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ABSTRACT
Given the maturity of the data integration field it is sur-
prising that rigorous empirical evaluations of research ideas
are so scarce. We identify a major roadblock for empiri-
cal work - the lack of comprehensive metadata generators
that can be used to create benchmarks for different integra-
tion tasks. This makes it difficult to compare integration
solutions, understand their generality, and understand their
performance. We present iBench, the first metadata genera-
tor that can be used to evaluate a wide-range of integration
tasks (data exchange, mapping creation, mapping composi-
tion, schema evolution, among many others). iBench per-
mits control over the size and characteristics of the meta-
data it generates (schemas, constraints, and mappings). Our
evaluation demonstrates that iBench can efficiently gener-
ate very large, complex, yet realistic scenarios with differ-
ent characteristics. We also present an evaluation of three
mapping creation systems using iBench and show that the
intricate control that iBench provides over metadata scenar-
ios can reveal new and important empirical insights. iBench
is an open-source, extensible tool that we are providing to
the community. We believe it will raise the bar for empirical
evaluation and comparison of data integration systems.

1. INTRODUCTION
Despite the large body of work in data integration, the

typical evaluation of an integration system consists of exper-
iments over a few real-world scenarios (e.g., the Amalgam
Integration Test Suite [20], the Illinois Semantic Integration
Archive, or Thalia [15]) shared by the community, or ad hoc
synthetic schemas and data sets that are created for a spe-
cific evaluation. Usually, the focus of such an evaluation is
to exercise and showcase the novel features of an approach.
It is often hard to reuse these evaluations.
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Patterson [21] states that “when a field has good bench-
marks, we settle debates and the field makes rapid progress.”
Our canonical database benchmarks, the TPC benchmarks,
make use of a carefully designed schema (or in the case of
TPC-DI, a data integration benchmark, a fixed set of source
and destination schemas) and rely on powerful data gener-
ators that can create data with different sizes, distributions
and characteristics to test the performance of a DBMS. For
data integration however, data generators must be accom-
panied by metadata generators to create the diverse meta-
data (schemas, constraints, and mappings) that fuel integra-
tion tasks. To reveal the power and limitations of integra-
tion solutions, this metadata must be created systematically
controlling its detailed characteristics, complexity and size.
Currently, there are no openly-available tools for systemati-
cally generating metadata for a variety of integration tasks.

1.1 Integration Scenarios
An integration scenario is a pair of a source and target

schema (each optionally containing a set of constraints) and
a mapping between the schemas. Integration scenarios are
the main abstraction used to evaluate integration systems.
Typically in evaluations, the relationship between the source
and the target schema is controlled to illustrate different
features of a system. We present the two primary ways such
scenarios have been generated and illustrate how they have
been used in evaluating different integration tasks.

Example 1 (Primitives). Libraries of primitives
can be used to create scenarios of different shapes and sizes.
A set of synthetic schema evolution scenarios modeling mi-
cro and macro evolution behavior was proposed for evaluat-
ing mapping adaptation [25]. A set of finer-grained schema
evolution primitives was proposed for testing mapping com-
position [9]. Each primitive is a simple integration scenario.
A more general set of mapping primitives was proposed in
STBenchmark, to permit the testing and comparison of map-
ping creation systems [2]. The primitives used in each ap-
proach depended on the integration task. In STBenchmark,
the task was mapping creation. For composition [9], some
additional primitives that were trivial for mapping creation
(like an add-attribute primitive) were used because they
can make the composition non-trivial (i.e., the composition
may be a second-order (SO) mapping [14]).

Using mapping primitives one can either test a single solu-
tion or compare multiple solutions on integration scenarios
with different properties (by selecting different subsets of
primitives). In addition, scalability can be tested by com-
bining primitives and applying them repeatedly to generate
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larger scenarios (larger schemas and mappings). As an al-
ternative to using mapping primitives to create integration
scenarios, one can also use ad hoc integration scenarios tai-
lored to test specific features of an integration method. This
approach was the norm before the primitive approach was
introduced, and remains common.

Example 2 (Ad Hoc Scenarios). MapMerge [1] is a
system for correlating mappings using overlapping sets of
target relations, or using relations that are associated via
target constraints. To evaluate their approach, the authors
used three real biological schemas (Gene Ontology, UniProt
and BioWarehouse) and mapped the first two schemas to the
third (BioWarehouse). These real scenarios reveal applica-
bility of their technique in practice, but do not allow con-
trol over the metadata characteristics (number of mappings,
their complexity, etc.). Unfortunately, the primitives of pre-
vious approaches did not meet their needs as the mappings
created by sets of primitives rarely shared target relations
and the scenario generators did not permit detailed control
over how target constraints were generated.

Hence, to evaluate MapMerge, the authors created their
own ad hoc integration scenarios. These were designed to
let the researchers control the degree of sharing (how many
mappings used the same target relation) and the set of tar-
get schema constraints, the two crucial parameters for the
MapMerge algorithm. This set-up permitted control over the
mapping scenario complexity which was defined as the num-
ber of hierarchies in the target schema. However, this defi-
nition of complexity is not appropriate for other tasks (e.g.,
mapping composition) that do not depend so directly on the
characteristics of a schema hierarchy. Furthermore, this sce-
nario generator is limited to this one specific schema shape.
These characteristics make it unlikely that others can benefit
from this test harness for evaluating their work.

The widespread use of ad hoc scenarios is necessitated by
the lack of a robust metadata generator.

1.2 Contributions
We present iBench, a flexible integration metadata gener-

ator and make the following contributions.
• We define the metadata-generation problem and detail
important design decisions for a flexible, easy-to-use solu-
tion to this problem (Section 2). Our problem definition
includes the generation of (arbitrary) independent schemas
with an (arbitrary) set of mappings between them, where
the independent variables controlled by a user include the
schema size, the number of mappings (mapping size), the
mapping complexity, and the mapping language. The prob-
lem definition also permits the generation of schemas where
the relationship between the schemas is controlled in a pre-
cise way. Hence, this relationship can be viewed as an in-
dependent variable, controlled by a user of the generator
through the use of schema primitives.
• We show that the metadata-generation problem is NP-
hard and that even determining if there is a solution to a
specific generation problem may be NP-hard.
• We present MDGen, a best-effort, randomized algorithm,
(Section 3) that solves the metadata-generation problem.
The main innovation behind MDGen is in permitting flexible
control over independent variables describing the metadata
in a fast, scalable way.
• We present an evaluation of the performance of iBench
(Section 4) and show that iBench can efficiently generate

both large integration scenarios and large numbers of sce-
narios. We show that iBench can easily generate scenarios
with over 1 Million attributes, sharing among mappings,
and complex schema constraints in seconds. iBench can be
easily extended with new (user-defined) primitives and new
integration scenarios to adapt it to new applications and
integration tasks. We present a performance evaluation of
this feature where we take several real-world scenarios and
scale them up by a factor of more than 103 and combine
these user-defined primitives with native iBench primitives.
We show that this scaling is in most cases linear.
• We demonstrate the power of iBench by presenting a novel
evaluation of three mapping discovery algorithms, Clio [12],
MapMerge [1], and ++Spicy [17] (Section 5). Our evalu-
ation systematically varies the degree of source and target
sharing in the generated scenarios. This reveals new insights
into the power (and need for) mapping correlation (used in
MapMerge) and core mappings (used in ++Spicy) on com-
plex scenarios. As the first generator that varies the amount
of generated constraints, we show for the first time how this
important parameter influences mapping correlation. We
also quantify how increasing target keys improves the qual-
ity of ++Spicy’s mappings.

