corresponding node type and has a label defined as
label(v) = v[βi]. Each edge e ∈ E consists of a set of attribute
values e[Aij ] for its type. We denote the source and target nodes of
e as source(e) and target(e), respectively.

The typed graph model, similar to many graph data models [6,
26, 45], is much more effective for conveying a conceptual under-
standing of the mini-world represented in databases than the rela-
tional model. As it abstracts relational databases, users can ignore
the logical and physical representation of data. Users can also eas-
ily understand the structure of data, since nodes always represent
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entities and edges represent relationships, Unlike TGM, the rela-
tional model is a mixture of entities, relationships, and multival-
ued attributes. Although some existing graph models are more ex-
pressive for representing a variety of relationships (e.g., hierarchi-
cal parent-child relationships among entities), we simply use nodes
and edges to focus on making the semantics of the underlying re-
lations more explicit by mapping to entities and relationships that
they represent in the real world.

Relational databases can be translated into the TGDB schema
and instance graphs in a near-automatic process. We adapt the re-
verse engineering literature pertaining to translating relational data-
bases into several graph-style models [9, 20, 41]. A detailed proce-
dure presented in Appendix A includes an analysis of a relational
schema based on primary keys, foreign keys, and cardinalities for
classifying tables into several categories, and a series of actions that
create the schema graph. Table 1 summarizes the categories of node
and edge types based on how they are determined from relational
schema. Figures 4 and 5 illustrate a schema graph and a part of the
instance graph constructed from an academic publication database
whose schema is shown in Figure 3.

5. ETABLE PRESENTATION DATA MODEL
We present our ETable presentation data model for usable explo-

ration of entities and relationships in databases.

5.1 Enriched Table
A query result in the ETable model is presented as an enriched

table, which we also call ETable. An ETableR has a set of columns
A and consists of a set of rows r ∈ R. The columns are catego-
rized into two types: single-attribute columns and entity-reference
columns. The value of the single-attribute column r[A] is atomic
as it is in the relational model. The value of the entity-reference
column r[A] contains a single or a set of entity references. The en-
tity reference refers to another node in the database instance graph.
Unlike a foreign key in the relational model, each entity reference
is shown as a clickable label, similar to a hyperlink on a webpage.
Just like how a hyperlink’s hypertext describes the webpage that
the link points to (instead of its URL), for example, ETable repre-
sents an author’s entity reference by the author name (instead of the
author ID).

The entity-reference columns present rich information spread
across multiple relations within a single enriched table. While a
foreign key attribute in the relational model contains only a single
reference for a many-to-one relationship because of the first normal
form, an entity-reference column can represent one-to-many re-
lationships, many-to-many relationships, or multivalued attributes
in a single column. Furthermore, the entity-reference column has
advantages over the nested relational model which requires much
screen space as it squeezes another table into cells, leading to ineffi-
cient browsing. Unlike the nested model, ETable presents clickable
labels that compactly show information and allow users to further
explore relevant information.

5.2 ETable Specification
An ETable can be specified by selecting specific elements of the

TGDB database schema and instance graphs introduced in the pre-
vious section.

Definition 3. ETable Query Specification. An ETableR is spec-
ified by a query pattern Q, which is a tuple (τa, T, P, C).

1. Primary node type τa: It is one of the node types in the
schema graph. Each row of ETable will represent a single
node instance of the primary node type.

Authors Institutions

country like ‘%Korea%’

PapersConferences

acronym = ‘SIGMOD’ year > 2005

Figure 6: An example query pattern in a diagrammatic notation.
It represents a query that finds a list of researchers who have pub-
lished papers at SIGMOD after 2005 and are currently working at
institutions in Korea.

2. Participating node types T : It is a set of node types cho-
sen from the node types in the schema graph (i.e., T =
{t1, ..., tnT },∀ti ∈ T ). It must contain the primary node
type τa (i.e., τa ∈ T ). It determines the scope of data in-
stances and is similar to a set of relations in SQL FROM
clauses. A node type in the schema graph can exist multiple
times in the participating node types, like a relational algebra
expression can contain the same relation multiple times.

3. Participating edge types P : It is a set of edge types selected
from the schema graph (i.e., P = {p1, ..., pnP },∀pi ∈ P).
It connects the participating nodes types, thus all the source
and target nodes of these edges should exist in the partic-
ipating node types (i.e., source(pi) ∈ T ∧ target(pi) ∈
T,∀pi ∈ P).

