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ABSTRACT
This paper explores an analysis-aware data cleaning archi-
tecture for a large class of SPJ SQL queries. In particular,
we propose QuERy, a novel framework for integrating entity
resolution (ER) with query processing. The aim of QuERy is
to correctly and efficiently answer complex queries issued on
top of dirty data. The comprehensive empirical evaluation
of the proposed solution demonstrates its significant advan-
tage in terms of efficiency over the traditional techniques for
the given problem settings.

1. INTRODUCTION
This paper addresses the problem of analysis-aware data

cleaning, wherein the needs of the analysis task dictates
which parts of the data should be cleaned. Analysis-aware
cleaning is emerging as a new paradigm for data cleaning to
support today’s increasing demand for (near) real-time an-
alytical applications of big data. Modern enterprises have
access to potentially limitless data sources, e.g., web data
repositories, social media posts, clickstream data from web
portals, etc. Analysts/users usually wish to integrate one
or more such data sources (possibly with their own data) to
perform joint analysis and decision making. For example, a
small store owner may discover an online source (e.g., a web
table) containing Amazon’s product pricing and may wish
to compare that pricing with her own pricing.

Several systems have been developed to empower analysts
to dynamically discover and merge data sources. For in-
stance, Microsoft Power Query provides features to dynam-
ically find, combine, visualize, share, and query data across
a wide variety of online and offline sources. Another ex-
ample is Trifacta [2], a data transformation platform that
employs a predictive interaction framework [15] to enable
users to transform raw data into structured formats. How-
ever, to the best of our knowledge, such systems have not
yet incorporated data cleaning mechanisms.
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As a result of merging data from a variety of sources, a
given real-world object may often have multiple represen-
tations, resulting in data quality challenges. In this paper,
we focus on the Entity Resolution (ER) challenge [6,10], the
task of which is to discover duplicate entities that refer to
the same real-world object and then to group them into a
single cluster that uniquely represents that object.

Traditionally, entity resolution, and data cleaning in gen-
eral, is performed in the context of data warehousing as
an offline preprocessing step prior to making data available
to analysis – an approach that works well under standard
settings. Such an offline strategy, however, is not viable
in emerging applications that deal with big data analysis.
First, the need for (near) real-time analysis requires modern
applications to execute up-to-the-minute analytical tasks,
making it impossible for those applications to use time-
consuming standard back-end cleaning technologies. An-
other reason is that in the data analysis scenarios that mo-
tivate our work, an analyst/user may discover and analyze
data as part of a single integrated step. In this case, the sys-
tem will know “what to clean” only at analysis time (while
the user is waiting to analyze the data). Last, given the
volume and the velocity of big data, it is often infeasible to
expect that one can fully collect or clean data in its entirety.

Recent work on analysis-aware data cleaning seeks to over-
come the limitations of traditional offline data cleaning tech-
niques [4,8,17,22,24]. While such solutions address analysis-
aware data cleaning, they are limited to only simple queries
(viz., mention, selection, and/or numerical aggregation queries)
executed on top of dirty data. Data analysis, however, of-
ten requires a significantly more complex type of queries
requiring SQL-style joins. For instance, a user interested in
comparative shopping may wish to find cellphones that are
listed on two distinct data sources: Best Buy and Walmart
to compare their ratings and reviews. Clearly, the query that
corresponds to the user’s interest will require joining Best
Buy’s and Walmart’s cellphone-listings. In contrast to our
work, the previous approaches cannot exploit the semantics
of such a join predicate to reduce cleaning.

Specifically, this paper explores the problem of analysis-
aware data cleaning for the general case where queries can be
complex SQL-style selections and joins spanning single/multiple
dirty entity-sets. We propose QuERy, a novel framework
for integrating ER with query processing. The objective of
QuERy is to efficiently and accurately answer complex Select-
Project-Join (SPJ) queries issued on top of dirty data. The
predicates in those queries may be associated with any at-
tribute in the entity-sets being queried.

In particular, QuERy leverages the selectivities offered by
the query predicates to reduce the amount of cleaning (by
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BB, iPhone 6, 4.7” retina..., 415, 4.6, Apple, apple.com, USA
BB, iPhone 5, 4” retina..., 220, 3.9, Apple, apple.com, US
BB, Galaxy S5, 5.1” super..., 275, 4.3, Samsung, samsung.com, S. Korea
WM, Apple Inc., www.apple.com, USA, iPhone-VI, 550, 4.8
WM, Samsung, www.samsung.com, South Korea, Galaxy S-V, 180, 4.5
WM, Samsung, www.samsung.com, S. Korea, Galaxy S-III, 95, 3.7

Figure 1: A Collection of Raw Records

only deduplicating those parts of data that influence the
query’s answer) and thus, minimizes the total execution time
of the query. We propose two variants of QuERy: lazy-QuERy
and adaptive-QuERy. The former uses a lazy architecture
that attempts to avoid cleaning until it is necessary for the
system to proceed. The latter is an adaptive cost-based
technique that tries to devise a good plan to decide when to
perform cleaning. Both solutions rely on novel polymorphic
operators, which are analogous to the common relational
algebra operators (i.e., selections and joins) with one excep-
tion: they know how to test the query predicates on the
dirty data prior to cleaning it. Specifically, these operators
utilize sketches of data to perform inexact tests to decide
whether parts of dirty data satisfy query predicates.

Overall, the main contributions of this paper are:

● We propose QuERy, a novel framework that integrates ER
with query processing to answer complex SQL-style queries
issued on top of dirty data (Sections 2 and 4).

● We introduce and formalize the notion of polymorphic op-
erators – a key concept in QuERy (Section 5).

● We develop two different solutions: lazy-QuERy and adaptive-
QuERy, which reap the benefits of evaluating the query
predicates to minimize the query execution time (Sec-
tions 6 and 7).

● We conduct extensive experiments to evaluate the effec-
tiveness of both lazy-QuERy and adaptive-QuERy solutions
on real and synthetic datasets (Section 8).

2. PROBLEM SETUP
This paper addresses the problem of jointly cleaning and

querying (potentially dirty) entity-sets in the context of generic
SPJ SQL queries. To better motivate our work, before for-
malizing the problem and describing our solution, we first
discuss a concrete example context wherein such cleaning
challenges arise.

Consider an analyst wishing to explore popular electronic
items produced in the “USA” that customers buy and write
reviews about. The analyst identifies multiple relevant on-
line data sources like Google Shopping, eBay, Walmart, Best
Buy, Yelp, etc., which contain raw records describing (simi-
lar) entities. Suppose that the analyst chooses two such data
sources: Best Buy (denoted by BB) and Walmart (denoted
by WM). Figure 1 shows a toy example of six raw records col-
lected from these two sources. In general, such data sources
may contain listings of several thousand entities1. Suppose
that the analyst wishes to quickly identify cellphones that
are listed on both data sources with at least 300 reviews,
and that have been manufactured in the “USA”.

In order to execute her analysis task, the analyst needs
to utilize semi-automated tools (e.g., Data Wrangler [18]
– an interactive tool that allows users to restructure input
datasets prior to analysis) to convert the raw data into a
form that is more convenient for data consumption.

In Figures 2 and 3, we present a transformed dataset
instance that results from the raw records in Figure 1 by
collating entities of the same type into a single entity-set

1
Entities from the same source in Figure 1 are not duplicates. Our ap-

proach, however, does not make any assumption regarding the input
data. Thus, entities from one source may or may not be duplicates.

block source c id c name m id c reviews c ratings

C1

BB c1 iPhone 6 m1 415 4.6
BB c2 iPhone 5 m2 220 3.9
WM c4 iPhone-VI m4 550 4.8

C2

BB c3 Galaxy S5 m3 275 4.3
WM c5 Galaxy S-V m5 180 4.5
WM c6 Galaxy S-III m6 95 3.7

Figure 2: Cellphones Entity-set (C)
block source m id m name m url m country

M1

BB m1 Apple apple.com USA
BB m2 Apple apple.com US
WM m4 Apple Inc. www.apple.com USA

M2

BB m3 Samsung samsung.com S. Korea
WM m5 Samsung www.samsung.com South Korea
WM m6 Samsung www.samsung.com S. Korea

Figure 3: Manufacturers Entity-set (M)

(see Section 3.1). In this transformed representation, cell-
phone entities are stored in Cellphones entity-set (denoted
by C), and manufacturer entities are stored in Manufac-
turers entity-set (denoted by M)2. Note that there exists
only one manufacturer per cellphone and therefore, we can
augment each cellphone entity with its corresponding m id,
c reviews, and c ratings values.

In such a transformed representation, since entities of the
same type are collated into a single entity-set, standard ER
algorithms like Swoosh [6], Sorted Neighbor (SN) [16], etc.
can be used to cluster entities that co-refer into a single
canonical representation3. For instance, entities {c1, c4} and
{c3, c5} which refer to the same real-world object will be re-
solved and replaced by a common representation. Likewise,
entities {m1,m2,m4} and {m3,m5, m6} are duplicates and
will be replaced by their canonical representations. After
this step, the data is ready for consumption and the analyst
can pose her analysis task in the form of SQL-like queries.