2. METADATA-GENERATION PROBLEM
We now motivate our design decisions and formalize the

metadata-generation problem. We use a series of examples
which showcase the need for certain features. This culmi-
nates in a formal problem statement and a complexity anal-
ysis which demonstrates that the problem is NP-hard.

2.1 Generating Integration Scenarios
Example 3. Alberto has designed a new mapping inver-

sion algorithm called mapping restoration. Like the Fagin
inverse [11], not every mapping has a restoration, but Al-
berto believes that most mappings do. To demonstrate this
empirically, he would like to compare the success rates of im-
plementations for restoration and the Fagin inverse. To do
this, he must be able to generate large sets of mappings.

Alberto’s problem would be solved by a mapping gener-
ator. We define an integration scenario as a triple M =
(S,T,Σ), where S and T are schemas and Σ is a set of log-
ical formulas over (S,T). Relation (and attribute) names
in the schemas may overlap, but we assume we can identify
each uniquely (for example, using S.R.A and T.R.A). We
generalize this definition later (Definition 2) to permit con-
straints (e.g., keys, foreign keys), instances of the schemas,
and transformations implementing the mappings.

To fulfill Alberto’s requirements, a metadata generator is
needed that can efficiently create integration scenarios. One
approach would be to generate schemas and constraints and
apply an existing mapping discovery algorithm to generate
mappings for these schemas. However, this can be quite
expensive and the output would be biased based on the id-
iosyncrasies of the algorithm. We take a different approach
motivated by data generation and permit a user to control
the basic metadata characteristics. Ideally, Alberto should
be able to specify the values (or admissible intervals of val-
ues) for the characteristics he would like to control as an
input to the generator. The metadata generator then has to
create an integration scenario (or many scenarios) that ful-
fill these restrictions. This is only possible if the restricted
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Parameter Description

πSourceRelSize Number of attributes per source relation
πTargetRelSize Number of attributes per target relation

πSourceSchemaSize Number of relations in source schema
πTargetSchemaSize Number of relations in target schema

πNumMaps Number of mappings

πSourceMapSize Number of source atoms per mapping

πTargetMapSize Number of target atoms per mapping

πMapJoinSize No. of attributes shared by two atoms

πNumSkolem % of target variables not used in source
πSkolemType Type of value invention (all, random, key)

πSkolemSharing % of value inv. fcts shared amg mappings

πSourceSharing % mappings that share source relations

πTargetSharing % mappings that share target relations

Table 1: Scenario Parameters

Parameter Min Max

πSourceRelSize and πTargetRelSize 2 5

πSourceSchemaSize and πTargetSchemaSize 2 10

πNumMaps 1 5

πSourceMapSize 1 1

πTargetMapSize 1 10

πNumSkolem 0% 50%

Table 2: MD task: indep. schemas & LAV mappings

characteristics can be measured efficiently, e.g., the number
of source relations. To define this more precisely, we will as-
sume relational schemas and mappings specified as source-
to-target tuple-generating dependencies, arguably the most
commonly used mapping language in integration [24].

A source-to-target tuple-generating dependency [13] (s-t
tgd) is a formula of the form ∀x(φ(x) → ∃y ψ(x,y)), where
x and y are disjoint vectors of variables; φ(x) and ψ(x,y)
are conjunctions of atomic formulas over the source schema
S and target schema T, respectively. All variables of x
are used in φ and all variables of y are used in ψ. S-t
tgds are sometimes called global-and-local-as-view (GLAV)
mappings [16]. Local-as-view (LAV) mappings have a single
atom in φ whereas global-as-view (GAV) mappings have a
single atom in ψ and no existential variables (y is empty).

A major choice in the design of a metadata generator is
what scenario characteristics should be controllable by the
user. On the one hand, we would like to give the user full
control over the generation, on the other hand, we do not
want to overwhelm her with a plethora of rarely used op-
tions. Clearly, the number of mappings generated and size
of these mappings (determined as the number of conjuncts)
should be controllable. A user may also want to control the
incompleteness in a mapping, i.e., the number of existential
variables used in the target expression (‖y‖). Using this
intuition, one can construct a generator that creates two in-
dependent schemas of a specified size (number of relations
and attributes per relation) and mappings (of a specified
size) between the schemas. To model this, we use scenario
parameters in our problem definition (Table 1) and allow
a user to specify a minimum and maximum value for each.
We will explain the last few later in this section.

Definition 1 (MD Task). Let Π be a set of scenario
parameters (shown in Table 1). A metadata-generation task
Γ is a set of constraints of the form minπ < π < maxπ
where π ∈ Π. For a given integration scenario M we say
that M is a solution for Γ if M |= Γ.

Note that we do not require that every scenario charac-
teristic is constrained by an MD Task. This enables a user
to only vary the characteristics she wants to control.

Example 4. To evaluate his hypothesis that restoration
is more successful for LAV than for GLAV mappings, Al-
berto creates the MD Task in Table 2 to create LAV map-
pings (and later GLAV mappings by increasing parameter

πSourceMapSize) and runs his algorithm over the generated
mappings. A scenario that is a solution for the task in Ta-
ble 2 is shown in Figure 1. The red lines represent cor-
respondences (mapping variables shared between the source
and target), ignore the black lines for now. Mappings for
this scenario are m1 and m2.

m1 : ∀a, b Cust[a, b]→ ∃c Customer[c, a, b]
m2 : ∀a, b Emp[a, b]→ ∃c Person[c, b]

To see how the compliance of the scenario with the con-
straints of the task is evaluated consider πSourceRelSize. The
task requires that 2 ≤ πSourceRelSize ≤ 5. Since both relation
Cust and Emp have 2 attributes, the scenario fulfills this
constraint. As another example, the task specifies that up
to 50% of the target variables may be existential (Skolems).
Both m1 and m2 fulfill this constraint (1/3 and 1/2).

2.2 Controlling Incompleteness
Example 5. Alberto has extended his system to support

second-order (SO) tgds [14], a broader class of mappings
with finer control over incompleteness. He needs a genera-
tor that can create SO tgd mappings and control the incom-
pleteness. To create SO tgds that are not equivalent to any
s-t tgd, he would like to control how arguments of Skolem
functions representing unknown values are chosen and how
Skolem functions are reused among mappings.

While s-t tgds permit incompleteness via existential vari-
ables, this incompleteness can also be represented via Sko-
lem functions. Indeed, because of this, we called the sce-
nario parameter controlling this πNumSkolem. The mapping
m1 from Example 4 is equivalent to the following SO tgd.

m1 : ∃f ∀a, b Cust[a, b]→ Customer[f(a, b), a, b]

Using this representation, some limitations of s-t tgds be-
come clear. First, all functions depend on all universally
quantified variables in the mapping. Second, two mappings
cannot share the same value-invention (Skolem) function
(i.e., function f cannot be used in both m1 and m2). We
define the metadata-generation problem to include scenarios
that use plain SO tgds [4], a strict superset of s-t tgds with
more flexible value-invention semantics. Arenas et al. [4] ar-
gue that plain SO tgds are the right choice for important
integration problems related to composition and inversion.

A plain SO tgd [4] is an existential second-order formula of
the form: ∃f( (∀x1(φ1 → ψ1))∧· · ·∧(∀xn(φn → ψn)) ) where
(a) each φi is a conjunction of relational source atoms over
variables from xi such that every variable from xi appears in
at least one atom and (b) each ψi is a conjunction of atomic
formulas that only uses terms of the form T (y1, ..., yk) where
T ∈ T and each yi is either a variable from xi or a term
f(x1, ..., xk) where f is a function symbol in f and each xj ∈
xi. We refer to each clause of a plain SO tgd, ∀xi(φi → ψi),
as a mapping to keep the analogy with s-t tgds.