4. Selection conditions for node types C: It is a set of selec-
tion conditions C = (C1, ..., CnT ) applied to each of the
participating node types, i.e., Ci applies to ti ∈ T .

A query pattern can be represented as an acyclic graph where
one of the nodes is marked as a primary node type and any node
can have selection conditions. For example, the query pattern in
Figure 6 represents a query that produces a list of researchers who
have published papers at SIGMOD after 2005 and are currently
working at institutions in Korea.

5.3 Incremental Query Building with Primi-
tive Operators

In ETable, a query pattern can be constructed and updated by
primitive operators. Each operator builds on an existing ETable
query to generate a new, updated ETable query. In this subsection,
we describe these operators in detail. In Section 6.1, we will de-
scribe how users’ actions performed on the ETable user interface
will invoke these operators. Formally, given an ETable specifica-
tion Q(τa, T, P, C), each of the following operator creates a new
specification Q′(τ ′a, T ′, P ′, C′), except the Initiate operator which
creates a new ETable from scratch.

1. Initiation. A new ETable can be created by selecting one
of the node types τk in the schema graph. Its result lists the
corresponding nodes.

Initiate(τk) = Q′

where τ ′a = τk, T
′ = {τk}, P ′ = {}, and C = {}.

2. Selection. ETable rows can be filtered based on their columns,
similar to the selection operator in the relational model. Ap-
plying a selection condition Ck to the primary node type τa
filters the rows of the current ETable.

Select(Ck, Q) = Q′

where τ ′a = τa, T
′ = T, P ′ = P, and C′a = Ck.
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Primitive Operators applied Corresponding User-Level Actions

Clicking 

”Conferences” table 

in default view lists 

all conferences

Clicking paper count at the end of the row 

for SIGMOD lists all SIGMOD papers

Clicking pivot button groups authors 

and ranks them by paper count; 

The result shown at bottom right 

(Divesh Srivastava ranked first). 

Previous result preserved at top right 

to help users interpret transformation.

Opening the filter window and specifying a condition 

filters papers down to those published after 2005

Open(“Conferences”)

Filter(“year>2005”)

Pivot(“Authors”)

Seeall(“SIGMOD”, “Papers”)

Initiate(“Conferences”)

Conferences

P1

Select(“acronym = ‘SIGMOD”)

Conferences
acronym = ‘SIGMOD’

P2

Add(“Papers”)

PapersConferences

acronym = ‘SIGMOD’

P3

Select(“year > 2005”)

PapersConferences

acronym = ‘SIGMOD’ year > 2005

P4

Add(“Authors”)

AuthorsPapersConferences

acronym = ‘SIGMOD’ year > 2005

P5

Add(“Institutions”)

Authors InstitutionsPapersConferences

acronym = ‘SIGMOD’ year > 2005

P6

Select(“country like ‘%Korea%’”)

Authors Institutions

country like ‘%Korea%’

PapersConferences

acronym = ‘SIGMOD’ year > 2005

P7

Shift(“Authors”)

Authors Institutions

country like ‘%Korea%’

PapersConferences

acronym = ‘SIGMOD’ year > 2005

P8

U1

U2

U3

U4

Figure 7: An example of incrementally building a complex query: find a list of researchers who have published papers at SIGMOD after
2005 and are currently working at institutions in Korea. Left: constructing the query through a series of ETable primitive operators. Right:
corresponding user actions in the interface that invoke the operators (Section 6.1 describes the user-level actions in detail). User actions for
the operators P6-P8, similar to the others shown in the figure, are omitted for brevity.

3. Adding a node type. Another node type can be added to
a query pattern to examine how it is related to the current
primary node type. It corresponds to adding a join operator
in the relational model. Selecting one of the node types that
are linked to the primary node type τa by an edge type ρk
(i.e., source(ρk) = τa), adds it to the participating node
types in the current query Q.

Add(ρk, Q) = Q′

where τ ′a = target(ρk), T ′ = T ∪ {target(ρk)},
P ′ = P ∪ {ρk}, and C′ = C ∪ {}.

4. Shifting focus to another participating node type. The pri-
mary node type τa can be changed to one of the other par-
ticipating node types τk. It can be thought of as representing
the current join result from a different angle.

Shift(τk, Q) = Q′

where τ ′a = τk, T
′ = T, P ′ = P, and C′ = C.

