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ABSTRACT
This paper presents GraphJet, a new graph-based system for
generating content recommendations at Twitter. As moti-
vation, we trace the evolution of our formulation and ap-
proach to the graph recommendation problem, embodied in
successive generations of systems. Two trends can be iden-
tified: supplementing batch with real-time processing and
a broadening of the scope of recommendations from users
to content. Both of these trends come together in Graph-
Jet, an in-memory graph processing engine that maintains
a real-time bipartite interaction graph between users and
tweets. The storage engine implements a simple API, but
one that is sufficiently expressive to support a range of rec-
ommendation algorithms based on random walks that we
have refined over the years. Similar to Cassovary, a pre-
vious graph recommendation engine developed at Twitter,
GraphJet assumes that the entire graph can be held in mem-
ory on a single server. The system organizes the interaction
graph into temporally-partitioned index segments that hold
adjacency lists. GraphJet is able to support rapid ingestion
of edges while concurrently serving lookup queries through a
combination of compact edge encoding and a dynamic mem-
ory allocation scheme that exploits power-law characteristics
of the graph. Each GraphJet server ingests up to one million
graph edges per second, and in steady state, computes up
to 500 recommendations per second, which translates into
several million edge read operations per second.

1. INTRODUCTION
Graph-based recommendations form an integral compo-

nent of Twitter in helping to promote an active and engaged
user base by suggesting new connections between users and
between users and content. Recommendations can be gen-
erated based on shared interests, correlated activities, topo-
logical configurations, and a multitude of other signals. This
paper traces the evolution of several systems for tackling this
challenge at Twitter, culminating in a look at GraphJet, a
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recently-deployed system for generating content recommen-
dations from the interaction graph in real time.

In terms of how the graph recommendation problem has
been formulated and tackled within Twitter, we can identify
two overall trends:

1. We observe the evolution from batch processing to real-
time processing. Initially, our algorithms were formulated
to operate on periodic graph snapshots, generating rec-
ommendations in batch. Newer algorithms, in contrast,
are designed to operate on the real-time graph.

2. We observe a broadening of the scope of graph recommen-
dations. The first-generation service, Wtf (“Who to Fol-
low”) [17], had a name that reflected its scope: to recom-
mend accounts that Twitter users should follow. In later
systems, we realized that Wtf algorithms could be gen-
eralized to graphs derived from user behavior and other
contextual signals, allowing us to recommend not only
users, but content (i.e., tweets) as well.

In terms of recommendation algorithms, we have found that
random walks, particularly over bipartite graphs, work well
for generating high-engagement recommendations. Although
conceptually simple, random-walk algorithms define a large
design space that supports customization for a wide range of
application scenarios, for recommendations in different con-
texts (web, mobile, email digests, etc.) as well as entirely
unrelated applications (e.g., social search). The output of
our random-walk algorithms can serve as input to machine-
learned models that further increase the quality of recom-
mendations, but in many cases, the output is sufficiently
relevant for direct user consumption.

In terms of production infrastructure for generating graph
recommendations, the deployed systems at Twitter have
always gone “against the grain” of conventional wisdom.
When many in the community were focused on building dis-
tributed graph stores, we built a solution (circa 2010) based
on retaining the entire graph in memory on a single ma-
chine (i.e., no partitioning) [17]. This unorthodox design
decision enabled Twitter to rapidly develop and deploy a
missing feature in the service (see Section 2.1). Later, when
there was much activity in the space of graph processing
frameworks rushing to replace MapReduce, we abandoned
the in-memory system and reimplemented our algorithms in
Hadoop MapReduce (circa 2012). Once again, this might
seem like another strange design decision (see Section 2.2).
Most recently, we have supplemented Hadoop-based recom-
mendations with custom infrastructure, first with a system
called MagicRecs [18] (see Section 2.3) and culminating in
GraphJet, the focus of this paper.
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Contributions. We view this paper as having two main
contributions. First, we trace the evolution of graph-based
recommendation services at Twitter across successive gen-
erations of systems. Although others have written about
production graph systems (e.g., [30, 5, 40]), we attempt to
go beyond just describing a single system to comparing sev-
eral generations of systems with similar goals. Why did we
abandon a particular system to build a completely new one
from scratch (and multiple times)? The answer is related
to how we have reformulated and reconceived of the graph
recommendation challenge over the years, which we share in
this paper. Although there are path dependencies and other
factors idiosyncratic to Twitter and our operational context,
to a large extent the evolution of our thinking reflects (and
in some cases, leads) general industry trends. As such, our
experiences are perhaps of interest to a broad audience.