Note that in the above approach data is cleaned fully prior
to executing the query. However, the bulk of this cleaning,
as we will see later, might be completely unnecessary since
only a small portion of the data might influence the results
of the user’s analysis.

Based on this intuition, we propose QuERy, a framework
that integrates ER with query processing into a single joint
execution. In QuERy, after the analyst has restructured her
data, she can postulate her queries over these entity-sets
prior to cleaning them. Instead of cleaning the data fully
beforehand and then executing the query, the QuERy frame-
work exploits the query semantics to reduce the cleaning
overhead by deduplicating only those parts of data that in-
fluence the query’s answer. QuERy is agnostic to the specific
technique of ER and thus, any ER algorithm (e.g., [6, 16])
can be used to clean the necessary data parts.

3. ER PRELIMINARIES
In this section, we first present common ER notation, and

then discuss the standard phases of ER.

3.1 Entity-sets
Let D be a dataset instance that holds a number of entity-

sets, D = {R,S,T, . . .}. Each entity-set R contains a set of
entities of the same type, R = {r1, . . . , r∣R∣} where ri rep-

resents the ith entity in R and ∣R∣ is its cardinality (s.t.
1 ≤ i ≤ ∣R∣). Entity-set R is considered dirty if at least

2
The first column in Figures 2 and 3 refers to the “block-id” that

results from partitioning the entities into blocks, see Section 3.2.
3
Such ER algorithms typically assume that each entity-set contains

a set of entities of the same type.
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object source c id c name m id c reviewsc ratings

oC1 {BB,WM}{c1, c4} {iPhone 6, {m1,m4} 415 4.8
iPhone-VI}

oC2 BB c2 iPhone 5 m2 220 3.9

oC3 {BB,WM}{c3, c5} {Galaxy S5, {m3,m5} 180 4.5
Galaxy S-V}

oC4 WM c6 Galaxy S-III m6 95 3.7

Figure 4: Object-set OC

object source m id m name m url m country

oM1 {BB,WM}{m1,m2,Apple Inc. www.apple.com USA
m4}

oM2 {BB,WM}{m3,m5, Samsung www.samsung.comSouth Korea
m6}

Figure 5: Object-set OM

two entities ri, rj ∈ R represent the same real-world ob-
ject, and hence ri and rj are duplicates. The attributes
in R are denoted as AR = {R.a1, . . . ,R.a∣AR ∣}, where ∣AR∣
is the arity of R. Thus, the kth entity in R is defined as
rk = {νk1, . . . , νk∣AR ∣}, where νki is the value of the ith at-

tribute in entity rk (s.t. 1 ≤ k ≤ ∣R∣ and 1 ≤ i ≤ ∣AR∣).
For instance, entity-set C, shown in Figure 2, is dirty

since it contains two duplicate pairs {c1, c4} and {c3, c5}.
Likewise, entity-set M , presented in Figure 3, is dirty since
manufacturers {m1,m2,m4} and {m3,m5, m6} are dupli-
cates and refer to the same real-world objects.

3.2 Standard ER Phases
A typical ER cycle consists of two phases: a blocking

phase and a deduplication phase.

3.2.1 Blocking Phase
Blocking is the main technique used to improve the ef-

ficiency of ER approaches. It divides entities of the same
entity-set into (possibly overlapping) smaller blocks. Block-
ing methods use blocking functions, which are applied on one
(or more) attribute(s) called blocking key(s), to partition the
entities such that (i) if two entities might co-refer, they will
be placed together into at least one block and (ii) if two enti-
ties are not placed together into at least one block, they are
highly unlikely to co-refer. In our approach, we divide each
entity-set R ∈ D into a set of blocks BR = {R1, . . . ,R∣BR ∣}
using one or more blocking functions.

For example, in Figure 2, we used a blocking function to
partition the cellphones entity-set into blocks based on the
first two letters of their names. The first column of the table
in Figure 2 represents the “block-id” in which the entities
reside. Entity-set C has two blocks C1 and C2.

3.2.2 Deduplication Phase
The goal of the (potentially expensive) deduplication phase

is to detect, cluster, and then merge duplicate entities. It
consists of three sub-phases: similarity computation, clus-
tering, and merging, which can be intermixed.
Similarity Computation phase determines for each pair
of entities within the same block whether they co-refer or
not. This phase is often computationally expensive as it
might require comparing every pair of entities in the same
block using a compute-intensive application-specific resolve
(match) function. In general, various ER algorithms use dif-
ferent techniques to perform this step. In our approach, any
ER algorithm (e.g., Swoosh [6], Sorted Neighbor (SN) [16])
can be used to execute this step.
Clustering phase aims to accurately group duplicate en-
tities in entity-set R into a set of non-overlapping clusters
CR = {CR

1 , . . . ,C
R
∣CR ∣

}.

Merging phase combines entities of each individual clus-
ter into a single object that will represent the cluster to
the end-user or application in the final result. Let OR =
{oR1 , . . . , oR∣OR ∣

} be the object-set that results from merg-

ing clustering CR = {CR
1 , . . . ,C

R
∣CR ∣

} such that each object

oRi ∈ OR represents the merging of cluster CR
i ∈ CR.

A merge function !R(CR
m) will consolidate the elements

in cluster CR
m to produce a new object oRm. To merge two

duplicate entities ri, rj ∈ CR
m, a combine function is used

for each attribute in AR. A combine function ⊕R.a` takes

two values of attribute R.a` ∈ AR and outputs a single value.
Such a combine function performs different operations based
on the type of attribute R.a`.

Note that the selection of these combine functions is domain-
dependent and hence, should be done wisely by the ana-
lyst/user. If R.a` is a numeric attribute, ⊕R.a` could be:
● ADD semantics: νi` ⊕ νj` = νi` + νj`,
● AVG semantics: νi` ⊕ νj` = avg(νi`, νj`),
● MAX semantics: νi` ⊕ νj` = max(νi`, νj`),
● MIN semantics: νi` ⊕ νj` = min(νi`, νj`).

In general, the ADD and AVG semantics could be used when
the objects are obtained from the same data source, yet
their entities are split in parts. The MAX and MIN semantics
could be used when objects are retrieved from different data
sources, e.g., c reviews and c ratings in entity-set C.

If R.a` is a categorical attribute, ⊕R.a` could be:
● UNION semantics: νi` ⊕ νj` = νi` ∪ νj`,
● EXEMPLAR semantics: νi` ⊕ νj` chooses either νi` or νj`

according to some policy.
The UNION semantics are utilized when the system needs

to retain all possible values of some attribute, e.g., c name
in entity-set C. In contrast, the EXEMPLAR semantics are
used when one value holds richer information than the other
one, e.g., in the m name attribute, the value “Apple Inc.”
dominates “Apple”.

If R.a` is an identifier (e.g., c id) or a reference attribute
(e.g., m id in entity-set C), ⊕R.a` could be:
● UNION semantics: νi` ⊕ νj` = νi` ∪ νj`.

Note that the aforementioned combine functions have the
commutativity and associativity properties defined as:
1. Commutativity: νi` ⊕ νj` = νj` ⊕ νi`,
2. Associativity: (νi` ⊕ νj`)⊕ νk` = νi` ⊕ (νj` ⊕ νk`).

Since these properties hold, the representation of the merged
object (e.g., object oRm) will always be the same regardless
of the merge order within CR

m.
Figures 4 and 5 show the object-setsOC = {oC1 , oC2 , oC3 , oC4 }

and OM = {oM1 , oM2 }, which resulted from deduplicating
entity-sets C and M using a traditional cleaning algorithm,
e.g., [6, 16]. In Figures 4 and 5, we assume that the analyst
picked (i) the MIN semantics to combine attribute c reviews,
(ii) the MAX semantics to combine attribute c ratings, (iii) the
EXEMPLAR semantics to combine attributes: m name, m url,
and m country, and (iv) the UNION semantics otherwise.

4. ER AND QUERY PROCESSING
In this section, we first introduce the concepts of queries

and query trees in Section 4.1. Section 4.2 shows how to
evaluate predicates applied to multi-valued attributes. In
Section 4.3, we present a standard solution to answer queries
on top of dirty data. Finally, we formally define our problem
in Section 4.4.

4.1 Queries and Query Trees
We will consider flat SQL queries with AND as the only

boolean connective in their qualification, similar to the fol-
lowing syntax: (SELECT target-list FROM D WHERE Φ),
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SELECT ∗
FROM C AS Cx, C AS Cy, M
WHERE Cx.m id = M .m id // ϕ0

AND Cx.c name = Cy.c name // ϕ1

AND M .m country = “USA” // ϕ2

AND Cx.c source = “BB” AND Cx.c reviews ≥ 300 // ϕ3

AND Cy.c source = “WM” AND Cy.c reviews ≥ 300 // ϕ4

Figure 6: Query 1

where Φ denotes (i) the equi-join4 predicate(s) connecting
entity-sets in D and (ii) the optional selection predicates5

applied to attributes in entity-sets in D.
A flat SQL query is often represented by a SPJ query tree.

The leaves of such a tree are relations while the non-leaf
nodes are relational algebra operators, e.g., selections (σ),
projections (π), joins (▷◁), renames (ρ), etc. Each inter-
mediate node encapsulates a single task that is required to
execute the query. The edges of such a query tree represent
data flow from the bottom to the top.