The above primitive operators enable us to build any complex
queries by incrementally specifying the operators one-by-one. Fig-
ure 7 (left) illustrates the query construction process consisting of 8
operators. A new query pattern can be created with Initiate; Selec-
tion conditions can be added with Select, just like writing expres-
sions in WHERE clauses in SQL; and node types can be added with
Add, just like adding relations to FROM clauses and setting one of
them as a GROUP BY attribute. Also, the primary node type can be
changed with Shift, similar to changing the GROUP BY attribute.
A sequence of these operators specified constitutes a query pattern
in the ETable model. These operators can be invoked by users on
the user interface with user-level actions, which we will describe
details in Section 6.1. The right side of Figure 7 shows how users
can specify the same query through the user interface.

5.4 Query Execution
A query pattern is executed to produce a result in the ETable

format. The execution process is divided into two steps: instance
matching and format transformation. The first step extracts matched
node instances from the TGDB instance graph, and the second step
transforms a result from the first step into the ETable format.
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Authors
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Figure 8: ETable query execution process consists of two steps: (1) the instance matching step which extracts matched instances from the
instance graph and (2) the format transformation step which transforms the instances into the ETable format.

5.4.1 Instance Matching
The instance matching process finds a set of matched instances

for a given query pattern. Formally, it returns a graph relation RG,
which consists of a set of tuples, each of which contains a list of
node instances in the database instance graph. The graph relation
is generated with an instance matching function m(Q), which con-
sists of a series of operations. The operations constitute primitives
which make up a graph relation algebra.

A graph relationRG, similar to a relation in the relational model,
consists of a set of tuples with a set of attributes. The schema of the
graph relation is defined as a set of node types A = (A1, ..., An)
where Ai ∈ T . In other words, each attribute Ai corresponds to a
node type. The node type τj determines the domain of the attribute
(i.e., domaini = {v|v ∈ Vj}). A base graph relation is defined as
a graph relation with a single attribute. In other words, each node
type τ1, ..., τn produces a base graph relation RG1 , ..., RGn . A non-
base graph relation can be created by applying the following graph
relation operators to the base graph relations.

1. Selection. It filters tuples of a graph relation R using a se-
lection condition Ci applicable to one of the node types Ai.

σCi(R
G) = {r|r ∈ RG ∧ r[Ai] satisfies Ci}.

2. Join. It joins two graph relations R1 and R2 using edge
types ρk. The attributes of the created graph relation is a
concatenation of the attributes of the two graph relations.

RG1 ∗ρk R
G
2 = {(r1, r2)|r1 ∈ RG1 ∧ r2 ∈ RG2
∧ source(ρk) ∈ A1 ∧ target(ρk) ∈ A2}.

We use a symbol, ∗, to differentiate it from the relational
correspondence, ./, and not to be confused with natural join.

3. Projection. It removes all attributes of the graph relations
except the given attribute. Duplicated rows are eliminated.

ΠAi(R
G) = {r[Ai]|r ∈ RG}.

These operators enable us to define an instance matching func-
tion m(Q). In fact, this function only requires the Selection and
Join operators: the Projection operator will be used later in the for-
mat transformation step.

Definition 4. Instance Matching. Given a ETable query pattern
Q(τa, T, P, C), a matching function m returns a graph relation RG

containing node instances in the instance graph GI .

m(Q) = σC1(RG1 ) ∗p1 σC2(RG2 ) ∗p2 ... ∗pn−1 σCn(RGn ),

where RGi is a base graph relation obtained from a node type ti ∈
T , i.e., RGi = {v|v ∈ V ∧ type(v) = ti}, Ci ∈ C is a selection

condition for Ri, and pi ∈ P is one of the edge types that joins
graph relations on both sides, i.e., pi = {p|p ∈ P ∧ source(p) ∈
{t1, ...ti} ∧ target(p) ∈ {ti+1, ...tn}}.

Figure 8 (left) illustrates the instance matching process. It returns
a graph relation, which is an intermediate format to be transformed
into the ETable format.

5.4.2 Format Transformation
A graph relation obtained from the instance matching function

is transformed into the ETable format. We describe how rows and
columns of ETable are determined from it.

The rows of ETable consist of nodes of the primary node type,
filtered by all selection conditions in the query pattern. They are
extracted from the instance matching result:

R = {v|v ∈ Πτa(m(Q(τa, T, P, C)))}.