To control the complexity of SO tgd generation, we use ad-
ditional parameters. The πSkolemSharing parameter controls
the percentage of Skolems (from f) shared between map-
pings. The πSkolemType controls how the functions are pa-
rameterized: for value All each function depends on all uni-
versal variables in the mapping, for Random each function
depends on a random subset of universal variables, and for
Keys each function depends on the primary keys of the map-
ping’s source relations. The settings of πSkolemSharing = 0%
and πSkolemType = All, limits the mappings to s-t tgds.
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Example 6. By modifying the parameter πSkolemType in
Table 2 to Random and πSkolemSharing to a max of 100%,
the following two mappings may be created as a solution.

∃f (∀a, b Cust[a, b], Emp[a, b]→ Insider[f(a), a, b]
∀a, b Emp[a, b]→ Person[f(a), b])

In addition to supporting scenario parameters that con-
trol schema and mapping size, we let a user limit the map-
ping language to the important classes of s-t tgds, LAV (by
restricting the number of source atoms per mapping to 1
using parameter πSourceMapSize), and GAV (by restricting
the number of target atoms per mapping πTargetMapSize = 1
and πNumSkolem = 0% ) that have been identified as impor-
tant in a survey of mapping languages [24]. Many integra-
tion systems do not support all languages, and even when
multiple mapping languages are supported, a system may
provide different performance depending on the language.

2.3 Schema Primitives
Example 7. Alice has built a system that creates exe-

cutable data exchange transformations from s-t tgds. To
thoroughly test her approach, she needs a large number of
diverse scenarios (schemas and mappings). She decides to
follow Alberto’s methodology to generate large sets of map-
pings. For each she creates a transformation script and runs
it over source databases (created by a data generator like
ToXgene [8]). While she was able to test her system’s per-
formance over a wide variety of metadata with little effort,
she feels that the performance of her system on independent
schemas with random mappings is not necessarily predic-
tive of its performance for real world settings. Similar to
how database benchmarks such as TPC-H provide realistic
queries and data she would like to create scenarios that give
her a better understanding of how her system will perform
on real mappings that are likely to arise in practice.

As Alice in the example, current evaluations do not test
integration systems on arbitrary scenarios, rather they con-
trol quite precisely the relationship between the source and
target schema. This has often been modeled using map-
ping primitives. A mapping primitive is a parameterized
integration scenario that represents a common pattern. For
instance, vertical and horizontal partitioning are common
patterns that a metadata generator should support. Prim-
itives act as templates that are instantiated based on user
input. A metadata generator should allow a user to deter-
mine what primitives to use when generating an integration
scenario. By doing so, the user can control the relation-
ship between the schemas. For example, she can use only
primitives that implement common transformations used in
ontologies (e.g., that increase or decrease the level of gener-
alization in an isa hierarchy) or she can choose to use only
those primitives that implement common relational schema
evolution transformations. The two existing mapping gener-
ators follow this approach. The first using schema evolution
primitives proposed by Yu and Popa [25] to test a mapping
adaptation system and extended by Bernstein et al. [9] to
test a mapping composition system. The second, STBench-
mark, used a set of transformation primitives for testing
mapping creation and data exchange systems [2].

Example 8. Consider the integration scenario in Fig-
ure 1 that could be created using two primitives. The first,
copy-and-add-attribute (ADD), creates the source rela-
tion Cust(Name, Addr) and copies it to a target relation that

contains another attribute, Customer(Name, Addr, Loyalty).
The new attribute Loyalty does not correspond to any source
attribute. The second primitive, vertical-partitioning-hasA
(VH) creates a source relation, Emp(Name, Company), and
vertically partitions it into: Person(Id, Name) and WorksAt

(EmpRec,Firm,Id). The VH primitive creates a has-a rela-
tionship between the two target relations (modeled by a for-
eign key (FK)). Specifically, the primitive VH creates new
keys for the two target relations (Id for Person and EmpRec

for WorksAt) and declares WorksAt.Id to be a FK for Person.

A generator should support a comprehensive set of primi-
tives described in the literature and should be extensible to
incorporate new, user-defined primitives (see Section 2.5).
Furthermore, a generator should avoid proliferation of prim-
itives. To achieve this, following the approach of STBench-
mark, primitives should be parameterized. Primitives should
work seamlessly with scenario parameters. The generator
should create scenarios that include mappings (relations and
constraints) created by primitives and independent map-
pings (relations and constraints) whose generation is con-
trolled by the scenario parameters.

Comprehensive Set of Primitives. A partial list of
primitives is given in Figure 4 (the complete list of 17 primi-
tives is in our technical report [6].) We define the metadata-
generation problem to use primitives including the mapping
primitives of STBenchmark [2] (e.g., VP) and the schema
evolution primitives [9, 25] (e.g., ADD). We also include as
primitives, ad hoc scenarios that we found in evaluations
in the literature. For example, VA (see Example 2) is the
schema hierarchy scenario used to evaluate MapMerge [1].
In the MD Task, a user specifies the number of times each
primitive should be instantiated via a parameter θP (with
default value of 0) where P is the name of the primitive.

Parameterized Primitives. As done in STBenchmark,
primitives can be parameterized to change features like the
number of relations created. This permits, as a simple ex-
ample, a single parameter λNumPartitions (we will use λ for
primitive parameters and θ for setting the number of in-
stances of a primitive) to be used to vertically partition a
relation into two, three, or more relations.

Example 9. Alice has created the task in Table 3 (left)
to create LAV mappings. Notice she has not set the source
(or target) schema size parameter or the number of mappings
parameter. Hence, mappings will only be created by invoking
primitives. This configuration will create n source relations
and n mappings for 40 ≤ n ≤ 100 (depending on how many
primitives are instantiated). The number of target relations
depends on the number of partitions chosen for each prim-
itive instantiation (these primitives use the λNumPartition
parameter so each primitive invocation will create between 2
and 10 target relations). Alice finds that her transformations
perform well on the hundreds of scenarios she creates using
this configuration file. She now wants to test how quickly
performance deteriorates as the scenarios become less well-
behaved with more portions of the schemas and mappings
being independent. She now uses the configuration file in
Table 3 on the right and creates 200 scenarios. These sce-
narios will all have exactly 100 primitive invocations, but
in addition will have between 0 and 100 arbitrary mappings
(and relations). She can then plot her performance vs. the
percentage of independent mappings (0 to 50% independent
mappings).
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Source

Custaaaa a

Nameaaa

Addraaaa
Empaaaaaa

Nameaaa
Company

Targetaaaaa

Customer

Nameaa

Addraaa
Loyaltyi

Personaa

Idaa aaa

Nameaa

WorksAta
EmpRec

Firmaaa

Idaa aaa

Figure 1: Random Mapping (-),
ADD and VH Primitives (-)

Source

Custaaaa a

Nameaaa

Addraaaa
Empaaaaaa

Nameaaa
Company

Executive

Nameaaa

Positiona

Targetaaaaa

Customer

Nameaa

Addraaa
Loyaltyi

Personaa

Idaa aaa

Nameaa

WorksAta
EmpRec

Firmaaa

Idaa aaa

Figure 2: ADL with Target Sharing

Source

Sales

Year
1QT

2QT

3QT

4QT

Target

Perf

Year
Quarter

Amount

Figure 3: A Pivot UDP

Name Description Example FKs
ADD Copy a relation and add new attributes R(a, b)→ S(a, b, f(a, b)) No
ADL Copy a relation, add and delete attributes in tandem R(a, b)→ S(a, f(a)) No
CP Copy a relation R(a, b)→ S(a, b) No
HP Horizontally partition a relation into multiple relations R(a, b) ∧ a = c1 → S1(b)