The second contribution of this paper is a detailed look
at GraphJet, a recently-deployed system for real-time con-
tent recommendations. The storage engine maintains a real-
time bipartite interaction graph between users and tweets.
Similar to Cassovary [17], a previous graph recommendation
engine developed at Twitter, GraphJet assumes that the en-
tire graph can be held in memory on a single server. The
system organizes the live interaction graph into temporally-
partitioned index segments that hold adjacency lists. Graph-
Jet is able to support rapid ingestion of graph edges while
serving concurrent lookup queries through a combination of
compact edge encoding and a dynamic memory allocation
scheme that exploits power-law characteristics of the graph.
The storage engine implements a simple API, but one that
is sufficiently expressive to support a range of recommenda-
tion algorithms based on random walks that we have refined
over the years. We describe a few of the recommendation
algorithms that are built on top of the GraphJet storage
engine, along with the production deployment environment
and some performance figures. Each individual GraphJet
server is able to ingest up to one million graph edges per
second, and in steady state, each server computes up to 500
recommendation per second, which translates into several
million edge read operations per second.

2. SYSTEM EVOLUTION

2.1 WTF and Cassovary
Graph recommendations began at Twitter in spring 2010

with the Wtf (“Who to Follow”) project [17], which focused
on providing user recommendations. Prior to that, no such
feature existed in Twitter, which was a significant product
gap. Thus, quickly launching a high-quality service was a
top priority. Wtf was a success: the service was built in a
few months and the product launched in summer 2010. It
has contributed substantially to enriching connections be-
tween Twitter users [14] and it has inspired subsequent gen-
erations of systems within the organization.

One of the key enablers of this rapid deployment was what
many might consider an unconventional design choice: to
assume that the entire graph fits into memory on a single
server. While the prevailing wisdom was (and is) to de-
sign distributed, horizontally-partitioned, scale-out infras-
tructure, we took exactly the opposite approach of scal-
ing up on individual large-memory (but still commodity)
servers. The critical question was: Is the graph growing
slower than Moore’s Law is providing commodity servers
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Figure 1: Overall architecture of the “Who to Fol-
low” user recommendation service.

with more memory? If so, we can simply buy new ma-
chines periodically (or even just upgrade memory) and stay
ahead of the growth curve. Projections we had run at that
time (based on historical data) answered this question in the
affirmative out to a reasonable time horizon, giving us the
empirical support needed to proceed with this design choice.

As an aside, although distributed graph stores and graph
processing engines are interesting, we wonder if the focus
and effort that the academic community places on this class
of solutions overstates its importance and relevance for solv-
ing real-world problems. Consider a graph with ten billion
edges: even a näıve representation as an edge list would oc-
cupy a mere 80 GB, which is well in the range of memory
available on commodity servers today. Along these lines, see
additional commentary by Lin [25].

2.1.1 Overall Architecture
The overall Wtf architecture is shown in Figure 1. At

the core is the Cassovary in-memory graph processing en-
gine [37], a custom system we wrote from scratch and later
open sourced.1 Cassovary operates on snapshots of the fol-
lower graph loaded from HDFS; the graph snapshots in
HDFS are in turn ingested from the frontend graph store
(FlockDB) daily. The storage layer of Cassovary provides
access to the graph via vertex-based queries and a recom-
mendation engine computes the actual who-to-follow sug-
gestions. These are materialized and stored in a sharded
MySQL database, called, not surprisingly, the Wtf DB.

In steady state, Cassovary servers constantly generate rec-
ommendations for users, consuming from a distributed queue
containing users sorted by a “last refresh” timestamp. The
actual API endpoints fetch recommendations from the Wtf
DB in response to requests from the web frontends or users’
mobile apps. Since the graph is stored entirely in memory on
each server, the production architecture is straightforward:
we simply replicate Cassovary server instances as needed to
achieve a particular throughput. Each instance reads from
the work queue and writes its output to the Wtf DB, so
there is no need for any explicit coordination mechanism.