Given the result of the instance matching function, all attributes ex-
cept the attribute representing the primary node type are discarded,
and then, each of distinct node in that column becomes a row.

ETable has three types of columns to present rich information for
each row. In addition to the attributes of the primary node types,
which we call base attributes Ab, we introduce two other types
of columns for presenting a set of entity references: participating
node columns, At, and neighbor node columns, Ah.

1. List of base attributes Ab: It is a full set of the attributes
A of the primary node type τa. The value of the column
Aj ∈ Ab would be a single value:

r[Aj ] = v[Aj ].

2. List of participating node types At: It is a set of all the
node types T in the query pattern, except the primary node
type τa, i.e., At = {τ |τ ∈ T ∧ τ 6= τa}. The value of the
column Aj ∈ At would be a set of entity references:

r[Aj ] ={u|u ∈ V ∧Aj = type(u)

∧Πtype(u)στa=r(m(Q))}.

3. List of neighbor node types Ah: It is a set of all the neigh-
boring node types of the primary node type τa in the schema
graph regardless of the query pattern, i.e.,Ah = {(ρ, τ)|τ ∈
T ∧ ρ ∈ P ∧ source(ρ) = τa ∧ target(ρ) = τ}. The value
of the column Aj ∈ Ah would be a set of nodes references:

r[Aj ] ={u|u ∈ V ∧ e ∈ E ∧Aj = (type(e), type(u))

∧ u = target(e) ∧ r = source(e)}.
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Figure 9: The ETable interface consists of (1) the default table list for initiating a query, (2) the main view presenting query results, (3) the
schema view showing a query pattern, and (4) the history view listing operators specified by users. Users can build queries and explore
databases by directly interacting with the interface.

Figure 8 (right) illustrates the results produced from the format
transformation process. The first two columns are base attributes,
and the rest of the columns are participating node columns. We
omit neighbor node columns as some of these columns are the same
as the participating node columns.

By transforming the graph relation into the ETable format, we
compactly present join query results without duplications. Each
row of ETable is uniquely determined by a node of a primary node
type. The participating node columns show all the other entity
types in the query pattern with respect to the primary node type.
This transformation process is similar to setting one of the relations
as a GROUP BY attribute in SQL, but while GROUP BY aggre-
gates the corresponding instances into a single value (i.e., COUNT,
AVG), ETable presents a list of the corresponding instances as en-
tity references. The neighbor node columns are also useful for
describing the rows of the ETable, although information in these
columns is not obtained from the graph relation. These columns en-
able users to browse one-to-many or many-to-many relationships.
Moreover, they provide users with a preview of possible new join
operations as it presents all the join candidates. For instance, a
ETable in Figure 1 consists of many neighbor node columns (e.g.,
Authors) that helps users browse rich information about each paper.

6. INTERFACE & SYSTEM DESIGN
ETable’s interface (Figure 9) consists of four components: (1)

the default table list, (2) the main view, (3) the schema view, and (4)
the history view. The default table list presents a list of entity types
in the schema graph. Users can pick one from the list to initiate
a query. The main view presents an ETable executed based on a
query pattern which is graphically shown over the schema view.
Users can directly interact with the main view to update the current
query. The list of actions specified by users is presented on the
history view, which allows users to revert to a previous state.

6.1 User-Level Actions
Users can update the current query pattern by directly interact-

ing with ETable via user-level actions. As shown in Figure 7, these
actions in turn invoke their corresponding primitive operators (dis-
cussed in Section 5.3).

1. Open a new table. Users can open a new table by clicking a
node type τk on the default table list. The action invokes the
Initiate(τk) operator (Fig 7: action U1).

Open(τk) = Initiate(τk).

2. Filter. Users can filter the rows of the current ETable by
inducing selection conditions via a popup window at the col-
umn header (Fig 7: action U3). Besides the base attributes,
users can also filter rows by the labels of the neighbor nodes
columns (e.g., authors’ names), which is translated into sub-
queries. We currently provide only a conjunction of pred-
icates, but it is straightforward to provide disjunctions and
more operations. The action invokes the Select operator.

Filter(C,R) = Select(C,R).

3. Pivot. Users can change the primary node type by clicking
the pivot button on the context menu for neighbor or partici-
pating node columns. It calls the Add operator if the column
is the neighbor node type (Fig 7: action U4); it performs the
Shift operator if it is the participating node type.

Pivot(ρl, R) = Add(ρl, R),

or Pivot(τk, R) = Shift(τk, R).