R(a, b) ∧ a = c2 → S2(b)
No

SU Copy a relation and create a surrogate key R(a, b)→ S(f(a, b), b, g(b)) No

VH Vertical partitioning into a HAS-A relationship R(a, b)→ S(f(a), a) ∧ T (g(a, b), b, f(a)) Yes

VI Vertical partitioning into an IS-A relationship R(a, b, c)→ S(a, b) ∧ T (a, c) Yes
VNM Vertical partitioning into an N-to-M relationship R(a, b)→ S1(f(a), a) ∧M(f(a), g(b)) ∧ S2(g(b), b) Yes

VP Vertical partitioning R(a, b)→ S1(f(a, b), a) ∧ S2(f(a, b), b) Yes

Figure 4: Exemplary Native Primitives

Parameter Min Max

θVH 10 25
θV I 10 25
θV NM 10 25
θV P 10 25
λNumPartitions 2 10
πSourceRelSize 5 10
πTargetRelSize 7 12

Parameter Min Max

θVH 25 25
θV I 25 25
θV NM 25 25
θV P 25 25
λNumPartitions 3 3
πSourceRelSize 5 10
πTargetRelSize 7 12

πNumMappings 100 200

πSourceSchemaSize 100 200
πTargetSchemaSize 300 400

Table 3: Example MD Tasks

Primitives and Scenario Parameters. To satisfy Alice’s
needs, unlike previous metadata generators (e.g., STBench-
mark) where the scenario is generated as a union of a number
of primitive instantiations, we define the metadata genera-
tion problem in a more flexible fashion where the user can
request a number of instances for each primitive type and/or
use scenario parameters to generate independent metadata.

2.4 Sharing Among Mappings
Example 10. Alice notices an anomaly in her results.

Even though her transformations remove subsumed (redun-
dant) tuples created by older transformation systems like
Clio [22], varying the amount of redundancy in the source
instances does not affect performance for schemas created
only using primitives. She realizes that no target relation is
being populated by more than one mapping, i.e., there is no
redundancy created in the target. She has forgotten to set an
important iBench parameter controlling the degree to which
mappings can share source or target relations.

By combining multiple instances of the primitives, a user
can generate diverse integration scenarios with a great deal
of control over the scenario characteristics. However, while
real-world schemas contain instances of these primitives,
they often contain metadata that correspond to a combi-
nation of primitives. To create such realistic scenarios, it is
important to permit sharing of metadata among mappings
and control the level of sharing. For example, in a real-
world scenario typically some relations may be used by mul-
tiple mappings (e.g., employees and managers from a source
schema are both mapped to a person relation in the target

schema), but it is uncommon for all mappings to share a
single source relation. This type of sharing of metadata has
been recognized as an important feature by Alexe et al. [2],
but they tackle this issue by providing some primitives that
combine the behavior of other simpler primitives.

Example 11. Suppose we apply a third primitive, copy-
add-delete-attribute (ADL). Without sharing, this prim-
itive would create a new source and target relation where
the latter is a copy of the former excluding (deleting) some
source attribute(s) and creating (adding) some target at-
tribute(s). With sharing, primitives can reuse existing re-
lations. If we enable target sharing, then an application of
ADL may create a new source relation Executive and copy
it into an existing target relation. In our example, see Fig-
ure 2, the existing target Person is chosen (this relation is
part of a VH primitive instance). ADL deletes the source
attribute Position and adds the target attribute Id. By
addition, we mean that no attribute of the source relation
Executive is used to populate this target attribute. Notice
that the resulting scenario is a very natural one. Parts of the
source relations Emp and Executive are both mapped to the
target Person relation while other parts (other attributes) of
these source relations are partitioned into a separate relation
(in the case of Emp) or removed (in the case of Executive).

To create realistic metadata, a generator could create new
primitives that represent combinations of the existing primi-
tives (as done in STBenchmark). However, implementing all
possible combinations is infeasible in terms of implementa-
tion effort. In addition, it is likely overwhelming for a user to
choose from long lists of primitives, making such a generator
hard to use. We define the metadata-generation problem us-
ing an alternative route under which a user is able to control
the amount of source or target sharing among invocations
of the primitives and among independent mappings.

2.5 User-Defined Primitives
Example 12. Alice wishes to test her solution on map-

pings that include a pivot. A simple example of this is de-
picted in Figure 3. There are four separate source attributes
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representing quarters, each containing the sales amount for
that quarter. In the target, information about quarters is
represented as data (the Quarter attribute). The desired
mapping is mp (omitting the universal quantification).

mp : Sales(Y,1QT,2QT,3QT,4QT) → Perf(Y, ’1’, 1QT),
Perf(Y, ’2’, 2QT), Perf(Y, ’3’, 3QT), Perf(Y, ’4’, 4QT)

Sharing provides great flexibility in creating realistic and
complex scenarios. However, a user may sometimes require
additional control. For example, a proposed integration
technique may be designed to exploit scenarios with a very
specific shape. Despite our attempt to be comprehensive in
creating primitives, there may be other shapes of interest. In
addition, it is often helpful to use real scenarios (for example,
the real schemas currently being used to evaluate integration
systems) as building blocks in creating integration scenar-
ios. We do not see metadata generation as a replacement for
the use of real schemas, real mappings and real data, rather
we would like generation to make such real scenarios even
more valuable. Hence, we include user-defined primitives
(UDP) in the definition of the metadata generation problem.

The advantage of supporting UDPs is that we can system-
atically scale these scenarios (creating new scenarios with
many copies of the new primitive) and can combine them
with other native primitives or other UDPs. All native prim-
itives and UDPs should be able to share metadata elements.

Example 13. By creating a new primitive Pivot, Alice
can now combine this primitive with other primitives to cre-
ate large scenarios with many pivots and can combine these
with vertical or horizontal partitioning. If desired, the UDPs
and these native primitives may share metadata (relations).
This permits her to understand the impact of pivoting (ac-
curacy and performance) on her integration task.

In Section 4.2, we will show how some already commonly
used real scenarios can be turned into UDPs.

2.6 Generation of Other Metadata
Example 14. Patricia has designed a new algorithm to

rewrite SO tgds into s-t tgds. Her algorithm uses functional
dependencies (FDs) to rewrite SO tgds that could not be
rewritten without these additional constraints. The algo-
rithm is sound, but not complete. To test her algorithm,
she needs to not only be able to generate SO tgds, but also
vary the amount of source and target constraints. We have
defined the metadata-generation problem to include not only
mappings, but also constraints and as a result, she was able
to use an early prototype of iBench to generate 12.5 million
SO tgds and evaluate how the success rate of her algorithm
is affected by the number of constraints [7].

Primitives permit the controlled generation of specific con-
straints. In addition a metadata generator should be able to
generate arbitrary constraints such as FDs (including keys)
and INDs (including foreign-keys). The user must be able
to control the type and complexity of constraints (e.g., the
number of attributes in key constraints or the number of
non-key functional dependencies). Hence, the full list of
scenario parameters (28 included in our technical report)
also includes parameters for this purpose [6]. In addition,
we have scenario parameters that control other parts of the
metadata generation process like renaming. By default,
primitives (and independent mappings) reuse source names
in the target and invent random names (using the name gen-
erator of STBenchmark) for target attributes and relations

that are not mapped from the source. This can be changed
to invoke renaming on some or all mappings. Renaming is
implemented as a plug-in, we plan to include more flexible
name generators in the future.