Due to the load incurred on the frontend graph store by
the snapshot and import process into HDFS, it is not prac-
tical to update the in-memory Cassovary graphs more fre-
quently than once a day. This, however, is problematic for
new users, since recommendations will not be immediately
available upon joining Twitter. Making high-quality recom-
mendations to new users is challenging since they have few

1
https://github.com/twitter/cassovary
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Figure 2: Illustration of our SALSA-based algorithm
for generating user recommendations.

connections to begin with—this issue is generally known as
the “cold start” problem in the recommender systems com-
munity. This challenge is addressed by a completely different
code path (and set of algorithms) for real-time recommen-
dations, specifically targeting new users (see Figure 1).

2.1.2 Recommendation Algorithms
We describe two Cassovary algorithms that have proven to

be effective in production and are surprisingly robust. Simi-
lar algorithms are also implemented in GraphJet. Note that
in reality, production deployment involves constant A/B
tests that combine a wide range of techniques, so these algo-
rithms are better thought of as primitive “building blocks”
from which end-to-end algorithms might be composed.

Circle of Trust. A useful “primitive” that underlies many
of our user recommendation algorithms is what we call a
user’s “circle of trust”, which is the result of an egocentric
random walk (i.e., personalized PageRank [13, 4]). Casso-
vary computes the circle of trust on demand given a set of
parameters: reset probability, edge pruning settings, etc.

SALSA for User Recommendations. We have devel-
oped a user recommendation algorithm based on SALSA
(Stochastic Approach for Link-Structure Analysis) [23], a
random-walk algorithm in the same family as HITS [19]
originally developed for web search ranking. The algorithm
constructs a bipartite graph from a collection of websites of
interest (“hubs” on one side and “authorities” on the other).
Each step in SALSA traverses two edges—one forward and
one backward (or vice-versa).

We have adapted SALSA for user recommendations in
the manner shown in Figure 2. The “hubs” (left) side is
populated with the user’s circle of trust (from above). The
“authorities” (right) side is populated with users that the
“hubs” follow. After this bipartite graph is constructed, we
run multiple iterations of the SALSA algorithm, which as-
signs scores to both sides. The vertices on the right-hand
side are then ranked by score and treated as user recommen-
dations. The vertices on the left-hand side are also ranked,
and this ranking is interpreted as user similarity. Based on
the homophily principle, we can also present these as rec-
ommendations (i.e., “similar to you”) in different contexts.

We believe that this algorithm is effective because it cap-
tures the recursive nature of the user recommendation prob-
lem. A user u is likely to follow those who are followed by

users that are similar to u. These users are in turn similar
to u if they follow the same (or similar) users. SALSA op-
erationalizes this idea—providing similar users to u on the
left-hand side and similar followings of those on the right-
hand side. The random walk ensures equitable distribution
of scores out of the vertices in both directions. See Gupta
et al. [17] for some metrics comparing the engagement of
SALSA, personalized PageRank, and a few standard recom-
mendation algorithms.

2.2 Hadoop and the RealGraph
After launching Wtf and gaining production experience

with graph recommendations, we began building its succes-
sor, which was deployed circa 2012 [15]. The impetus for
building a Cassovary replacement was the desire to exploit
a broader range of signals to generate recommendations, in
particular, signals contained in behavior logs. For such data,
it seemed clear that the assumption of being able to hold ev-
erything in memory on a single machine would no longer be
realistic. At that time, we were very much of the following
mindset: How do we scale the algorithms that had proven
effective in Cassovary to a larger, richer graph comprised of
not only user follows, but behavioral signals as well? As we
retrospectively tell the story now, the gap might seem ob-
vious, but back then we had yet to realize the importance
of generating graph recommendations in real time, and thus
were still focused on batch solutions.

For this second generation graph recommendation system,
we made the interesting design choice of building on top
of the Hadoop analytics platform within the organization,
which at that time primarily used Pig [33] (and thus, Map-
Reduce) for data processing. This design decision warrants
some discussion: although by that time the shortcomings of
MapReduce for graph analytics were well known (e.g., [17,
28], among many other places), no production-ready pro-
cessing platform specifically designed for graph analytics
existed (although there were a few research systems); see
Section 7 for additional discussion.