4. See a particular node. When users are interested in one of
the entity references, they can click it to create a new ETable
consisting of a single row presenting the clicked entity. Un-
like the above actions, it invokes two primitive operators: it
initiates a new ETable, and then perform the Select operator
to show the single node. For the clicked node vk:

Single(vk, R) =Select(C, type(vk), Initiate(type(vk)),

where C = {u|u = vk}.

5. See all related nodes. When users are interested in a full
list of entity references, they can click a number (i.e., entity
reference count) in the right corner of a cell (Fig 7: action
U2). It also encapsulates two primitive operators. The opera-
tors invoked are different depending on whether the selected
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Task Category #Relations

1. Find the year that the paper titled ‘Making database systems usable’ was published in. Attribute 1
2. Find all the keywords of the paper titled ‘Collaborative filtering with temporal dynamics’. Attribute 2
3. Find all the papers that were written by ‘Samuel Madden’ and published in 2013 or after. Filter 3
4. Find all the papers written by researchers at ‘Carnegie Mellon University’ and published

at the KDD conference.
Filter 5

5. Which institution in South Korea has the largest number of researchers? Aggregate 2
6. Find the top 3 researchers who have published the most papers in the SIGMOD conference. Aggregate 4

Table 2: List of tasks. Task 1 & 2 retrieve attribute values, task 3 & 4 filter entities, task 5 & 6 perform aggregations.

column is neighbor or participating node column. For the
neighboring node column ρl of vk:

Seeallh(vk, ρl, R) =Add(ρl, Select(C, type(vk), R)),

where C = {u|u = vk},

and for the participating node column tl:

Seeallt(vk, tl, R) =Shift(tl, Select(C, type(vk), R)), R)),

where C = {u|u = vk}}.

ETable supports additional actions that help with database explo-
ration, such as: (1) Sort rows based on the values in a column; (2)
Hide/show columns to reduce visual complexity in the interface;
and (3) Revert to previous queries via the left history panel.

6.2 Architecture
ETable system uses a three-tier architecture, consisting of (1)

an interactive user interface front-end that can run in any mod-
ern web browsers, written in HTML, JavaScript, and D3.js2; (2)
a Python-based application server; and (3) a PostgreSQL database
backend. The PostgreSQL database stores TGDB schema and in-
stance graphs in four relational tables: nodes, edges, node types,

and edge types. A query pattern for ETable is translated into SQL
queries that operate on the PostgreSQL database. To efficiently per-
form queries, we partition a long SQL query into multiple queries
consisting of a fewer number of relations to be joined (i.e., each for
a single entity-reference column) and merge them.

7. EVALUATION: USER STUDY
To evaluate the usability of ETable, we conducted a user study

that tests whether users can construct queries quickly and accu-
rately. We compared ETable with Navicat Query Builder.3 Navi-
cat is one of the most popular commercial database administration
tools with a graphical query building feature. Graphical builders
such as Navicat Query Builder have been commonly used as base-
line systems in database usability research [35, 38, 7].

7.1 Experimental Design
Participants. We recruited 12 participants from our university

through advertisements posted to mailing lists at our institution. All
were graduate students who had taken at least one database course
or had industry experience using database systems. The partici-
pants rated their experience in SQL, averaging at a score of 4.67
using a 7-point Likert scale (ranged from 3 to 6) with 1 being “hav-
ing no knowledge” and 7 being “expert”, which means most partic-
ipants considered themselves non-expert database users. None of
them had used the graphical query builder before. Each participant
was compensated with a $15 gift card.
2https://d3js.org/
3http://www.navicat.com/

Data set. We used an academic publication data set used through-
out this paper, which we collected from DBLP4 and ACM Digital
Library.5 It contains about 38,000 papers from 19 top conferences
in the areas of databases (e.g., SIGMOD), data mining (e.g,. KDD),
and human-computer interaction (e.g., CHI), since 2000. A rela-
tional schema was designed using standard design principles, re-
sulting in 7 relations with 7 foreign keys as depicted in Figure 3.
As the main focus of this evaluation is on ETable’s usability, this
data set creates a sufficiently large and complex database for such
purpose.