In addition, a user may request the generation of data
(just source, or both source and target), and transformation
code that implements the generated mapping. We now give
the complete definition of an integration scenario.

Definition 2. An integration scenario as a tuple M =
(S,T,ΣS,ΣT,Σ, I, J, T ), where S and T are schemas, ΣS

and ΣT are source and target constraints, Σ is a mapping
between S and T, I is an instance of S satisfying ΣS, J is
an instance of T satisfying ΣT, and T is a program that
implements the mapping Σ.

A user may request any subset of scenario metadata types.
In addition, she may specify whether J should be a solution
for I (meaning (I, J) |= Σ and T (I) = J) or whether J
should be an independent instance of T.

2.7 Complexity and Unsatisfiability
We now formally state the metadata-generation problem

and investigate its complexity, showing that it is NP-hard
in general. Furthermore, we demonstrate that there exist
tasks for which there is no solution. Proofs to the theorems
can be found in our technical report [6]. These results have
informed our MDgen algorithm presented in Section 3.

Definition 3 (Metadata-Generation Problem).
Given an MD Task Γ, the metadata-generation problem is
to produce a solution M for Γ.

Theorem 1 (Complexity). The metadata-generation
problem is NP-hard.

Furthermore, the problem of checking whether a scenarioM
is a solution for a task is also NP-hard.

Theorem 2. Let Γ be a task and M a scenario. The
problem of checking whether M |= Γ is NP-hard.
It is possible to define tasks for which no solution exists. For
instance, consider a task with no target sharing, a target
schema of size one, and two CP primitive instances. There
is no integration scenario that is a solution for this task,
because for a scenario to contain two instances of the CP
primitive with no sharing of target relations, the scenario
has to contain at least two target relations.

3. THE MDGEN ALGORITHM
We now present our MDGen algorithm that solves the

metadata-generation problem for an input task Γ. Since
the problem is NP-hard in general, a polynomial-time so-
lution must either be an approximation or incomplete. As
discussed in Section 2.7, the user may accidentally specify
a task that has no solution. We could deal with this by
aborting the generation and outputting the conflicting re-
quirements (to help a user see what needs to be relaxed
to avoid conflicts). Or alternatively, we can relax the con-
straints (e.g., by increasing the relation size) and produce
a solution for the relaxed constraints. We have chosen the
second approach since we found it more useful in using the
generator ourselves, as a relaxation that increases the size
of one or more scenario parameters is usually sufficient. We
present a greedy algorithm where we never reverse a deci-
sion once it has been made. Since our algorithm is best-effort
(and checking if a solutions exists is hard), we might relax
the constraints even when an exact solution exists.
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Algorithm 1 MDGen (Γ)

1: Initialize empty Integration Scenario M
{Instantiate Primitives}

2: for each θ ∈ Θ do
3: numInst = random(minθ,maxθ)
4: for i ∈ {1, . . . ,numInst} do
5: InstantiatePrimitive(θ,M,Γ)

{Add Independent Mappings/Relations}
6: RandomMappings(M,Γπ)
{Value Invention}

7: ComplexValueInvention(M,Γ)
{Generate Additional Schema Constraints}

8: GenRandomConstraints(M,Γ)
{Rename Schema Elements}

9: ApplyRenamingStrategy(M,Γ)
{Generate Data}

10: for each S ∈ {S,T} do
11: for each R ∈ S do
12: genData(M, R,Γ)

3.1 Overview
Algorithm 1 (MDGen) takes as input an MD Task Γ. We

first instantiate primitives (native and UDPs). For each
θ ∈ Θ, we uniformly at random create a number of instances
(described in more detail in Section 3.2) that lies between
minθ and maxθ (Lines 1 to 2 of Algorithm 1). During this
process we keep track of the characteristics of the scenario
being generated. We always obey the restrictions on the
number of primitive instantiations and primitive parame-
ters, but allow violations of scenario parameters. Thus, we
guarantee that a returned solution obeys ΓΘ and Γλ (which
is always possible), but not that this solution fulfills ΓΠ.
To create independent parts of the schemas and mappings,
we use a primitive called random mappings (Line 6). This
primitive takes as input the number of source relations, tar-
get relations, and mappings to create. These values are set
based on ΓΠ minus the number of relations (mappings) that
have created been during primitive instantiation. If we have
already created larger schemas or more mappings than re-
quested by ΓΠ, then additional metadata is not created (and
the solution may violate the respective scenario parameters).
We found this solution most satisfying for users. In general,
if the relationship between the source/target schemas does
not matter for an evaluation, then the user will just use sce-
nario primitives (recall Example 4 where Alberto just needed
a large set of random mappings over independent schemas)
and the generator will always find a correct solution. How-
ever, if the relationship matters and primitives are used, we
always satisfy the primitive constraints, and relax, if neces-
sary, scenario restrictions.

Additional scenario parameters are handled within sepa-
rate post-processing steps which are applied to the scenario
(with mappings) that we have created. These include value
invention, the generation of additional constraints, and the
renaming of target relations and attributes (if requested).
For reasons of space, we only explain one exemplary of these
postprocessing steps, value invention, in Section 3.3.

We also generate data for the source schema (by call-
ing ToXgene, a general purpose data generator [8]). The
user can control the number of tuples generated per relation
(via the scenario parameter πRelInstSize). In the future, we
plan to give the user control over which value generators
are used to create attribute values (types of data generators

Algorithm 2 InstantiatePrimitive (θ,M,Γ)

1: {Determine Sharing}
2: sourceShare = (random(0, 100) < πsourceShare)
3: targetShare = (random(0, 100) < πtargetShare)
{Determine Restrictions on Scenario Elements}

4: Req = determinePrimReqs(θ,Γ)
{Generate Source Relations}

5: for i ∈ {1, . . . , Req(‖S‖)} do
6: if sourceShare = true then
7: tries = 0
8: while R 6|= Req ∧ tries+ + < MAXTRIES do
9: R = pickSourceRelation(M,Γ, i)

10: end while
11: if R 6|= Req then
12: R = genSourceRelation(M, Req, i)

13: else
14: R = genSourceRelation(M, Req, i)

{Generate Target Relations}
15: Repeat Lines 5 to 14 using Target Schema
{Generate Mappings}

16: for i ∈ {1, . . . , Req(‖ΣST ‖)} do
17: σ = genMapping(M, Req, i)

{Generate Transformations and Constraints}
18: genFKs(M, Req)
19: genTransformations(M, Req)

and the probability of using them). However, this is not
implemented in the current release.