We began by performing a detailed analysis of where the
bottlenecks were in our existing algorithms: as it turned out,
most of our algorithms could be expressed without much it-
eration. Poor performance in handling iterative algorithms
is one of the biggest shortcomings of MapReduce—but we
were able to engineer around this. In the most näıve imple-
mentation of the Cassovary algorithms, we would material-
ize the neighborhoods of the vertices for which we are gener-
ating the recommendation and run the random walks, which
could be encapsulated within a user-defined function (UDF).
The bottleneck was in the materialization of the neighbor-
hoods, which required shuffling an enormous amount of data
(adjacency lists) across the cluster nodes—for this, alterna-
tive processing frameworks (even a graph-centric framework
like Pregel [30]) would not be of much help.

What we needed was an algorithmic advance to deal with
the data shuffling issue, not just a more efficient process-
ing framework. The solution came from a variety of sam-
pling techniques [15] that significantly decreased the inher-
ent complexity of our recommendation algorithms (although
the tradeoff was the introduction of approximations). Once
we had addressed the data shuffling issue, it really didn’t
matter what processing framework we used, since the algo-
rithms were mostly encapsulated in UDFs. Using Pig, run-
ning on Hadoop, made sense because it exploited existing
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Figure 3: The RealGraph and the Hadoop-based
recommendation pipeline.

production infrastructure for managing the feature pipeline,
job scheduling, error reporting, etc.

There were additional non-technical considerations push-
ing us toward a Hadoop solution. Although Cassovary ran
on commodity servers, they nevertheless had substantially
more memory than most other servers in the datacenter (at
least initially, although later on, other parts of the organiza-
tion began experimenting with scale-up solutions). From an
operations perspective, it is easier to manager large fleets of
homogeneous servers with identical configurations. At the
time, Twitter was also transitioning to a new framework for
allocating computing resources, and it made sense to exploit
general-purpose Hadoop infrastructure.

The overall setup of the Hadoop-based recommendation
pipeline is shown in Figure 3. What we call the RealGraph
is a composite representation of the follower graph and in-
teraction graphs that are induced from behavior logs. This
representation is built from multiple feature pipelines that
extract, clean, transform, and join features from raw log
data; see Lin and Ryaboy [27] for more details. The Real-
Graph is stored on HDFS, and hence we have the freedom
to incorporate as many signals as we have available.

The RealGraph is used in two main ways: First, reim-
plementations of Cassovary algorithms in Pig generate user
recommendations in batch. Second, the RealGraph and log
data are used to train a follower prediction model, opera-
tionalized as a classifier; see Lin and Kolcz [26] for more
details on how classifier training is integrated into Pig. The
output of the first stage provides candidates that are fed
into the second stage classifier to generate the final recom-
mendations; see Goel et al. [15] for more details.

2.3 MagicRecs
At this point in the evolution of graph recommendation

systems at Twitter (circa 2012), nearly all recommendations
were generated in batch at roughly daily intervals. This, of
course, was dissonant with the core “Twitter experience”,
which emphasized the real-time aspects of the global con-
versation, be it about celebrity gossip, world affairs, or the
activities of loved ones. Day-old batch recommendations did
not seem to exploit the advantages of Twitter.

The metrics supported this intuition—recommendations
perform well for new users and users whose recommenda-
tions had been recently recomputed. In the first case, Wtf
had a dedicated code path for new users, which by necessity
uses real-time signals (see Figure 1). In the second case,
the recommendations were generated using “fresh” signals
based on users’ recent activities. We observed that recom-
mendations based on more recent signals tended to be more
engaging. Taking this to the logical conclusion, what if we
generated recommendations in real time?

These ideas were prototyped in a Twitter account (ini-
tially protected, i.e., not publicly visible) called @magicrecs.

A2 

B1 

A1 

B2 

A3 

C2 
C1 

C3 

Figure 4: Sample fragment of the follow graph illus-
trating MagicRecs: when the edge B2 → C2 is cre-
ated, we want to push C2 to A2 as a recommendation.