Procedure. Our study followed a within-subjects design with
two conditions: the ETable and Navicat conditions. Every partici-
pant first completed six tasks in one condition and then completed
another six tasks in the remaining condition. The orders of the con-
ditions were counterbalanced, resulting in 6 participants in each or-
dering. We generated two matched sets of tasks (6 tasks in each set)
differing only in their specific values used for parameters such as
the title of the paper. Before the participants were given the tasks to
carry out for each condition, they went through a 10-minute tutorial
for the tool they would use. For each task, the participants could ask
clarifying questions before starting, and they had a maximum of 5
minutes to complete each task. After the study, they completed a
questionnaire for subjective ratings and qualitative feedback. Each
study lasted for about 70 minutes. Participants completed the study
using Chrome browser, running on a Windows desktop machine,
with a 24-inch monitor at a 1920x1200 resolution.

Tasks. We carefully generated two matched sets of 6 tasks that
cover many database exploration and querying tasks. Table 2 shows
one set (the other set is similar). The tasks fall into three categories:
finding attribute values (Tasks 1 & 2); filtering (Tasks 3 & 4); ag-
gregation (Tasks 5 & 6). The tasks were designed based on prior
research studies and their categorization of tasks. Specifically, our
categories are based on those used in database and HCI research [5,
34], and our tasks vary in difficulty as in [33].

Measurements. We measured participants’ task completion times.
If a participant failed to complete a task within 5 minutes, the ex-
perimenter stopped the participant and recorded 300 seconds as the
task completion time. After completing tasks for both conditions,
the participants filled out a post-questionnaire that asked for their
subjective ratings about ETable (10 questions) and their subjective
preference between two conditions (7 questions).

7.2 Results
Task completion times. The average task times for ETable were

faster than those for Navicat for all six tasks. Figure 10 sum-
marizes the task time results. We performed two-tailed paired t-
tests. The differences were statistically significant for Tasks 1, 3,
5, and 6 (p < 0.005) and marginally significant for Tasks 2 and 4

4http://dblp.uni-trier.de/
5http://dl.acm.org/
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Figure 10: Average task completion time for each task. The error
bars represent 95% confidence intervals for the mean. Participants
performed the tasks faster with ETable than with Navicat. The ∗

and ◦ symbols indicate 99% and 90% statistical significance in the
two-tailed paired t-tests, respectively.

(p = 0.052, p = 0.053, respectively). The results of Task 2 may
be explained by an outlier participant who did not understand the
requirement that each row of the final results must represent a dif-
ferent keyword. Although Task 4 involves the highest number of
operations that require participants to spend significant time in in-
terpreting intermediate results before applying the next operators,
ETable helped participants complete this task over 30% faster than
Navicat.

The task completion times for ETable generally have low vari-
ance. The larger variance in Navicat is mainly due to syntax er-
rors that the participants faced. Many participants, who are non-
database experts, could not recall some SQL syntax and had trou-
ble debugging errors. In particular, they had trouble specifying
GROUP BY queries in Navicat. For example, many participants
did not specify a GROUP BY attribute in their SELECT clauses
in their first attempts. We also observed that many Navicat partic-
ipants were overwhelmed by the complexity of the syntax of join
queries [29] and preferred to specify new SQL queries from scratch
instead of debugging existing ones when their original queries failed.
Unlike graphical query builders such as Navicat, ETable helps non-
experts gradually build complex queries without having to know
the exact query syntax.

Subjective ratings. We asked participants to rate various aspects
of ETable using 7-point Likert scales (7 being “strongly agreed”).
Their subjective ratings were generally very positive (see Table 3).
In particular, all participants found ETable easy to learn (i.e., rated
6 or 7), and almost all participants (11/12) found ETable easy to
use and helpful for browsing data in databases. They also enjoyed
using ETable (10/12) and would like to use software like ETable in
the future (11/12). In response to the “helpful to interpret and un-
derstand results” question, one participant commented that “there
are too many attributes ..., which is not easy to interpret.” To ad-
dress this, as future work, we plan to develop techniques to rank
and select the most important columns to show whenever a table
has a large number of columns [47].

We also asked participants to compare ETable and Navicat in 7
aspects. All participants indicated that ETable was easier to learn
and was more helpful in browsing and exploring data. A majority
of participants liked ETable more (11/12) and found it easier to use
(10/12). They would choose to use ETable in the future (10/12)
and felt more confident using it (8/12). Half of the participants
answered that ETable is more helpful in finding specific data than
Navicat. This result was expected because ETable’s innovation fo-
cuses more on supporting data exploration.