3.2 Instantiate Primitives
As mentioned before, our algorithm is greedy in the sense

that once we have created the integration scenario elements
for a primitive instance we never remove these elements.
In this fashion, we iteratively accumulate the elements of
a scenario by instantiating primitives. Algorithm 2 is used
to instantiate one primitive of a particular type θ. When
πSourceShare or πTargetShare are not set (their default is
0), each primitive instantiation creates new source and/or
target relations. Otherwise, we achieve reuse among map-
pings by using relations created during a previous primi-
tive instantiation instead of generating new relations. The
choice of whether to reuse existing relations when instanti-
ating a primitive is made probabilistically (Lines 2 and 3)
where πSourceShare (respectively, πTargetShare) determines
the probability of reuse. Once we have determined whether
we would like to reuse previously generated schema elements
or not, the next step is to determine the requirements Req
on scenario elements based on the primitive type θ we want
to instantiate, the scenario parameters ΓΠ, and primitive
parameters Γλ (Line 4). Recall that our algorithm makes a
best-effort attempt to fulfill the input task restrictions. To
avoid backtracking and to resolve conflicts between primitive
requirements and the scenario restrictions our algorithm vio-
lates scenario parameters if necessary. For instance, assume
the user requests that source relations should have 2 at-
tributes (πSourceRelSize) and that VP primitives should split
a source relation into three fragments (πNumPartitions). It
is impossible to instantiate a VP primitive that fulfills these
conditions, because to create three fragments, the source re-
lation has to contain at least three attributes. We define
a precedence order of parameters and relax restrictions ac-
cording to this order until a solution is found. In this exam-
ple, we would choose to obey the restriction on πNumPartitions
and violate the restriction on πSourceRelSize. In Lines 5 to
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Algorithm 3 ComplexValueInvention (M,Γ)

1: V I ← attribute→ Skolem {Map from attributes to Skolems}
{Associate Victim Attributes With Skolems}

2: for each i < (getNumAttrs(S) ·ΠSkolemSharing) do
3: S.A = pickRandomAttr(S) {Pick random attribute}
4: ~A = pickRandomAttr(S, πSkolemType)
5: f = pickFreshSkolemName()

6: Add(VI, S.A, f( ~A))

{Adapt Mappings}
7: for each σ ∈ Σst do
8: for each (S.A→ f( ~A)) ∈ V I do
9: if S ∈ σ then

10: xA ← vars(σ, S.A)

11: args← vars(σ, ~A)

12: term← f( ~A)[ ~A← args]
13: for each R(~x) ∈ RHS(σ) do
14: R(~x)← R(~x)[xA ← term]

14, we generate source relations from scratch or reuse ex-
isting source relations. Since not every source relation can
be reused (it may not fit the requirements of the primitive)
we select relations and check whether they meet the require-
ments for the current primitive. These source relations are
not picked completely at random, but we only choose among
relations that fulfill basic requirements of the primitive (e.g.,
a minimum number of attributes) to increase the chance that
sharing is successful. After MAXTRIES tries we fall back to
generating a source relation from scratch. When generat-
ing a relation we also generate primary key constraints if
required by the primitive or requested by the user. The
generation of target relations (Lines 15) is analogous to the
source relation generation. Then, we generate mappings be-
tween the generated source and target relations. The struc-
ture of the generated mappings is given by the primitive
type (see Table 4) and further influenced by certain primi-
tive and scenario parameters. For instance, θNumPartitions
determines the number of fragments for a VP primitive and
πSourceRelSize determines the number of attributes per rela-
tion. The generation of transformations is similar.

3.3 Value Invention
Part of the value invention process has already been com-

pleted while instantiating primitives. Based on the param-
eter πSkolemType, we have parameterized value invention in
mappings as described in Section 2.2. In addition, we use the
scenario property πSkolemSharing to control how much addi-
tional sharing of Skolem functions we inject into mappings.
Algorithm 3 outlines the process. We randomly select at-
tributes from the generated source schema (called victims),
and associate them with fresh Skolem terms that depend on
other attributes from this source relation (Lines 2-6). For
each selected attribute S.A, the attributes which are used
as the arguments of the Skolem function are chosen based
on parameter πSkolemType, e.g., if πSkolemType = Keys then
we use the key attributes of relation S. In Lines 7-14, we
rewrite any mappings that use a victim to use the generated
Skolem term instead. Here ψ[x ← y] denotes the formula
derived from ψ by replacing all occurrences of x with y.
For instance, assume the Skolem term f(a) was assigned to
attribute b of relation S(a, b). We would transform the map-
ping S(x1, x2) → T (x1, x2) into S(x1, x2) → T (x1, f(x1)).
Hence, if S is used in three mappings that exchange b, then
the Skolem function f will be shared by these mappings.

3.4 Complexity and Correctness
Aside from solving the MD generation problem, the main

goal in the design of MDGen was scalability. MDGen runs
in PTime in the size of the generated integration scenario.

Theorem 3 (Complexity). The MDGen algorithm
runs in time polynomial in n, where n is the maximum of
the number of created relations and created mappings.

Since by design the algorithm may violate input scenario pa-
rameters, in order to produce a solution without backtrack-
ing, a main question is what kind of correctness guarantees
can be given for the solution returned by the algorithm un-
der such relaxations of the inputs. If the algorithm does not
have to relax any restriction, then the scenario produced by
the algorithm is a solution to the input task.

Theorem 4 (Correctness). Let Γ be an MD Task.
MDgen fulfills the following correctness criteria.
• If MDgen returns a result without relaxing any restric-

tions given by the task, then the result is a solution for Γ.
• A solution returned by the algorithm always conforms to

the primitive restrictions given in the input task.
• Let Γrelax be the MD Task generated by replacing the re-

strictions in the task Γ with their relaxed version produced by
the algorithm when running over Γ. The scenario returned
by the algorithm is a solution for Γrelax.

4. iBENCH EVALUATION
We now evaluate the scalability of iBench for various tasks,

using native primitives and UDPs. We ran our experiments
on an Intel Xeon X3470 with 8× 2.93 GHz CPU and 24GB
RAM, reporting averages over 100 runs.

4.1 Native Metadata Scenarios
We conducted four experiments to investigate the influ-

ence of the schema size on the time needed to generate large
metadata scenarios. All four experiments share a baseline
configuration, that uses the same parameter settings for the
number of attributes per relation (5-15), the same range for
the size of keys (1-3), same size for mappings (2-4 source re-
lations and 2-4 target relations). We generated scenarios of
various sizes (100 up to 1M attributes where we use the sum
of source and target attributes as a measure of schema size)
by using the baseline configuration and varying the number
of primitives. In these experiments, iBench always produced
solutions satisfying all configuration constraints.

Figure 5(a) shows the metadata generation time in sec-
onds for generating four types of scenarios (on logscale). The
first configuration denoted as (0,0,0) has no constraints, no
source sharing, and no target sharing. The other three con-
figurations are created by introducing 25% FD constraints
(25,0,0), 25% source sharing (0,25,0), and 25% target shar-
ing (0,0,25), respectively. iBench can generate scenarios with
1M attributes in 6.3 sec for the (0,0,0) configuration and
shows a linear trend as expected. For the 25% constraint
configuration, we also observe a linear trend: 13.89 sec for
a 1M attribute scenario. For the source and target shar-
ing configurations, we observed a non-linear trend. While
iBench generates scenarios with 100K attributes in 2.1 and
2.5 sec, respectively, for 1M attributes, iBench requires sev-
eral minutes. Here, we noticed high variance in elapsed
times: 215.91 sec with a standard deviation of 11.67 sec
for source sharing, and 213.89 sec with a standard devia-
tion of 14.14 sec for target sharing. This variance is due

115



10-2

10-1

100

101

102

103

102 103 104 105 106

G
e
n
e
ra

ti
o
n
 T

im
e
 (

S
e
co

n
d
s)

# Generated Attributes

(0, 0, 0)
(25, 0, 0)
(0, 25, 0)
(0, 0, 25)

(a) Gen. Time (s) - Native

0

10

20

30

0 200 400 600 800 1000

G
e
n
e
ra

ti
o
n
 T

im
e
 (

S
e
co

n
d
s)

Instances of Loaded Primitive

A1
A2
A3
FH

B1
B2
B3

(b) Gen. Time (s) - UDPs

10K

20K

30K

40K

50K

0
0 200 400 600 800 1000

#
 G

e
n
e
ra

te
d
 R

e
la

ti
o
n
s

Instances of Loaded Primitive

A1
A2
A3
FH

B1
B2
B3

(c) Gen. Relations: UDPs

50K

100K

150K

200K

0
0 200 400 600 800 1000

#
 G

e
n
e
ra

te
d
 A

tt
ri

b
u
te

s

Instances of Loaded Primitive

A1
A2
A3
FH

B1
B2
B3

(d) Gen. Attributes: UDPs
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Figure 6: Scalability of Clio (C) and MapMerge (M)

to the greedy, best-effort nature of the sharing algorithm.
Despite this, we are still able to generate in reasonable time
scenarios that are 10-100 times larger, and with much more
realistic sharing among mappings, than used in any previous
evaluation of which we are aware.