4.2 Evaluating Set Values
As presented in Section 3, if the UNION semantics are used

to merge a non numeric attribute (viz., a categorical, an
identifier, or a reference attribute), then the value of this
attribute will be multi-valued in the form of a set, e.g., at-
tributes source, c id, c name, and m id in Figure 4. To
evaluate predicate ϕk ∈ Φ defined on one of these attributes,
we must overload its (=) operator as discussed next.

Let opi and opj be the two operands in predicate ϕk ∶
opi = opj . The following four different cases exist since ϕk

has two operands:

1. If both operands opi and opj are single-valued, then ϕk

is true if opi = opj .
2. If operand opi is a single value but operand opj is a set,

then ϕk is true if opi ∈ opj .
3. If operand opi is a set but operand opj is a single value,

then ϕk is true if opj ∈ opi.
4. If both operands opi and opj are sets, then ϕk is true if
opi ∩ opj ≠ {}.

4.3 Standard Solution
Let us use an illustrative example to present the standard

solution of answering queries on top of dirty data. Suppose
that a user interested in comparative shopping wishes to
find popular cellphones that have been manufactured in the
“USA” and are listed on two distinct data sources: Best
Buy and Walmart with at least 300 reviews at each source.
Query 1, shown in Figure 6, represents the user’s interest.

The execution plan for Query 1, which is selected by some
query optimizer, is shown in Figure 7. This plan is assumed
to contain the best operators placement and join ordering.
The result of executing this plan on the dirty entity-sets
shown in Figures 2 and 3 prior to cleaning them is the empty
set {}. However, this is incorrect since the first clean object
{iPhone 6, iPhone-VI} is listed on both sources, it has more
than 300 reviews at each source, and it has been manu-
factured in the “USA”. Thus, it should be returned as the
answer to Query 1.

The standard way to answer Query 1 is to first apply the
blocking phase on the dirty entity-sets C and M , then to
fully deduplicate C and M to create object-sets OC and OM

(i.e., to obtain the tables in Figures 4 and 5), and finally, to

4
An equi-join is a special type of join that only uses the (=) operator

in the join-predicate.
5
If the selection predicate is applied to a non numeric attribute, then

we solely consider the (=) operator.

compute the query over these object-sets. This corresponds
to inserting the cleaning operator (denoted by δ) directly
above the tree leaves (viz., entity-sets) as shown in Figure 8.

However, such an approach could be very expensive as
it might clean unnecessary blocks. For instance, we note
that no cellphones from C2 could satisfy Query 1. This is
because if we enumerate all potential objects inside C2 (viz.,
{c3}, {c5}, {c6}, {c3, c5}, {c3, c6}, {c5, c6}, and {c3, c5, c6})
none of them will satisfy Query 1 as the maximum number
of reviews of all potential objects inside C2 is 275, which
does not satisfy the reviews criteria, i.e., ≥ 300. Thus, all
cellphones in C2 will not be present in the query answer.
As a result, deduplicating C2 can be eliminated. By using a
similar kind of reasoning, we can note that deduplicating M2

is also unnecessary. Based on this intuition, we will build a
principled solution for integrating ER with query processing
in Sections 6 and 7 which demonstrates outstanding results,
as shown in Section 8.

4.4 Problem Definition
Given a query Q, let Of denote the set of objects that

satisfy Q when all entity-sets in D are cleaned first. Also,
let Oq be the set of objects returned by QuERy as the an-
swer to Q. Then, we can formally define our problem as an
optimization problem as follows:

Minimize: Execution time of Q
Subject to:

1. ∀o ∈ Oq, o satisfies Q; // Query satisfaction
2. Oq ≡ Of; // Answer correctness

5. POLYMORPHIC QUERY TREES
In this section we formalize the notion of polymorphic op-

erators, which is a key concept in QuERy.

5.1 Polymorphic Operators
In order to correctly answer a query while performing only

a minimal amount of cleaning, we introduce the concept
of polymorphic operators. Such polymorphic operators are
analogous to the common relational algebra operators (i.e.,
selections and joins) with one exception: they know how to
test the query predicates on the dirty data prior to cleaning
it. These operators are called polymorphic since they accept
as input not only clean data (objects) as regular operators,
but also dirty data (blocks).

Let us define these novel operators formally. Let R and S
be two entity-sets in D that are split into two sets of blocks
BR = {R1, . . . ,R∣BR ∣} and BS = {S1, . . . , S∣BS ∣}. Also, let

OR = {oR1 , . . . , oR∣OR ∣
} and OS = {oS1 , . . . , oS∣OS ∣

} be the object-

sets that would result if R and S are fully cleaned. Note
that the objective of QuERy is to compute the query answer
without fully computing OR and OS , unless obviously if the
query answer requires computing them fully.

To make our next definitions clear, let us denote the power
set of block Ri as P(Ri). Power set P(Ri) is the set of all
subsets of Ri, including the empty set and Ri itself. The
merging of all entities in subset R′

i ∈ P(Ri) would form a

potential object θR
′
i . Let the set of all potential objects

inside block Ri be ΘRi = {θRi
1 , . . . , θRi

∣P(Ri)∣
}. Note that not

all potential objects in ΘRi will become real-world objects
as a single entity cannot belong to two real-world objects.

A polymorphic selection is a unary operation, denoted by
ςϕk

, where ϕk is the propositional predicate. If the input to

this operator is clean data (viz., object-set, say OR), then
it acts as the normal selection operator σϕk

but applied to
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Figure 10: Plan B

objects instead of tuples. That is, it selects all those objects
in OR that satisfy ϕk. However, if its input is dirty data
(viz., a set of blocks, say BR), then it selects all those blocks
in BR for which ϕk holds as defined next:

Definition 1. Block Ri ∈ BR satisfies ςϕk
if there exists a

potential object θR
′
i ∈ ΘRi such that θR

′
i satisfies σϕk

.

Intuitively, ςϕk
would select those blocks Ri ∈ BR that

contain at least one potential object that satisfies σϕk
. For

example, consider BC = {C1,C2} from Figure 2, predicate
ϕi ∶ C.c ratings = 4.8, and combine function ⊕c ratings = MAX.
Block C1 satisfies ςϕi

since there exists a potential object

θC
′
1 ∈ ΘC1 that satisfies σϕi

. Note that θC
′
1 resulted from

merging subset C′

1 = {c1, c3}, where C′

1 ∈ P(C1). The ratings

value of θC
′
1 is 4.8 (i.e., max(4.6,4.8) = 4.8). In contrast,

block C2 does not satisfy ςϕi
since no potential object θC

′
2 ∈

ΘC2 exists, which satisfies σϕi
. Thus, ςϕi

(BC) = {C1}.
A polymorphic join is a binary operation, denoted by

▶◀ϕk
, where ϕk is the propositional predicate. Since ▶◀ϕk

has two inputs, four cases exist. Case one is when both in-
puts to this operator are sets of clean objects, say OR and
OS , then it acts as the regular join operator ▷◁ϕk

but ap-
plied to objects instead of tuples. That is, it joins all object
pairs in OR and OS that satisfy ϕk. Case two occurs when
the left input is dirty data (i.e., a set of blocks, say BR). The
left polymorphic join operator, denoted by ▶◁ϕk

, joins all
those block-object pairs for which ϕk holds as defined next:

Definition 2. Block Ri ∈ BR and object oSj ∈ OS satisfy

▶◁ϕk
if there exists a potential object θR

′
i ∈ ΘRi that joins

with oSj to form an object θR
′
ioSj that satisfies ▷◁ϕk

.

In other words, ▶◁ϕk
would associate those blocks Ri ∈

BR that contain at least one potential object θR
′
i with object

oSj such that θR
′
i joins oSj to satisfy ▷◁ϕk

.
Similarly, case three happens if the right input is a set of

dirty blocks (say BS). The right polymorphic join operator,
denoted by ▷◀ϕk

, joins all those object-block pairs for which
ϕk holds as defined next:

Definition 3. Object oRj ∈ OR and block Si ∈ BS satisfy

▷◀ϕk
if there exists a potential object θS

′
i ∈ ΘSi that joins

with oRj to form an object oRj θ
S′i that satisfies ▷◁ϕk

.

Case four takes place when both inputs are sets of dirty
blocks, then the polymorphic join operator ▶◀ϕk

joins all
those block-block pairs for which ϕk holds as defined next:

Definition 4. Blocks Ri ∈ BR and Sj ∈ BS satisfy ▶◀ϕk
if

there exists a potential object θR
′
i ∈ ΘRi , a potential object

θS
′
j ∈ ΘSj , and the joined object θR

′
iθS

′
j satisfies ▷◁ϕk

.