Qualitative feedback. We asked participants about the features
they liked about ETable. Many participants (9/12) explicitly men-

Question Avg.

1. Easy to learn 6.42
2. Easy to use 6.33
3. Helpful to locate and find specific data 6.25
4. Helpful to browse data stored in databases 6.67
5. Helpful to interpret and understand results 5.58
6. Helpful to know what type of information exists 6.00
7. Helpful to perform complex tasks 6.00
8. Felt confident when using ETable 5.92
9. Enjoyed using ETable 6.42
10. Would like to use software like ETable in the future 6.50

Table 3: Subjective ratings about ETable using 7-point Likert scales
(7: Strongly Agreed. 1: Strongly Disagreed).

tioned the “pivot” feature. They said that the pivot feature enabled
them to easily specify complex join queries. One participant said
“I also loved the pivot feature ... having multiple pivots through-
out the course of forming a query. I messed up a query, but could
still find the right answer by doing an appropriate pivot.” In addi-
tion, many participants said that ETable provides an intuitive view
to users. One said “It is easy to see data from the perspective of
what the users want to see/retrieve ...” Another said “Visually, I
was able to see ... the effects of the SQL operations, which made it
easier to use and verify intermediate results.”

8. EXPRESSIVENESS
This section discusses the expressiveness of the ETable model.

We will first express the overall functionality of the ETable queries
as a general SQL query pattern. By doing so, we will show how
typical join queries can be translated into ETable queries, through
multiple steps (similar to [35, 15]), demonstrating ETable’s expres-
siveness. Any join queries involving only FK-PK relationships on
a relational database schema that meets ETable’s assumptions (de-
tailed in Appendix) can be translated into an ETable query that op-
erates on TGDB.

The overall functionality of ETable queries can be expressed as
the following general SQL query pattern:

SELECT τa.*, ent-list(t1), ent-list(t2), ...
FROM t1, t2, ...
WHERE source(p1) = target(p1) AND source(p2) =

target(p2) AND ... AND C1 AND C2 AND ...
GROUP BY τa;

where ent-list presents a list of corresponding entity references,
similar to the json agg operator in PostgreSQL.6 Each of the four
components in an ETable query (i.e., primary node type τa, node
types T , edge types P , and selection conditions C) maps to a clause
in SQL: primary node type to GROUP BY clause; node types to
FROM clause; edge types to join conditions; selection conditions
to WHERE clause.

Following the above mappings, we now follow the approach sim-
ilar to that in [35, 15] to show that ETable can expressively handle
typical join SQL queries, through a step-by-step translation. That
is, for any SQL join query following the above pattern, there exists
an equivalent ETable query.

1. Transforms a relational algebra join expression (R ./ R ./
...) to a graph relation correspondence RG ∗ RG ∗ ... (de-
scribed in Section 5.4) by analyzing the list of relations in

6http://www.postgresql.org/docs/9.4/static/
functions-aggregate.html
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the FROM clause, and the join conditions in the WHERE
clause. (Each RG is a node type; each ∗ an edge type.)

2. Applies the original selection conditions to the TGDB’s node
types;

3. If there is a group by attribute, transform it to the graph’s
primary node type; otherwise, if no group by attribute exists,
arbitrarily set a primary node type.

ETable can express typical join queries consisting of the core
relational algebra (i.e., relational algebra expression that does not
contain set operations), which accounts for a large number of the
database workloads. ETable additionally lets users choose a pri-
mary node type from the list of selected relations, and introduces
the entity-reference columns (i.e., represented as ent-list in the
above SQL pattern) to effectively present join queries. This paper
focuses on the critical usability challenge that arises when join-
ing several tables. In our future work, we plan to further increase
ETable’s expressiveness of the presentation model to the full set of
operators in the relational algebra, through introducing additional
operators to support more complex queries (e.g., set operations,
complex aggregations, etc.).

9. CONCLUSIONS
We proposed ETable, a new presentation data model for interac-

tively exploring relational databases. The enriched table represen-
tation of ETable generates a holistic, interactive view of databases
that helps users browse relevant information at an entity-relationship
level. By directly interacting with the interface, users can itera-
tively specify operators, enabling them to incrementally build com-
plex queries and navigate databases. ETable outperformed a com-
mercial graphical query builder in a user study, in both speed and
subjective ratings across a range of database querying tasks.