4.2 UDP-based Metadata Scenarios
To analyze the performance of iBench’s UDP feature, we

used seven real-life metadata scenarios from the literature
and we scale them by factors of up to 1,000 times. The
first three UDPs are based on the Amalgam Schema and
Data Integration Test Suite [20], which describes metadata
about bibliographical resources. We denote them by A1,
A2, and A3. The next three UDPs are based on a biological
metadata scenario called Bio [3], which employs fragments
of the Genomics Unified Schema GUS (www.gusdb.org) and
the generic Biological Schema BioSQL (www.biosql.org).
We denote them by B1, B2, and B3. The last UDP (denoted
as FH) is based on a relational encoding of a graph data
exchange setting [10], comprising information about flights
(with intermediate stops) and hotels. For each UDP, we
vary the number of instances from 0 to 1,000. In all cases,
we also requested 15 instances of each native primitive. We
present the generation time in Figure 5(b), and the numbers
of generated relations and attributes in Figure 5(c) and 5(d),
respectively. As we scale the number of loaded UDPs, the
metadata generation time grows linearly in most cases. We
observe the worst behavior for A2 and A3, which contain the
largest number of relations and up to 40 FKs (Figure 5(c)).
While profiling our code, we realized that this non-linear
behavior is due to a limitation in the Java-to-XML binding
library we used for manipulating relations in the UDP and
will be optimized for future iBench releases.

5. INTEGRATION SYSTEM EVALUATION
To showcase how iBench can be used to empirically evalu-

ate schema mapping creation, we present a novel evaluation
comparing MapMerge [1] against Clio [12] and ++Spicy [17].

Systems. Clio creates mappings and transformations that
produce a universal solution, MapMerge correlates Clio map-
pings to remove data redundancy, while ++Spicy creates
mappings and transformations that attempt to produce core
solutions [19]. We obtained Clio and MapMerge from
the authors and downloaded ++Spicy from the web (www.
db.unibas.it/projects/spicy). Since these three systems
create mappings, we used iBench to generate schemas, schema
constraints, mappings, and instance of the source schemas.
We omitted the iBench mappings from the input, so each
system created its own mappings and own transformation
code (which we ran over the iBench data to create target
data that we could compare). We used an Intel Core i7
with 4×2.9 GHz CPU and 8 GB RAM. Notice that this is a
different machine than the rack server used in Section 4 since
all three systems we compare required input given through
a user-interface. As this approach is more human labor-
intensive, here we report averages over 5 runs.

Original MapMerge Evaluation. The original evalua-
tion compared transformations that implement Clio’s map-
pings (input to MapMerge) with transformations that im-
plement correlated mappings produced by MapMerge. The
evaluation used two real-life scenarios of up to 14 mappings,
and a synthetic scenario (Example 2) with one source rela-
tion, up to 272 binary target relations and 256 mappings.
It was concluded that MapMerge improved the quality of
mappings by both reducing the size of the generated target
instance, and increasing the similarity between the source
and target instances. We implemented the synthetic sce-
nario used in the original evaluation as an iBench primitive
(VA) both to further our goal of having a comprehensive
set of primitives and to perform a sanity (reproducibility)
check [6]. We obtained the same generated instance size and
comparable times to the original evaluation (these measures
are described below). Our goal in the new experiments was
to test the original experimental observations over more di-
verse and complex metadata scenarios. In particular, we use
iBench to generate scenarios with a variable number of con-
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straints and variable degree of sharing to explore how these
important factors influence mapping correlation.

Original ++Spicy Evaluation. ++Spicy evaluated the
quality of its solutions using four fixed scenarios from the
literature with 10 (or fewer) tgds and 12 (or fewer) egds.
They compared the size of core solutions that were com-
puted w.r.t. tgds only with the size of core solutions that
used both tgds and egds. They also used synthetic scenar-
ios (created using STBenchmark and similar to our STB sce-
narios described below), to evaluate the scalability of their
algorithms. While their scalability experiments control the
number of constraints, their quality evaluation did not. Our
goal was to quantify the quality gains of ++Spicy as the
number of constraints is varied and as the degree of sharing
is varied (hence on more complex scenarios). Also we com-
pare ++Spicy directly to MapMerge on the same scenarios,
a comparison that has not been done before.

Metadata Scenarios. We designed two scenarios using
iBench. The Ontology scenarios consist of primitives that
can be used to map a relational schema to an ontology.
Three of these primitives are different types of vertical par-
titioning, into a HAS-A, IS-A, or N-to-M relationship (VH,
VI, VNM). The fourth primitive is ADD (copies and adds
new attributes). The STB scenarios consist of primitives
supported by STBenchmark [2]: CP (copy a relation), VP
(vertical partitioning), HP (horizontal partitioning), and SU
(copy a relation and create a surrogate key). The Ontology
scenarios produce at least twice as many value inventions
(referred to hereafter as nulls) as the STB scenarios (e.g.,
one instance of each ontology primitive - ADD, VH, VI,
and VNM - yields 8 nulls, while one instance of each STB
primitive - CP, VP, HP, and SU - only yields 4 nulls). The
Ontology scenarios also include more keys compared to STB.

Measures. Intuitively, mappings that produce smaller tar-
get instances are more desirable because they produce less
incompleteness. To assess the quality of the correlated map-
pings, we measure the size of the generated target instance
and the relative improvement (of MapMerge or ++Spicy
w.r.t. Clio), where the size of an instance is the number of
atomic values that it contains [1]. Assuming that the Clio
mappings produce an instance of size x and the MapMerge
mappings produce an instance of size y, the relative improve-
ment is (x − y)/x. The original MapMerge evaluation [1]
used this measure and also measured the similarity between
source and target instances using the notion of full disjunc-
tion [23]. We were not able to use full disjunction in our ex-
periments because we use arbitrary constraints and sharing,
and these features often break the gamma-acyclicity pre-
condition required for the implementation of this measure.
Instead, we measure the number of nulls in the generated
target instance. ++Spicy used a similar measure, however,
they measure size in tuples rather than atomic values. We
also report the performance in terms of time for generating
mappings and time for executing them.

5.1 Scalability of Clio and MapMerge
For the two aforementioned scenarios, we generate an

equal number of instances for each primitive for varying
powers of two. On the x-axis of Figures 6(a) to 6(b) we
report the total number of primitives, e.g., the value 128 for
Ontology scenarios corresponds to primitives ADD, VH, VI,
VNM each occurring 128/4=32 times. We generated addi-
tional INDs for 20% of the relations. We used 25% source

and target sharing for Ontology scenarios. For STB scenar-
ios, we also used 25% target sharing, but 50% source sharing
to compensate for sharing that naturally occurs (e.g., prim-
itives such as HP generate multiple mappings sharing rela-
tions, hence sharing occurs even if 0% sharing is requested).
We set source relation size parameter (2-6) and create a
source instance with 1,000 tuples per relation.