The account sent recommendations computed in real time
to followers via direct messages. As a proof of concept, the
initial prototype implemented a brute-force approach that
wasn’t particularly scalable, but the point was to demon-
strate the viability of real-time recommendations. Initial
experiments were successful, which led to a formal plan to
build a real-time recommendations product. This included
addressing the scalability challenges, which could be char-
acterized as a streaming graph processing problem.2

Here’s how @magicrecs worked: Suppose we wish to make
user recommendations to a particular user A (see Figure 4).
We examine the list of accounts that A follows (call them
B1 . . . Bn), and if more than k of them follow an account C
within a time period τ , then we recommend C to A (where k
and τ are tunable parameters). For simplicity, let us assume
k = 2 in the above definition, which means that when the
edge B2 → C2 is created in Figure 4, we want to push C2

to A2 as a recommendation. In practice, the recommenda-
tions are delivered via push notifications to users’ mobile de-
vices [38]. Note that the above notation is highly schematic,
as the C’s are also A’s for a different set of B’s (i.e., we want
to make recommendations for everyone). Furthermore, al-
though we have explained this idea in terms of the follow
graph, it applies to recommending content as well, based on
user actions such as retweets, likes, etc.

Why does this technique work? Push notifications must
be relevant, personalized, and timely, or else they run the
risk of becoming an annoyance. Our experience with pre-
vious systems highlighted the importance of local network
signals for content discovery. Twitter users curate accounts
they follow, which represent their interests as well as so-
cial and professional connections. Temporally-correlated ac-
tivities of a user’s followings capture “what’s hot” (hence,
timely) among the accounts that a user follows, which is by
definition the group that the user is interested in (hence,
relevant and personalized). Indeed, we empirically observe
that real-time recommendations generated in this manner
achieve high engagement.

Interestingly, this particular formulation of the graph rec-
ommendation problem is completely different from the tra-
ditional setup. In the standard formulation, we are given
a user u and the system’s task is to compute a list of rec-
ommendations. In our case, we observe a stream of graph
edges, where we ask the question: given the addition of a
particular edge e from u to v, what recommendations can
we make to whom? The recommendations usually do not di-
rectly involve either u or v, but rather their respective local
neighborhoods.

2For a more personal account of how MagicRecs came about,
see a blog post by Gupta [16].

1284



We explored a wide range of potential solutions to this
real-time recommendation problem on streaming graphs. It
was obvious that our Hadoop-based infrastructure could not
be reused; Cassovary assumed a static graph and thus was
not applicable either. Initial explorations quickly confirmed
what we already suspected: that a general-purpose, real-time
processing platform such as Storm [36] was not adequate for
our needs. Beyond not achieving the latency guarantees
that we were after, the tuple-oriented nature of the frame-
work made it difficult to express graph-centric operations.
Ultimately, it became clear that we needed to build custom
infrastructure to solve this problem.

Our solution was described in Gupta et al. [18]; here we
briefly summarize the technical insights. We realized that
the task of identifying B to C edges within some temporal
interval (Figure 4) can be reformulated as an intersection of
adjacency lists. That is, if we stored the outgoing edges of
the A vertices and the incoming edges of the C vertices, we
can intersect the adjacency lists of A and C to arrive at the
B’s and check the cardinality. Thus, for each incoming edge
we perform these intersection queries and are able to identify
the graph configuration in real time. The final system par-
titions the graph in such a way that all these adjacency list
intersections can be performed locally on each node, thereby
eliminating cross-node traffic for computing the recommen-
dations. Overall, the system achieves a median latency of
∼7s, measured from the edge creation event to the deliv-
ery of the recommendation. Nearly all the latency comes
from event propagation delays in various message queues;
the actual graph queries take only a few milliseconds.

3. GRAPHJET OVERVIEW

3.1 Goals and Approach
Our success with MagicRecs demonstrated the power of

real-time recommendations, which take advantage of Twit-
ter’s strength as the medium in which users discuss “what’s
happening right now”. The MagicRecs implementation, how-
ever, was designed for a specialized task, and we felt it was
necessary to build a more general-purpose graph storage en-
gine that is able to support richer recommendation algo-
rithms. Given our previous experiences, we had a pretty
good idea of the range of operations that needed to be sup-
ported. Our philosophy was to design the API to support
the minimal set of operations necessary to express our tar-
get recommendation algorithms. As a consequence of this
philosophy, many might be surprised by some of the missing
features in our system (which we discuss in detail). These
decisions, however, gave us the ability to optimize in ways
not otherwise possible. The final product is GraphJet.