Intuitively, ▶◀ϕk
would associate those blocks Ri ∈ BR

that contain at least one potential object θR
′
i with those

blocks Si ∈ BS that contain at least one potential object

θS
′
j such that θR

′
i joins θS

′
j to satisfy ▷◁ϕk

. For instance,

consider BC = {C1,C2} and BM = {M1,M2} from Figures 2

and 3, predicate ϕj ∶ C.m id = M.m id, and combine func-
tion ⊕m id = UNION. Blocks C1 and M1 satisfy ▶◀ϕj

since

potential object θC
′
1 that results from merging subset C′

1 =
{c1, c2, c4} joins with potential object θM

′
1 that results from

merging subset M ′

1 = {m1,m2,m4}. Note that C′

1 ∈ P(C1)
and M ′

1 ∈ P(M1). Also, note that the value of the m id

attribute in θC
′
1 is {m1,m2,m4} and the value of the m id

attribute in θM
′
1 is {m1,m2,m4}.

Finally, the cleaning operator δ deduplicates the entities
in the blocks using an ER algorithm, e.g., [6, 10].

5.2 Equivalent Polymorphic Query Trees
As discussed in Section 4.3, executing the plan shown in

Figure 7 will return incorrect results because of the dirtiness
in the data. To overcome this problem, a traditional solu-
tion will clean data first, which is semantically equivalent
to inserting the deduplication operator δ directly above the
tree leaves, see Figure 8. However, such an approach could
be expensive as it might perform unnecessary cleaning and
hence increase query execution time.

To return a correct result while trying to avoid unneces-
sary cleaning, we will augment the plan presented in Figure 7
with appropriate polymorphic operators. Clearly, many ways
may exist in which we can add the polymorphic operators
to such a plan. For instance, one plan may decide to per-
form polymorphic selections only and then clean all dirty
blocks that pass such polymorphic selections, see Figure 9.
The intuition for such a plan is that the polymorphic selec-
tions will be able to filter away some blocks without clean-
ing them. However, this strategy misses the opportunity
to further prune unnecessary blocks which would have been
pruned had we also considered the join predicate(s).

Another plan may choose to clean some entity-sets imme-
diately while deferring the cleaning of other entity-sets to a
later time. Figure 10 shows an example of such a plan where
blocks from entity-set M are cleaned eagerly while the clean-
ing of blocks from entity-set C is deferred to a later time.

A different lazy plan may delay the cleansing of all dirty
entity-sets to the end by inserting the cleaning operator δ
above all selections and joins. Note that, in such a scenario,
all selection and join operators that are originally applied on
the dirty entity-set must be replaced with the corresponding
polymorphic selections and joins, see Figure 11.

In general, we formally define the equivalence of polymor-
phic query trees as:

Definition 5. Two polymorphic query plans are said to be
equivalent if the two plans return the same set of objects as
their answer on every dataset instance D.

In the subsequent sections, we will explain how to use the
polymorphic operators to intermix query evaluation with
ER to improve cleaning efficiency. In particular, we develop
two different solutions: lazy-QuERy (Section 6) and adaptive-
QuERy (Section 7) which utilize the query semantics to reap
the benefits of early predicate evaluation while still minimiz-
ing unnecessary computation in the form of data cleaning.
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6. LAZY-QUERY SOLUTION
In this solution, we develop a lazy architecture that at-

tempts to delay cleansing of dirty entities as much as pos-
sible. The main idea in this approach is to try to avoid
cleaning until it is necessary for the system to proceed. This
architecture relies on the concepts of polymorphic operators
and sketches to avoid unnecessary cleaning.

Conceptually, the lazy-QuERy solution can be viewed as
consisting of the following steps:

1. Create Blocks. The approach starts, as most traditional
ER approaches would; by partitioning entities of the same
entity-set into (possibly overlapping) smaller blocks.

2. Create Sketches. In this step, the approach creates a
sketch for each block to summarize its content. Sketches
allow the polymorphic operators to perform an inexact
test to decide whether a block satisfies a predicate or
not without cleaning the block. Note that the sketches
of each entity-set will be maintained in a separate LIFO
stack. We denote the LIFO stack for entity-set Ei as LEi .

3. Query Plan Execution. The approach evaluates the query
tree using polymorphic operators’ implementations based
on the sketches. A block whose sketch does not satisfy
the predicate will be discarded. A block whose sketch
reaches the topmost operator (viz., passes all predicates)
will be cleaned using a cleaning algorithm. The output
of cleaning (i.e., clean objects) will be pushed back into
the query tree to be evaluated. The algorithm terminates
when there are no more sketches/objects to be tested.

6.1 Creating Sketches
Recall that a block Ri satisfies a polymorphic operator

if there exists a potential object θR
′
i , which resulted from

merging entities in subset R′

i ∈ P(Ri), that satisfies the com-
mon relational algebra operator. However, constructing the
power set of block Ri in order to enumerate all potential
objects inside Ri is exponential6 and hence, impractical.

Consequently, the challenge translates into developing a
good technique that allows polymorphic operators to per-
form their tests faster than the naive approach (viz., power
set construction). The idea hinges on representing the val-
ues of the potential objects inside a block efficiently without
constructing them.

A sketch is a concise representation of block contents. The
key intuition behind sketches is to provide the polymorphic
operators with the ability to quickly check if a block sat-
isfies a predicate or not without cleaning the block. This
test is considered a safe approximation: while it may return
false positives, it never returns false negatives. That is, the
polymorphic operator returns false only when all potential
objects inside block Ri are guaranteed not to be a part of
the query answer. In contrast, it returns true when at least
one potential object inside Ri might be part of the answer.
In our solution, we create a sketch KR

i for each block Ri.
Before we formally define sketch KR

i , we need to introduce
some auxiliary notation. Given the set of predicates Φ in
query Q, let PRi = {Ri.a1 . . . ,Ri.am} be the set of attributes

in Ri that are used in Φ, where PRi ⊆ ARi . Also, let VRi
j =

{ν1j , . . . , νkj} represent the set of all values in block Ri for
attribute Ri.aj .

Sketch KR
i is defined as KR

i = {KRi
1 , . . . ,KRi

m }, where KRi
j

is a signature for attribute Ri.aj . The value of signature

KRi
j represents the compact representation of the values of

6
The complexity of constructing the power set of block Ri is O(2∣Ri ∣).
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the Ri.aj attribute. The type of KRi
j depends on the type

of attribute Ri.aj . Our approach computes signatures as

follows. If Ri.aj is a numeric attribute, then KRi
j is a range

[x, y]. The values of x and y are computed based on the
combine function ⊕Ri.aj used to merge the values in Ri.aj .
That is, if ⊕Ri.aj is:

1. ADD, then x = min(VRi
j ) and y =

k

∑
`=1

ν`j .

2. MAX, MIN, or AVG, then x = min(VRi
j ) and y = max(VRi

j ).
If Ri.aj is an identifier, a reference, or a categorical at-

tribute, then the type of KRi
j is a set U . Set U is computed

as follows: U =
k

⋃
`=1

hash(ν`j), where hash() is a function that

computes the hash value of ν`j .
The following example describes the concept of sketches.

Consider entity-set C, Query 1, and combine functions: ⊕source =
UNION, ⊕c name = UNION, ⊕m id = UNION, and ⊕c reviews = MIN.
We create sketch KC

1 for block C1 in Figure 2 as follows:

source c name m id c reviews

{hash(BB), {hash(iPhone 6), {hash(m1), [220,550]
hash(WM)} hash(iPhone 5), hash(m2),

hash(iPhone-VI)} hash(m4)}

6.2 Query Plan Execution
The lazy-QuERy solution exploits the concept of “Equiv-

alent Query Trees” to evaluate the query plan using poly-
morphic operators’ implementations based on the blocks’
sketches. It assumes the query tree that contains the best
operator placement and join ordering is given. For example,
the input to the lazy solution will be a plan similar to the
“Query 1 Plan” in Figure 7. Given such a plan, the lazy so-
lution substitutes each algebraic operator in the query tree,
which is defined on a dirty entity-set, with its corresponding
polymorphic operator. It then places the cleaning operator
above all polymorphic selections and joins. As a result, a
plan similar to the “Lazy Plan” in Figure 11 will be the plan
that the lazy solution will create to execute the “Query 1
Plan” in Figure 7 on dirty data. The “Lazy Plan” is called
lazy as it tries to delay the cleansing of dirty entities as much
as possible. Its key insight is to try to avoid cleaning until
it is necessary for the system to proceed.
QuERy employs the well-known database pipelining archi-

tecture. In pipelining, the output of one operator is passed
to its parent without materializing the intermediate results.
To support pipelining, the operators should implement the
Iterator Interface, i.e., they implement three functions:

1. open(): initializes the iteration.
2. getNext(): calls operator-specific code to perform the

operator’s task. It also calls the getNext() function on
each child operator to pull up the next item.

3. close(): ends the iteration when all output items have
been produced through repeated calls to getNext().

In QuERy, all polymorphic operators are implemented as
iterators. An item (denoted by I) in QuERy could be a sketch
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of a block, a clean object, or a composite item that results
from joining two (or more) items. We refer to items that
belong to a composite item as subitems. Note that, in QuERy,
all query plans are either left (or right) deep plans since
QuERy does not materialize the intermediate results.