The target instance sizes are shown in Figure 6(a) - as
expected linear in the number of primitives. Clio (C) pro-
duces the same number of constants and more nulls than
MapMerge (M). The Ontology scenarios produce more nulls
and larger instances than the STB scenarios. Figure 6(b)
shows that in general, the relative improvement of Map-
Merge over Clio is higher for Ontology compared to STB. An
important outcome of our experiments is that the benefits of
MapMerge w.r.t. Clio mappings are more visible in scenarios
involving more incompleteness. We notice that the relative
improvement remains more or less constant (the exception
is on small STB scenarios, where Clio and MapMerge are
almost indistinguishable), because the characteristics of the
scenarios are the same for different sizes.

We present the mapping generation and execution time
(logscale) in Figure 6(c) and 6(d), respectively. Generat-
ing and executing mappings for the Ontology scenarios takes
longer than for the STB scenarios due to the amount of nulls.
Although MapMerge requires more time than Clio to gen-
erate mappings, it requires less time to execute them. This
behavior is more visible for larger number of mappings be-
cause in our experiments this implies larger target instances
(up to 2M atoms, in contrast to the original MapMerge eval-
uation that only considered up to 120K atoms).

Our findings extend the original MapMerge evaluation in
two ways: (i) they do not report mapping execution time
(they have only the generation time), and (ii) MapMerge has
greater benefit on the Ontology scenarios, which are defined
using iBench primitives that are not covered by previous sce-
nario generators nor by the existing MapMerge evaluation.
Indeed, the very flexible value invention provided by iBench
reveals another strong point about MapMerge, not consid-
ered before. MapMerge not only generates smaller instances
compared to Clio, but is also more time efficient.

5.2 Impact of Constraints and Sharing
We now study the impact of increasing the number of

constraints and amount of sharing for relations with (3-7)
attributes and 1,000 tuples. We ran three experiments, and
for each scenario, we use 10 instantiations of each of its
primitives. First, we vary the number of source and tar-
get INDs from 10 to 40%, with no source or target sharing.
We present the size of the generated target instance for both
scenarios in Figure 7(a) and the relative improvement in Fig-
ure 7(b). Here the relative improvement is not constant, but
improves as the number of constraints increases. Second, we
vary target sharing from 0-60% and no random constraints.
Source sharing is fixed to 20% for Ontology and to 50% for
STB. We present the size of the generated target instance for
both scenarios in Figure 7(c) and the relative improvement
in Figure 7(d). Third, we vary the amount of source sharing
from 0-60%. Target sharing is fixed to 20% and there are
no random constraints. Target instance sizes are shown in
Figure 7(e) and the relative improvement in Figure 7(f).

Our experiments reveal that both sharing and constraints
increase the relative improvement of MapMerge over Clio.
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Figure 7: Evaluation of Clio (C) and MapMerge (M)

We observe that for STB, the biggest gain comes from using
constraints, while for the Ontology scenarios the biggest gain
comes from target sharing. This suggests that the benefits
shown in Figure 6(b) (for scenarios combining constraints
and sharing) are due to both factors. MapMerge is most
useful for mappings that share relations or contain INDs.
Our results highlight the impact of MapMerge in novel sce-
narios, going beyond the original evaluation.

5.3 Comparison with ++Spicy
Despite producing target instances smaller than Clio, Map-

Merge may not produce core solutions. Here, we include a
comparison with ++Spicy [18]. More precisely, we present
two experiments: (i) we first compare the core solutions
produced by ++Spicy with the MapMerge and Clio solu-
tions [19], and (ii) we independently study the impact of us-
ing egds in the mapping, an important ++Spicy feature [17].
For (i), we took 10 instances of each Ontology primitive, and
source relations with (3-7) attributes and 100 tuples. We fo-
cus on the Ontology scenarios that have both more keys and
more nulls, making the comparison with MapMerge clearer.
We used ++Spicy in its default configuration i.e., with core
rewriting but without egd rewriting. In Figure 8, we report
the generated target instance size and the relative improve-
ment w.r.t. Clio for both MapMerge and ++Spicy, for three
different settings: we vary the amount of source and target
INDs (8(a) and 8(b)), of target sharing (8(c) and 8(d)), and
source sharing (8(e) and 8(f)), respectively (variations over
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Figure 8: Evaluation of ++Spicy (S)

the same ranges while keeping the other parameters fixed
to the same values as in Section 5.2). The size of the in-
stance generated by ++Spicy remains constant regardless
of the number of additional constraints (cf. 8(a)). This is
in contrast to both Clio and MapMerge where the size in-
creases. This indicates that the core solutions of ++Spicy
are effectively removing redundancy created by chasing over
these additional INDs. The relative improvement is always
greater for ++Spicy compared to MapMerge (cf. 8(b), 8(d),
and 8(f)). These benefits come naturally with a time cost:
while generating Clio or MapMerge mappings took up to 8
sec, generating the ++Spicy mappings took up to 105 sec.

5.4 Evaluation of ++Spicy Using UDPs
In our second ++Spicy experiment, we quantified the ben-

efits of using egds in mapping creation. Neither Clio nor
MapMerge uses egds, hence we compared the solution given
by ++Spicy in the presence of egds with its canonical and
core solutions. The advantages of using egds can be seen
in many integration scenarios generated by iBench, but to
best highlight the gains, we report on one experiment in
which we created a specially designed UDP. The UDP con-
tains source address information shred across three relations
that needs to be combined into a single target relation. The
UDP is easy to create (the UDP code took only a few min-
utes to write and is 79 lines of XML that we include in our
TR). The source has three relations Person(name, address),
Address(occupant, city) and Place(occupant, zip), and two
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Figure 9: ++Spicy: Canonical Solution (Ca), Core
Solution (Co), Solution in the Presence of EGDs (E)

FKs (from the two occupant attributes to Person.name).
In the target, we have one relation LivesAt(name, city,
zip). There is a correspondence towards each target at-
tribute from the source attribute having the same name. In
the experiment, we invoked the UDP 40 times with source
relations containing 100 tuples, and we varied the number of
target relations having a primary key from 0 to 100%. We
report the generated target size and the relative improve-
ment in Figure 9(a) and 9(b), respectively. The canonical
and core solutions have constant sizes. As the number of
keys increases, ++Spicy uses them on more and more re-
lations to remove incomplete redundant tuples as expected.
Notice that iBench makes the generation of such an experi-
ment very easy. Once the UDP is created, iBench can apply
it on data instances of different sizes and characteristics (for
++Spicy this would include reuse of values) and can invoke
it an arbitrary number of times with other primitives or with
additional (arbitrary) mappings. Despite the fact that the
complexity of the mapping generation problem is hard in
the presence of UDPs, iBench makes it easy to create and
apply them flexibly to quickly develop robust evaluations.

6. CONCLUSION
We presented the first version of iBench, an open-source

metadata generator [5]. We used the system to conduct
a new comparative evaluation of MapMerge and ++Spicy,
systems that had been evaluated individually but not com-
pared directly. We also presented a new evaluation of ++Spicy
to quantify the influence of target key constraints on the
quality of their solution, an evaluation not done by the
authors for lack of appropriate metadata generation tools.
Moreover, iBench was an essential tool in a large scale empir-
ical evaluation we have conducted in previous work [7]. Our
hope is that iBench will be a catalyst for encouraging more
empirical work in data integration and a tool for researchers
to use in developing, testing and sharing new quality mea-
sures. In the future, we will extend the prototype with new
functionality (with community help).
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