One early design decision that we revived from Cassovary
is to assume that the entire graph will fit in memory on a sin-
gle machine. This assumption is a particularly good fit for
the interaction graph as it evolves rapidly, and user atten-
tion in Twitter content wanes with time. Thus, the focus on
real-time recommendations imposes natural restrictions on
the size of the graph and its potential growth—real-time al-
gorithms necessarily depend on recent signals, which means
that we only need to maintain the graph across a moving
window, and that interactions beyond a certain point can
be discarded. Therefore, the graph for our purposes does
not grow without bound.

3.2 Data Model and API
Formally, GraphJet manages a dynamic, sparse, undi-

rected bipartite graph G = (U, T,E), where the left-hand
side U represents users, the right-hand side T represents
tweets, and the edges E represent interactions over a tem-
poral window. For simplicity, we assume that vertices (on
the U and T sides) are identified by 64-bit integers—this
choice ensures that we are not in danger of exhausting the
id space anytime soon. We assume that edges have a partic-
ular type r ∈ R, but that the cardinality of |R| is relatively
small and fixed—these types correspond to Twitter “verbs”
such as likes, retweets, etc. and so this assumption is realis-
tic. Note, quite explicitly, that edges are not timestamped
(more discussion below). Most of the memory requirements
for storing the graph comes from the continuous insertion of
edges that correspond to user interactions. GraphJet main-
tains vertex metadata, but the memory requirements for
these are not particularly onerous.

Although conceptually, the bipartite graph is undirected,
in practice the edges are stored internally in adjacency lists
that implicitly convey directionality. We can build a left-
to-right index, which for u ∈ U provides the edges that
are incident to u, with their destination vertices and edge
types, i.e., (t, r) tuples where t ∈ T and r ∈ R. Correspond-
ingly, we can build a right-to-left index, which for t ∈ T
provides the edges that are incident to t, with their destina-
tion vertices and edge types, i.e., (u, r) tuples where u ∈ U
and r ∈ R. Depending on the desired data access pattern,
we can build a left-to-right index, a right-to-left index, or
both—with different memory requirements.

At the storage layer, GraphJet implements a simple API
comprised of five main methods:

insertEdge(u, t, r): inserts an edge from user u to tweet
t of type r into the bipartite graph.

getLeftVertexEdges(u): returns an iterator over the edges
incident to u, a user on the left-hand side. More precisely,
the iterator provides (t, r) tuples where t ∈ T, r ∈ R. The
method makes no guarantee with respect to the order in
which the edges are returned, but in the current implemen-
tation the iteration order is the order in which the edges are
inserted into the graph.

getLeftVertexRandomEdges(u, k): returns k edges uniform-
ly sampled with replacement from the edges incident to ver-
tex u, a user on the left-hand side. Results are returned
as an iterator over (t, r) tuples where t ∈ T, r ∈ R. Note
that since we’re sampling with replacement, edges might be
returned more than once, particularly in cases where the
degree of the vertex is smaller than k.

getRightVertexEdges(t): returns an iterator over the edges
incident to t, a tweet on the right-hand side, with the same
contract as the left variant.

getRightVertexRandomEdges(t, k): returns k edges uni-
formly sampled with replacement from the edges incident
to vertex t, a tweet on the right-hand side, with the same
contract as the left variant.

The storage engine guarantees that calls to the get methods
will return an iterator that corresponds to a consistent state
of the graph at call time, and that all sampling probabilities
are accurate. State necessary to ensure these guarantees is
captured in the iterator directly. This means, for example,
that newly arrived edges will not be visible while the iterator
is being traversed. The storage engine, however, makes no
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guarantees with respect to the state of the graph across
multiple get calls—multiple gets on the same vertex may
indeed return different numbers of edges.