The Execute-Plan(.) function, shown in Figure 13, be-
gins when the topmost operator (viz., tree root7) calls open()
to initialize the state of the iterator (Line 2). Then, it issues
repeated calls to getNext() to pull up the next items (Lines
3–4). Each getNext() call performs two tasks: (i) it calls
getNext() on each child operator and (ii) performs a specific
task based on the operator type. If the operator is select,
then it filters away items that do not satisfy the selection
predicate. If the operator is join, then it combines items
(from an entity-set) with other items (from another entity-
set) that do satisfy the join predicate to form a composite
item. Note that a block will be discarded if its sketch does
not satisfy a predicate in the query tree.

Recall that, in this lazy solution, we place the cleaning op-
erator above all polymorphic selections and joins and thus,
an item will not reach the deduplicate operator unless it
passes all predicates in the query tree. Such an item is, in
fact, a composite item as it resulted from joining two (or
more) items. If all subitems in this composite item are ob-
jects, then this composite item satisfies the query and hence,
is added to the answer (Lines 5–6). However, if at least one
subitem in this item is a sketch, then a block-picking policy8

will choose a sketch from this item to clean its correspond-
ing block (Lines 7–8). Note that this approach treats the
cleaning strategy as a “black-box” and hence, any cleaning
strategy (e.g. [6, 16], etc.) will suffice.

The output of cleaning (viz., clean objects) are pushed
back into their appropriate stack (Line 9). It is important
to note that the choice of a LIFO stack is critical since it
provides higher priority to the clean objects compared to
dirty blocks. Interestingly, this choice should intuitively re-
duce cleaning since the probability that an object will satisfy
a predicate is usually much smaller when compared to the
probability that a sketch will satisfy that exact predicate.

The algorithm terminates the iteration by calling close()
when all items in the stacks are consumed (Line 11).

The idea of this function is shown next. Consider the plan
in Figure 11. Its execution starts when the topmost operator
(δ) calls getNext()9 on its child. Subsequently, each oper-
ator calls getNext() (repeatedly) on its child operator(s).
The bottommost operators call getNext() on scan opera-
tors to read the items from stacks LCx , LCy , and LM . Now,

suppose that items KCx
1 , KCy

1 , and KM
1 pass all predicates in

Figure 11 and thus, composite item I = KCx
1 K

Cy

1 KM
1 reaches

the deduplicate operator. Let the block-picking policy picks
KCx

1 to clean its block, i.e., C1. This cleaning results in clean

objects oCx
1 and oCx

2 which are pushed back to LIFO stack

LCx . Since QuERy uses LIFO stacks, objects oCx
1 or oCx

2 will

be evaluated before KCx
2 . Finally, the algorithm terminates

when LCx , LCy , and LM are empty.

6.3 Correctness and Time Complexity
Correctness of Our Approach. From a theoretical per-
spective, QuERy framework guarantees that the following
lemma holds trivially:
7
In our discussion, we ignore projections and hence, we assume that

the deduplicate operator is the tree root.
8
Recall that, each sketch corresponds to a block and hence picking a

sketch is, in fact, picking a block.
9
Assume that open() is called implicitly before getNext().

Execute-Plan(root,LE1 , . . . ,LEn
)

1 Ans ← {}
2 root.open()
3 I ← root.getNext()
4 while I ≠ null
5 if ∀ι ∈ I, isObject(ι) then //all subitems in I are objects
6 Ans ← Ans ∪ I
7 else //at least one item is a sketch

8 O
Ej ← Pick-And-Clean-Block(I)

9 L
Ej .push(OEj )

10 I ← root.getNext()
11 root.close()
12 return Ans

Figure 13: Execute-Plan(.) Function

Lemma 1. For any flat query Q, the object-set Oq returned
by QuERy as the answer to Q is exactly equal to the object-
set Of returned by the standard solution (see Section 4.3)
as the answer to Q.

Time Complexity of Our Approach. The polymorphic
operators in QuERy work with any implementation of the cor-
responding common relational algebra operators and thus,
does not influence the time complexity of such operators;
except for the difference in the cost of evaluating the associ-
ated predicates. Note that costs of block-to-block, block-to-
object and object-to-object tests could be different. In the
last case, the cost is exactly equal to that of common im-
plementations. The predicate cost, however, is (relatively)
more in the case of block-to-(block/object) tests (though the
number of tests is much smaller). For more details see [1].

6.4 Discussion
In this section, we briefly explain a few interesting points

related to blocking.
Multiple blocking functions. ER techniques typically
use several blocking functions to ensure that all the likely
matching entities are compared, improving the quality of
the result. Our solution deals with such a case by creating
a separate set of LIFO stacks for each blocking function.
Next, it considers each set of stacks independently.
Blocking key sketch optimization. An important (and
frequent) special case takes place when there is a predicate
defined on an attribute that was selected as a blocking key
to partition the entity-set. In this case, the value of the sig-
nature for this attribute is chosen to be equal to the value
returned by the blocking procedure (such a value is denoted
by BKV). For instance, the second join predicates in Query 1
is ϕ1 ∶ Cx.c name = Cy.c name and entity-set C in Figure 2
is divided based on the c name attribute. Thus, the value of
signature KC1

c name is “iP”. Note that this special case allows
for even more efficient block-to-block join processing com-
pared to using a union sketch, as we present in Section 8.
Block-picking policy. A block-picking policy selects one
block from a composite item (that reached the deduplicate
operator) to clean it. Intuitively, such a policy should choose
a block that may reduce the query execution time. Many
different policies can be used. We classify such policies into
three main classes. The first class picks a block based on its
location in the composite item. For example, a policy from
this class may pick and clean the leftmost (or rightmost)
available block first. The second class chooses a block to
clean based on its size. For instance, it selects the smallest
block available in the composite item. The third class picks
a block to clean based on the selectivities of the predicates
in the query (see Section 7). We have experimented with
different policies from each class. The one that has demon-
strated the best results is based on picking the rightmost
available block from the composite item first. The block-
picking policy is not our focus in this paper.
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7. ADAPTIVE-QUERY SOLUTION
The previous solution is considered lazy since it tries to de-

lay the cleaning of dirty entities as much as possible. While
such an approach will reduce the cost of cleaning, it might
increase the cost of processing the query. For example, as-
sume that all sketches end up reaching the deduplicate oper-
ator (viz., the topmost operator in Figure 11), meaning that
their corresponding blocks need to be cleaned. In this case,
the time spent in trying to filter away these blocks is wasted.
In fact, cleaning these blocks eagerly (without passing their
sketches up the tree) might be more efficient.

To address this issue, we implement a different solution
which is an adaptive cost-based approach that, given a query
tree (with polymorphic operators) and dirty entity-sets, can
devise a good plan to simultaneously clean and process the
query. The key intuition hinges on placing decision nodes as
the bottommost nodes in the query tree, as presented in Fig-
ure 12. The task of such decision nodes is to decide if eagerly
cleaning some dirty blocks is more efficient (in terms of the
overall query execution time) than delaying their cleansing
until the last stage as in the lazy solution. The conjecture
of placing these nodes at the bottom is to allow adaptive-
QuERy to make the “cleaning a block eagerly versus passing
it up the tree” decision, from the start of query execution
time. Note our adaptive solution is general, and it does not
require such nodes to be placed at the bottom.

Our adaptive cost-based solution consists of two steps. In
the first step, we use a sampling technique to collect different
statistics (e.g., selectivities of predicates, cost of join, etc.).
In the second step, the decision nodes utilize these statistics
to make their smart decisions.

7.1 Sampling Phase
The first step in our adaptive solution is to employ a sam-

pling phase to collect various statistics such as: predicates’
selectivities, cost of cleaning, cost of block-to-block join test,
etc. The basic idea is to use two fractions f1 and f2, where
0 < f1, f2 < 1, to control how many input blocks will be con-
sumed (either cleaned or passed up the tree for evaluation)
during this phase. In particular, the sampling phase begins
by cleaning f1.∣Btotal∣ blocks, where ∣Btotal∣ is the total num-
ber of blocks in all entity-sets in dataset D. For instance,
consider dataset D = {C,M}. Let ∣BC ∣ = ∣BM ∣ = 1,000 blocks
and f1 = 10%. In this case, the sampling phase begins by ea-
gerly cleaning 0.1× (1,000+ 1,000) = 200 blocks. This early
cleaning allows our adaptive-QuERy solution to estimate the
following values:
1. The average cost of resolving two entities in entity-set R,

denoted by cost(resolve(R)).
2. The average cost of joining a clean object with a clean

object, denoted by cost(OOJoin).
3. The clean object selectivity of each predicate ϕi in the

query tree, denoted by SO(ϕi).
Subsequently, fraction f2 is utilized (by our solution) to

ensure that at least f2.∣Btotal∣ blocks will be passed up the
tree for evaluation. For example, if f2 = 20%, then 0.2 ×
(1,000 + 1,000) = 400 blocks will be sent up the tree for
evaluation. This block-evaluation authorizes our solution to
estimate the next set of values:
1. The average cost of joining a block sketch with a block

sketch, denoted by cost(BBJoin).
2. The average cost of joining a block sketch with an object,

denoted by cost(BOJoin).
3. The dirty block selectivity of each predicate ϕi in the

query tree, denoted by SB(ϕi).