This work takes a first step towards developing a practically us-
able, interactive interface for relational databases, and opens up
many interesting opportunities. Future research directions include:
(1) incorporating more operations to further improve expressive
power (e.g., set operations); (2) accelerating the execution speed
of updated queries (e.g., by reusing intermediate results); (3) lever-
aging machine learning techniques to rank and select important
columns to display. The above ideas could usher a new genera-
tion of interactive database exploration tools that will benefit all
database users.
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APPENDIX
A. DATABASE TRANSLATION

This section describes a procedure for translating relational data-
bases into database schema and instance graphs in the typed graph
model. Our approach is based on the reverse engineering litera-
ture [9, 20, 15, 41]. We note that the following process cannot
be applied to any relational schema, as relational schema do not
contain all the semantics, but is a guideline for translations. We
make several assumptions as in the literature [15, 9]. First, all the
relations are in BCNF or 3NF. Second, there are no ternary rela-
tionships: all the relationships are binary. Third, for relationship
relations, we assume that all attributes are foreign keys of the re-
lations that participate in the relationship. Any attributes of the
relationship itself are ignored. Finally, a relation representing a
multivalued attribute always consists of two columns.
Identifying entity relations. This step identifies entity relations
from a set of relations. Informally, entity relations refer to relations
constructed from entity types in the entity-relationship model. We
define an entity relation as a relation whose primary key does not
contain a foreign key or a key inclusion dependent on any other
attribute in any other relation [15, 9]. For each of the identified
entity relations, the following process is performed.

1. A relation becomes a node type in the schema graph.
2. The relation name becomes the name of the node type.
3. All the attributes of the relation become the attributes of the

node type.
4. One attribute selected by users becomes a label attribute for

the node type.

We currently determine the label attribute based on a combi-
nation of heuristics, such as data type (e.g., text generally more
interpretable than numbers) and cardinality. However, this label
selection task is hard to fully automate. Thus, we also allow users
to manually pick a desired label attribute. In our future work, we
plan to investigate mixed-initiative approaches that allow human
and computer to work together, so that we would provide an initial
guess and recommend possible alternatives based on the heuristics,
and allow the users to select attributes that are most meaningful to
them.
Identifying 1:1 and 1:n relationships. Foreign keys, which are
used to represent one-to-one and one-to-many relationships between
entity relations in the relational model, are used to identify relation-
ships between entity relations found above. For each foreign key,
the following process is performed.

1. Each foreign key becomes an edge type in the schema graph.
The source node would be a node type representing a relation
containing the foreign key. The target node would be a node
type representing a relation which the foreign key refers to.

2. Unless the source and target node types are the same, the edge
types are duplicated with a reverse direction.

3. The label is defined as the name of the target node type. If the
label is used by another edge type, a slightly different label
will be created.

Identifying many-to-many relationships. Many-to-many rela-
tionships are represented as a separate table in the relational model.
We identify these tables whose primary key is a concatenation of
primary keys of two other entity relations. For each of the identified
relationship relations, the following process is performed.

1. Each relationship relation becomes an edge type in the schema
graph. The two other associated entity relations become source
and target nodes.

2. The remaining steps are the same as above (i.e., Steps 2 & 3)
Identifying multivalued attributes. The relational model stores
multivalued attributes in separate relations. We identify such re-
lations. We assume these relations consist of only two attributes
where both attributes make up the primary key and the first attribute
is a foreign key to an entity relation. For each of this case, the fol-
lowing process is performed.

1. The second attribute becomes a node type in the schema graph.
2. The node type has one attribute which refers to itself. The

label column is this only attribute.
3. An edge type is also created from the node type representing

the entity relation to the newly created node type. It will be
duplicated in a reverse direction.

Identifying categorical attributes. This step of identifying cat-
egorical attributes is optional, but we find it useful. People often
perform GROUP BY operations over categorical attributes, and this
step helps them perform such analysis. Any of the attributes of the
entity relations could be selected by users. Often, attributes with
low cardinality (e.g., less than 30) can be candidates for categorical
attributes. For each of the selected attributes, the following process
is performed.

1. Each attribute becomes a node type in the schema graph.
2. It has one attribute which refers to itself. The label column is

this only attribute.
3. An edge type is also created from the node type representing

the relation to the newly created node type. It will be dupli-
cated in a reverse direction.

This creates a TGDB schema graph. Under the assumptions we
made, the schema graph contains all the information in the original
relational schema. Once the schema is translated, it is straightfor-
ward to create the corresponding TGDB instance graph.
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