There are a few aspects of our data model and API worth
discussing. First, our API does not support edge deletions.
This was an explicit design decision and is justified by our
data model. Edges in our bipartite graph capture interac-
tions between users and tweets—a user retweeting a post,
for example—and such interactions represent point events
that have no duration. Furthermore, it is not meaningful
to talk about deleting such edges, since such interactions
cannot usually be undone.3 From the implementation per-
spective, not needing to support deletes greatly simplifies
many aspects of the implementation.

If the API does not support deletes, what prevents the
graph from growing without bound? Our bipartite graph
captures user–tweet interactions over a temporal window of
the previous n hours: stale interactions beyond the window
are not considered as those edges are periodically pruned in
a coarse-grained manner (described in Section 3.3).

Another design decision worth discussing is the fact that
edge timestamps are not stored. This represents a straight-
forward tradeoff between space (memory consumption) and
the marginal quality gain of recommendation algorithms
that take advantage of edge timestamps. Offline experi-
ments show that varying the size of the temporal window of
the graph does have an impact on recommendation quality,
but beyond knowing that an interaction happened within
the last n hours, we’ve found it hard to design algorithms
that provide substantial gains by exploiting edge timestamps.
One factor is that most interactions occur close to the tweet
creation time (which is already encoded implicitly in the
tweet id since they are assigned in a monotonically increas-
ing manner); if we, for example, weighted edges based on
time in our random walk algorithms (see Section 5), the end
results would not be substantially different. Given the sub-
stantial increase in storage requirements necessary to hold
the timestamps, we made a tradeoff against this in the cur-
rent system, but it is a potential future direction.

Although the data model of GraphJet is an undirected bi-
partite graph, the system can be adapted to store standard
directed or undirected graphs in a straightforward manner.
If we set the vertices on the left-hand and right-hand sides
to be the same, and build a left-to-right index, we can model
a standard directed graph, where the getLeftVertexEdges

method (and the sampling variant) retrieve outgoing edges
with respect to a vertex. If we build a right-to-left in-
dex, we can retrieve incoming edges to a vertex using the
getRightVertexEdges method (and the sampling variant).

In our experience, the directionality of the edges is to a
large extent an application-specific semantic property. If
we wish to access a vertex in terms of incoming edges, it
is entirely equivalent to reversing the directionality of the
edges and accessing outgoing edges. As a concrete example,
it might make sense to store users who have retweeted a
tweet (edges from tweets to users) or tweets that have been
retweeted by a particular user (edges from user to tweets),
depending on the desired access patterns.

3Although it is possible to undo some actions such as “likes”,
accidental clicks are almost always undone immediately,
which means that they can be handled as part of the ETL
process prior to data ingestion.
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Figure 5: Overall architecture of GraphJet.

To summarize, GraphJet maintains a bipartite graph that
keeps track of user–tweet interactions over the most recent
n hours. By supporting the simplest possible API that is
sufficient to capture our problem domain, the system is able
to achieve high performance in both ingestion of real-time
interactions and generation of recommendations.

3.3 Overall Architecture
The overall architecture of GraphJet is shown in Figure 5.

The entire system is implemented in Java. The storage en-
gine maintains a list of temporally-ordered index segments
comprised of adjacency lists that store a partition of the
bipartite graph. In particular, the left-to-right index maps
from a vertex u ∈ U to an adjacency list, which is an arbi-
trary number of (t ∈ T, r ∈ R) tuples each representing an
edge incident to the vertex. Since the right-to-left index is
exactly symmetric, we can discuss the index structures in a
generic manner. The storage engine provides raw access to
the graph in support of the recommendation engine. The
entire system presents an API endpoint for external clients
to request recommendations.

GraphJet temporally partitions the adjacency lists by pe-
riodically creating a new index from scratch, as shown in
Figure 5. In our current implementation, new partitions are
triggered once the number of edges reaches a threshold, so
that each partition is roughly the same size, but alternative
criteria could include temporal windows or a combination
of size and temporal window. Centrally, GraphJet main-
tains the degree distribution for each vertex in each tempo-
ral segment—as we describe later, this is used for efficient
sampling (see Section 4.2). In the current implementation,
each GraphJet instance maintains a handful of segments.