If predicate ϕi is associated with a select operator, then

we calculate SB(ϕi) and SO(ϕi) as follows: SB(ϕi) = ∣Bs(ϕi)∣

∣Bt(ϕi)∣

and SO(ϕi) = ∣Os(ϕi)∣

∣Ot(ϕi)∣
, where ∣Bs(ϕi)∣ (∣Os(ϕi)∣) is the num-

ber of blocks (objects) that satisfy predicate ϕi and ∣Bt(ϕi)∣
(∣Ot(ϕi)∣) is the number of blocks (objects) that was tested
by predicate ϕi. For instance, if 50 blocks (out of 200 blocks
tested) satisfy ςϕ3

, then, SB(ϕ3) = 50
200

= 0.25.
Yet, if predicate ϕi is associated with a join operator,

then we estimate SB(ϕi) and SO(ϕi) as follows: SB(ϕi) =
∣Bs(ϕi)∣

∣Bt1
(ϕi)∣.∣Bt2

(ϕi)∣
and SO(ϕi) = ∣Os(ϕi)∣

∣Ot1
(ϕi)∣.∣Ot2

(ϕi)∣
, where ∣Bt1(ϕi)∣

(∣Ot1(ϕi)∣) is the size of the first input set of blocks (clean
objects) and ∣Bt2(ϕi)

∣ (∣Ot2(ϕi)∣) is the size of the second
input set of blocks (clean objects) of the join operator.

During this sampling phase, we also calculate an impor-
tant statistic: the probability of a given block Ri passing all
predicates in the query tree and hence, reaching the dedu-
plicate operator10. This probability, denoted by P(Ri), is

computed as follows: P(Ri) = ∣B
R
top ∣

∣B
R
read

∣
, where ∣BR

top∣ is the

number of blocks from entity-set R that reached the top op-
erator and ∣BR

read∣ is the number of blocks from R that were
read during the sampling phase.

Intuitively, to better estimate the previous values, we would
like to read a comparable number of blocks from each entity-
set in D. For instance, a join algorithm such as tuple-based
nested-loop, where all tuples of the inner entity-set are read
before reading the second tuple from the outer entity-set,
will not be appropriate. Therefore, we implement the ripple
join algorithm [13] as our join algorithm. This join algo-
rithm aims to draw tuples (i.e., items) from entity-sets at
the same rate and hence, should allow for better estimations.

7.2 Adaptive Cost-based Cleaning
Based on the statistics computed in the sampling phase,

the decision nodes in our adaptive-QuERy solution use the
decision plane, presented in Figure 14, to compare the cost
of cleaning block Ri eagerly (CleanNow(Ri)) versus the cost
of evaluating Ri’s sketch in the query tree (Evaluate(KR

i )).
The decision whether to CleanNow(Ri) or Evaluate(KR

i )
relies on the following four values:

1. The probability of block Ri reaching the deduplicate op-
erator, denoted by P(Ri).

2. The cost of cleaning block Ri, denoted by clean(Ri)11.
3. The cost of evaluating block Ri’s sketch (KR

i ) in the query
tree, denoted by tree(KR

i ). We compute tree(KR
i ) =

tree(KR
i ) = T B .cost(BBJoin) + T O.cost(BOJoin), where

T B (T O) is the estimated number of block-to-block (block-
to-object) join tests that will be performed to check if
sketch KR

i will reach the top operator.
4. The cost of evaluating Ri’s cleaned objects (ORi) in the

tree, denoted by tree(ORi). We compute tree(ORi) =
tree(ORi) = ∣Ri∣(T B .cost(BOJoin) + T O.cost(OOJoin)),
where ∣Ri∣ is the size of block Ri.

For instance, if P(Ri) is high and both clean(Ri) and
tree(ORi) are low, then it might be more tempting to clean
Ri immediately instead of deferring its cleaning with little
hope of it being discarded.

The Make-A-Decision(.) function, shown in Figure 15,
presents the method a decision node employs to make its
choice using the decision plane. It starts by computing

10
Recall that, similar to the lazy solution, this solution places the

cleaning operator above all polymorphic selections and joins.
11

The cost of clean(Ri) is algorithm-dependent (see Section 8.1).
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Decision P(Ri) 1 − P(Ri)
CleanNow(Ri) clean(Ri) + tree(ORi) clean(Ri) + tree(ORi)

Evaluate(KR
i ) clean(Ri) + tree(ORi)+ tree(KR

i )
tree(KR

i )
Figure 14: Decision plane

the cost of CleanNow(Ri), which corresponds to the cost
of cleaning block Ri plus the cost of evaluating the clean
objects which resulted from cleaning Ri in the query tree
(Line 1). It also computes the cost of Evaluate(KR

i ), which
corresponds to computing the cost of two cases (Line 2).
On the one hand, if the sketch passes all predicates and
thus reaches the deduplicate operator, then the cost of eval-
uating it in the query tree is equal to the summation of the
following three costs (i) the cost of evaluating this sketch
in the query tree, (ii) the cost of cleaning the block that
corresponds to this block, and (iii) the cost of testing the
clean objects that resulted from cleaning its block. On the
other hand, if the sketch is eliminated by one predicate in
the query tree, then its evaluation cost is only the cost of
testing it in the query tree. Finally, the algorithm picks the
decision with the least amount of cost (Lines 3–5).

The idea of this function is shown in the next example.
Suppose that sketch KC

i (that corresponds to block Ci) is
returned by the scan operator. Before passing KC

i up the
tree, the Make-A-Decision(.) function wants to check if
cleaning it eagerly is more efficient. It uses some costs that
were estimated in the sampling phase. Let clean(Ci) =
4.95 ms, tree(KC

i ) = 0.024 ms, tree(OCi) = 0.16 ms, and
P(Ci) = 0.25. The Make-A-Decision(.) function computes
CleanNow(Ci) = 4.95 + 0.16 = 5.11 ms and Evaluate(KC

i ) =
0.25 × (4.95 + 0.16 + 0.024) + 0.75 × 0.024 = 1.3 ms. In this
case, since CleanNow(Ci) > Evaluate(KC

i ), the Make-A-
Decision(.) function will pass up KC

i for evaluation.

8. EXPERIMENTAL EVALUATION
In this section, we empirically evaluate the efficiency of

our proposed approaches on real and synthetic datasets.

8.1 Experimental Setup
Solutions. In our experiments, we compare the following
three solutions: (i) the standard solution (SS), presented
in Section 4.3, (ii) the lazy-QuERy solution (LQS), explained
in Section 6, and (iii) the adaptive-QuERy solution (AQS),
described in Section 7.
Cleaning Algorithm. To deduplicate a dirty block Rk ∈
BR, we resolve any two entities ri, rj ∈ Rk to try to decide
whether they are duplicates or not as in [19]. We next cluster
the duplicate pairs using the well-known transitive closure
algorithm [14].

The cost of cleaning block Rk is algorithm-dependent.
Thus, for this algorithm, we compute this cost as: clean(Rk)

= cost(resolve(R)). ∣Rk ∣.(∣Rk ∣−1)

2
, where cost(resolve(R)) is the

average cost of resolving two entities in entity-set R and ∣Rk ∣
is the size of block Rk.

8.2 Performance Factors
We can split the end-to-end execution time of SS, LQS,

and AQS into two main parts: (i) the time spent at cleaning
the dirty blocks and (ii) the time spent at processing the
input items (viz., blocks and object). As we discuss next,
several factors are expected to affect the performance of the
three solutions. In this section, we summarize the expected
effects of each factor prior to testing and validating their
effects experimentally in the following sections.

Make-A-Decision(Ri)

1 CleanNow(Ri)← clean(Ri) + tree(ORi)

2 Evaluate(KR
i )← P(Ri) ∗ (clean(Ri) + tree(ORi) + tree(KR

i ))

+(1 − P(Ri)) ∗ tree(KR
i )

3 if CleanNow(Ri) < Evaluate(KR
i ) then

4 O
Ri ← Clean-Block(Ri)

5 else Evaluate(KR
i )

Figure 15: Make-A-Decision() Function

Block selectivity (SB). SS is not affected by the block se-
lectivity because it does not deal with blocks. In contrast,
LQS is affected in the following fashion. When SB is high,
a small number of blocks will satisfy the query and thus,
the time spent at evaluating the query and at cleaning the
dirty blocks will decrease. However, when it is low, a larger
number of blocks will satisfy the query. In general, the pro-
cessing of the dirty blocks will be mostly overhead as most
blocks will not be discarded. Therefore, the time spent at
both evaluating the query and at cleaning the dirty blocks
will increase. In addition, it affects AQS in the following way.
When SB is high, AQS’s performance will be similar to LQS.
However, when it is low, the performance of AQS will usually
be similar to SS.
Object selectivity (SO). Object selectivity affects all three
solutions similarly. When it is high, a small number of ob-
jects will satisfy the query and thus, the time to process
the query will decrease. However, when SO is low, a larger
number of objects will satisfy the query, and thus the time
to evaluate the query will increase.
Cleaning Cost (cost(resolve)). All three solutions are af-
fected by this factor. Clearly, when the cost of cleaning
is high, the time spent at cleaning the dirty blocks will be
more than the time spent at cleaning them when it is low.
Note that SS will suffer the most (compared to LQS and AQS)
because it will always clean all blocks.
BBJoin Cost (cost(BBJoin)) / BOJoin Cost (cost(BOJoin)).
SS is not affected by these two costs since it does not deal
with blocks. In contrast, LQS is affected in the following way.
When the costs of BBJoin and BOJoin are low, the over-
head of evaluating the blocks will be low, and vice versa.
Moreover, they affect AQS in the following fashion. When
cost(BBJoin) and cost(BOJoin) are low, AQS’s performance
will often mimic LQS. However, when they are low, its per-
formance will usually imitate SS.
OOJoin Cost (cost(OOJoin)). This cost affects all three
solutions similarly. When cost(OOJoin) is high, the time
spent in processing the query will increase. However, when
it is low, the time spent in evaluating the query will decrease.

Overall, LQS is expected to perform excellently when SB
is high and/or cost(BBJoin) and cost(BOJoin) are low. We
expect LQS to perform reasonably (still better than SS) when
the costs of BBJoin and BOJoin tests are lower than the
cleaning cost (of blocks that do not satisfy the query) plus
the cost of evaluating the objects inside them.

Moreover, AQS is expected to perform competently when
LQS performs well. In addition, it is expected to overcome
the difficulties that LQS may face when the costs of BBJoin
and BOJoin tests are higher than the cleaning cost (of blocks
that do not satisfy the query) plus cost(OOJoin)) for the the
objects inside these blocks.

8.3 Products Dataset Experiments
In this section, we evaluate the efficacy of our approaches

on a real electronic products dataset collected from two dif-
ferent data sources: Best Buy and Walmart. We obtained
a subset of 89,070 raw records from these sources. To en-
rich our data further, we collected 1,237 raw records from
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Wikipedia regarding the product manufacturers.
Using basic data wrangling techniques, we restructured

these raw records into dataset D = {C,M}. Entity-set C
contains entities that describe electronic products and entity-
set M holds entities that describe their manufacturers. The
dataset schema is similar to that of Figures 2 and 3. The
cardinalities of entity-sets are ∣C ∣ = 89,070 and ∣M ∣ = 2,144.

Each entity-set is partitioned into a set of blocks. We
use a blocking function to split entity-set C into a set of
blocks (viz., BC) based on the first six letters of the products’
names. In addition, we use a blocking function that parti-
tions entity-set M into a set of blocks (i.e., BM ) based on the
first two characters of the manufacturers’ names. The sizes
of the resulted block-sets are ∣BC ∣ = 9,742 and ∣BM ∣ = 292.

To resolve a pair of entity-set C, we use the Edit-Distance
algorithm to compute the similarity between the products’
names. If this similarity is sufficient, then the resolve func-
tion declares the two products to be duplicates. In addition,
to resolve entities from entity-set M , we utilize Jaro-Winkler
distance to compare the names of the manufacturers.

To merge duplicate pairs from entity-sets C and M , we se-
lect the MAX semantics to combine all numeric attributes and
the UNION semantics to combine all non numeric attributes.

Finally, we compute sketches for entity-set C as:

source c name m id c reviews

m

⋃
`=1

hash(ν`j) BKV
m

⋃
`=1

hash(ν`j) [min(VCi
j ),max(VCi

j )]

We also compute sketches for entity-set M as:
m id m country

m

⋃
`=1

hash(ν`j)
m

⋃
`=1

hash(ν`j)

Experiment 1 (Lazy-QuERy Solution vs. Standard So-
lution). In this experiment, we use a set of queries similar
to Query 1 to compare our lazy-QuERy solution (LQS) with
the standard solution (SS) in terms of their end-to-end run-
ning time and the number of resolves called. Figure 16 plots
the actual end-to-end execution time of both solutions for
five different countries (viz., “Finland”, “Japan”, “Korea”,
“UK”, and “USA”) using two different c reviews values (viz.,
t = 16 and t = 128). Figure 17 is similar to Figure 16 but
plots the number of resolve calls instead of the execution
time. Note that the histograms in the two figures are iden-
tical, thus demonstrating that calling resolve (and not query
evaluation) is the bottleneck of both solutions in this test.

As expected, LQS is both faster and issues fewer resolves
than SS. This is due to its awareness of the query which
gives it the ability to discard blocks (whose sketches do not
satisfy one of the query predicates), resulting in savings in
resolves as such blocks do not require cleaning.

In Figure 16, when m country = “Finland” and c reviews ≥
16 (or c reviews ≥ 128), LQS takes only 4 seconds to evaluate
the query and return the answer while SS takes more than
140 seconds to do so. This huge savings is due to the fact

that, in our dataset, there is only one manufacturer that is
located in “Finland” and hence a small number of blocks will
require cleaning. However, there are more manufacturers
that are located in “Japan”, for instance, and thus LQS takes
more than 20 seconds to answer such a query.

Experiment 2 (Selectivity Effects). Figure 18 utilizes
a set of queries, similar to Query 1, to study the effects of
the query selectivity on LQS as well as on SS. To control the
query selectivity, we fix the manufacturer’s country (i.e.,
m country = “USA”) and vary the c reviews values (viz.,
1, 4, . . . , 4,096). Note that Figure 18 uses a log-lin scale
plot and the selection of different c reviews values is done
carefully to show the entire spectrum of LQS’s behavior.

As in Experiment 1, herein, the cost of calling resolve
is also the dominant factor of the overall execution time.
Hence, the end-to-end execution time of both solutions de-
pends heavily on the number of blocks that will be cleaned.

The number of resolves invoked by LQS and obviously its
query execution time (since resolves are the dominant factor)
are relative to the number of blocks that satisfy the query.
For instance, the number of blocks that satisfy predicate
ϕi ∶ c reviews ≥ 1 is almost equal to the number of blocks
that satisfy predicate ϕj ∶ c reviews ≥ 4; and hence, the LQS

takes almost equal time to answer these two queries. In
contrast, the block count that satisfies ϕi ∶ c reviews ≥ 1 is
considerably more than the block count that satisfies ϕk ∶
c reviews ≥ 128 and hence, LQS solution takes considerably
less time to answer the second query. In short, in case of
LQS, whenever the number of blocks that satisfy the query
(and hence require cleaning) increases, the total execution
time to answer the query will increase, and vice versa.

Note that the query selectivity effects are not noticed on
SS (in this experiment) since the cleaning cost overshadows
the cost of query processing.

Experiment 3 (Execution Time Breakdown). LQS

almost always outperforms SS as shown in Experiments 1
and 2. However, there are some cases in which SS performs
better than LQS. Such cases usually occur when (i) the query
selectivity is low (viz., most blocks will require cleaning)
and/or (ii) cost(BBJoin) tests is high.

To present such a case, we use the following query: (SELECT
∗ FROM C AS Cx, C AS Cy WHERE Cx.c name = Cy.c name AND

Cx.c source = “BB” AND Cx.c reviews ≥ t AND Cy.c source =
“WM” AND Cy.c reviews ≥ t), where we choose the value of
t to be equal to 0. Note that the selectivity in this query
is only offered by the join predicate and hence its selectiv-
ity is low. In addition, we experiment with three different
BBJoin tests of various costs. The first test (denoted by
BKV) is the least expensive one. It uses the blocking key
value (BKV) as the signature value for attribute c name. It
decides if two blocks join or not by comparing their BKVs.
Test two (denoted by U1) is more expensive than test one.
The signature of attribute c name, in this case, is equal to
a set of hashed strings. It checks if two blocks join or not
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SS LQS (BKV) LQS (U1) LQS (U2)
Total Time (s) 328.586 221.719 258.023 664.690

Initialization Time 1.148% 1.715% 1.495% 0.578%
Resolution Time 40.579% 49.988% 42.519% 16.440%
BBJoin Time 0% 2.374% 6.00% 63.043%
BOJoin Time 0% 16.128% 23.331% 9.482%
OOJoin Time 44.947% 19.222% 17.397% 6.791%
Iteration Time 13.299% 10.573% 9.258% 3.666%

Figure 20: Execution Time Breakdown

by efficiently computing the intersection between two sets
of integers. The third test (denoted by U2) is the most ex-
pensive one. In this case, the signature of attribute c name
is a set of strings. It checks if two blocks join or not by
exhaustively comparing the string values in the two sets. In
short, the cost of testing U2 >> U1 > BKV.

To conduct this experiment, we ran each of the four ap-
proaches shown in Figure 20 multiple times and recorded the
average total execution time (the first row in Figure 20). We
also computed the breakdown of that execution time which
consists of: the times spent at (i) blocking and creating
sketches if necessary, (ii) resolving dirty blocks, (iii) join-
ing dirty blocks, (iv) joining blocks with objects, (v) joining
clean objects, (vi) and running the iterator interface. Re-
sults showed that running LQS using the second block-to-
block join test (viz., U1) takes 258.023 seconds. In particu-
lar, we show that resolving the dirty blocks takes 42.519%
of the total execution time while joining them takes only
6.00%, demonstrating that resolving blocks is more expen-
sive than joining them in this case.

As shown in Figure 20, SS outperforms LQS when we use
the third BBJoin test (viz., U2). This is because cost(BBJoin)
dominates the cost of cleaning and hence, it might be better
to clean the blocks eagerly as we show next.

Experiment 4 (Adaptive-QuERy Solution). Figure 19
studies the performance of our adaptive-QuERy solution (AQS).
We, herein, use a set of queries similar to the query presented
in Experiment 3. In this experiment, we choose three dif-
ferent values (i.e, 0, 16, and 128) for variable t and we con-
tinue to experiment with the three different block-to-block
join tests (viz., BKV, U1, and U2). In addition, we experi-
mentally set the fraction values to: f1 = 5% and f2 = 20%.

In this experiment we study three interesting cases. The
first case occurs when the resolution cost dominates the
block-to-block join test cost (i.e., BKV and U1). In such
a case, AQS acts similarly to LQS and hence, it always out-
performs SS and has almost identical performance to LQS,
see Figure 19. Case two takes place when the the block-
to-block join test cost dominates the resolution cost as in
U2 and the query selectivity is not very low (viz., t = 16
or t = 128). Herein, AQS surpasses both LQS and SS. This
is due to the fact that, AQS often makes the correct deci-
sion of whether to clean the block eagerly or pass it up for
evaluation based on the statistics collected in the sampling
phase. The third case happens when the the block-to-block
join test cost dominates the resolution cost (i.e., U2) and
the query selectivity is low (viz., t = 0). In this case, AQS

outperforms LQS since it has the ability to utilize the knowl-
edge that cleaning the block eagerly is more efficient than
passing it up the tree. However, it requires some time (i.e.,
the sampling phase time) to discover this fact, and hence SS

outperforms AQS in this extreme case.
Note that, unlike Experiment 2, herein the impact of the

query selectivity is noticed on SS since the cleaning cost does
not overshadow the cost of query processing.
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8.4 Synthetic Dataset Experiments
To evaluate our approach in a wider range of various sce-

narios, we built a synthetic dataset generator that allows us
to generate datasets with different characteristics. In each
synthetic dataset, we control the following input parame-
ters: (i) n: the number of entity-sets, (ii) r: the number of
rows in each entity-set, (iii) `: blocking level which leads to
the creation of b non-overlapping blocks with size equal to
s, (iv) SB(ϕi): the block selectivity of predicate ϕi, and (v)
SO(ϕi): the object selectivity of predicate ϕi.

In addition, we control the costs of resolve, BBJoin, BO-
Join, and OOJoin to study their impacts more precisely.
Experiment 5 (Resolves vs. BBJoin Tests). This test
employs query (SELECT ∗ FROM R,S WHERE R.ai = S.ai) to
study the trade-off between the resolves and BBJoin tests on
LQS, when varying parameter ` while fixing the other two pa-
rameters to: n = 2 and r = 1,000. Note that the block/object
selectivities do not affect the outcome of this test as we only
have one join predicate and every block/object from R joins
with exactly one block/object from S.

When ` = 0, which indicates the loosest blocking level, we
obtain one block (b = 1) with 1,000 rows in it (s = 1,000).
Clearly, in this case, calling resolve is the bottleneck of LQS
since it invokes 999,000 resolves versus performing one BB-
Join test, see Figure 21. This explains why LQS takes almost
100 seconds when resolve is expensive (cost(resolve) = 0.1
ms) and almost one second when it is cheap (cost(resolve)
≈ 0 ms). As depicted in Figure 21, when ` = 1 and ` = 2,
the number of resolves is comparable to the number of BB-
Join tests; and hence, the performance of LQS is convergent
when resolves are expensive and BBJoin tests are cheap and
vice versa. Finally, when ` = 3 (viz., the tightest blocking
level) we obtain b = 1,000 and s = 1. LQS invokes 0 calls to
resolve versus it performs 500,500 block-to-block join tests.
Herein, the cost of BBJoin tests is the dominant factor of
the overall execution time. This demonstrates why our so-
lution takes almost 1 second when a BBJoin test is cheap
(cost(BBJoin) ≈ 0 ms) and almost 52 seconds when it is
expensive (cost(BBJoin) = 0.1 ms).

Experiment 6 (Effects of Object Selectivity). Fig-
ure 22 uses query (SELECT ∗ FROM R,S WHERE R.ai = S.ai
AND R.aj ≥ t AND S.ak ≥ t) to evaluate the the object se-
lectivity effects on LQS. The previous query contains three
predicates: ϕ1 ∶ R.ai = S.ai, ϕ2 ∶ R.aj ≥ t, and ϕ3 ∶ S.ak ≥ t.

In this experiment, we create a dataset D = {R,S} by
fixing the input parameters to: n = 2 and r = 100,000, and
` = 3 (which leads to b = 1,000 and s = 100). Note that,
in dataset D, every block/object from R joins with exactly
one block/object from S. We vary the block selectivities
S
BR(ϕ2) = S

BS (ϕ3) from 10% to 100% (x-axis). We fur-
ther set three different values for their object selectivities:
S
OR(ϕ2) = S

OS (ϕ3) = 10%,30%, or 50%.
In addition, we set the costs of resolve, BBJoin, BOJoin,

and OOJoin to be the same. Due to this assignment, the cost
of OOJoin overshadows all other costs since the number of
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OOJoin operations (performed by the algorithm) surpasses
all other operations (i.e., resolve, BBJoin, and BOJoin).

As expected, the higher the selectivity of the query (e.g.,
S
BR(ϕ2) = S

BS (ϕ3) = S
OR(ϕ2) = S

OS (ϕ3) = 10%) the faster
LQS is able to evaluate the query and return an answer.

9. RELATED WORK
Entity resolution is a well-recognized problem that has

received significant attention in the literature over the past
few decades, e.g. [6, 10]. A thorough overview of the exist-
ing work in this area can be found in surveys [11, 20]. The
majority of previous ER research has focused on improving
either its efficiency [16, 21] or quality [5, 7]. With the in-
creasing demand of (near) real-time analytical applications,
recent research has begun to consider new ER approaches
like analysis-aware ER, progressive ER, incremental ER, etc.
Analysis-aware ER. The work on analysis-aware ER has
been proposed in [4, 8, 17, 22, 24], of which [4, 24] are the
most related to our work. The QDA approach of [4] aims to
reduce the number of cleaning steps that are necessary to
exactly answer selection queries. It works as follows: given a
block B, and a complex selection predicate P , QDA analyzes
which entity pairs do not need to be resolved to identify all
entities in B that satisfy P . To do so, it models entities in
B as a graph and resolves edges belonging to cliques that
may change the query answer. To support a selection query,
QDA performs vestigiality analysis on each block individually
to reduce cleaning steps. QDA is not designed for the larger
class of SPJ queries, which is the context of this paper. In
contrast, QuERy explores a systematic cost-based approach
to jointly optimize both cleaning and query processing over
dirty data. It exploits pruning due to both selection and join
predicates. It only dictates when a block should be cleaned
and is agnostic to how the block is actually cleaned. Thus, it
could exploit vestigiality analysis from QDA at the block level
to reduce the number of entity pairs that are resolved within
a block. In addition, reference [24] is designed to answer ag-
gregate numerical queries over large datasets that cannot be
fully cleaned. It focuses on cleaning only a sample of data
and utilizing that sample to provide “approximate” answers
to aggregate queries. It does not prune cleaning steps due
to query predicates. However, QuERy deals with “exact” an-
swers to SPJ queries based on cleaning only the necessary
parts of data needed to answer the query. Moreover, not
only are the two approaches designed for different types of
queries, their motivation is also very different. While [24]
is targeting aggregation over very large datasets, QuERy tar-
gets applications that perform (near) real-time analysis over
dynamic dirty datasets found on the Web.
New ER Approaches. Several approaches, e.g., [3, 26],
are considering how to clean the data progressively, while in-
teractively analyzing the partially cleaned data to compute
better results. Moreover, there has been various incremen-
tal cleaning techniques [12,25]. Such techniques address the
problem of maintaining an up-to-date ER result when data
updates arrive quickly.

In addition to such approaches, the ER research commu-
nity is exploring other novel directions. For example, Data
Tamer [23], is an end-to-end data curation system that en-
tails machine learning algorithms with human input to per-
form schema integration and entity resolution. In addition,
NADEEF [9] is a general-purpose data cleaning and repair
system that provides appropriate programming abstractions
for users to specify data cleaning transformations. The fo-
cus of QuERy is thus, complementary (though different) to
that of [23] and [9]. In fact, we envision that QuERy could

be useful to these systems to expand their scope to target
(near) real-time analysis-aware applications of diverse data
sources found on the Web.

10. CONCLUSIONS AND FUTURE WORK
In this paper, we have studied the problem of analysis-

aware data cleaning. We have developed QuERy, a novel
architecture for integrating ER with query processing to an-
swer complex SQL-like queries issued on top of dirty data.
We empirically showed how our approach is significantly
better compared to cleaning the entire dataset, especially
when the query is very selective.

This research opens several directions for future investi-
gation. Embedding QuERy into a DBMS (e.g., PostgreSQL,
Spark, etc.) is an interesting direction for future work. An-
other direction is to extend QuERy to deal with other types
of queries, e.g., aggregation queries, top-k queries, etc.
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