In this design, only the latest index segment is actively be-
ing written into (see Figure 5); the remaining are read-only.
To eliminate the need for complex synchronization mech-
anisms, all edge insertions are handled by a single writer
thread, reading from a Kafka queue (although read queries
are served by multiple threads). We have found that a single
writer thread supports more than sufficient write through-
put (see Section 6). Once an index segment stops accepting
new edges, we can optimize its contents to support more
efficient reads (see Section 4.1.3). Periodically, an entire
index segment is discarded if it is older than n hours, so
that memory consumption does not increase without bound.
Thus, the pruning of the graph happens in a rather coarse-
grained manner. Experiments show that this does not have
a noticeable impact on recommendation quality.
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Temporal partitioning of the bipartite graph has the ad-
ditional advantage that the number of unique vertices con-
tained in each partition can be bounded, and thus we can
map global 64-bit ids into segment-internal ids that require
less space (discussed in detail below). This simple optimiza-
tion yields substantial space savings.

4. GRAPH OPERATIONS

4.1 Edge Insertions
We begin by describing how edge insertions are handled.

Since we adopt a single-writer, multi-reader design, there is
no need to worry about write–write conflicts. The input to
GraphJet is a stream of edge insertions in the form of (u, t, r)
triples, where the user u and the tweet t are 64-bit integers
(longs); r is the edge type, whose cardinality we assume
is small. Our biggest challenge is that the system must
concurrently support rapid ingestion of edges as well as high-
volume reads, and thus we need to strike a balance between
write-optimized and read-optimized data structures.

4.1.1 Id Mapping
Since each index segment holds a small set of vertices

relative to the 64-bit id space, we can reduce memory re-
quirements by building a (bi-directional) mapping between
the external (i.e., canonical) vertex id and an internal vertex
id that is unique only within the particular index segment.
The is accomplished by hashing the external vertex id and
treating the hash value as the internal vertex id. We use
a standard double hashing technique, an open-addressing
scheme whereby the initial probe site in the hash table (i.e.,
array) is determined by one hash function, and the skip
interval between linear probes in case of collisions is deter-
mined by a second hash function. We store the external
vertex id in the hash table, so that recovering those ids can
be accomplished by a simple array lookup. For convenience,
we size the hash table to be a power of two so that mod can
be accomplished via efficient bit operations.

Because we are using the hash value as our internal vertex
id, we cannot rehash the entries (e.g., to grow the table).
Thus, we must take care in the initial sizing of our hash
table. Fortunately, we can use historical data as a guide.
Suppose we wish to store n vertices at a load factor f : we
size our initial hash table to be 2b where b = dlg(n/f)e.
We fill the hash table until we insert f · 2b vertices, after
which we allocate another hash table of size 2b−1 to hold
the next f · 2b−1 vertices. For these new vertices, the inter-
nal vertex id is the hash value in the new table plus 2b, so
that we can unambiguously determine the external vertex id
when performing the mapping in reverse. The process can
be repeated as often as necessary, but we can tune the in-
dex segment size and the initial table size so that additional
allocations are rare events.

We further optimize by bit-packing both the edge type
and internal vertex id in a single 32-bit integer. This op-
timization is safe because we can tune the segment size so
that we never overflow the allocated space. For example, we
might reserve three bits to support eight edge types, which
gives us room for 229 (approximately 537 million) unique
vertex ids. This straightforward optimization means that,
within each index segment, an adjacency list is simply an
array of 32-bit integers. Inserting new edges into the graph
simply becomes the process of looking up the adjacency list

(array) associated with the vertex and writing an integer
into the next available location. Since we only have a single
insertion thread, there are no consistency issues that we need
to worry about. However, the challenge we must address is
memory allocation for the adjacency lists.

4.1.2 Memory Allocation
Let us first sketch out the design space for allocating mem-

ory for adjacency lists: At the highest level, the adjacency
list for a vertex is either maintained in a physically con-
tiguous region in memory, or it is not. Maintaining physical
contiguity optimizes for reads by eliminating pointer chasing
and maximizing processor pre-fetching opportunities. How-
ever, it is impossible to maintain contiguity without relocat-
ing existing adjacency lists as the graph evolves, since there
is no way to predict the degree distribution of a specific ver-
tex in advance. Unfortunately, copying around (potentially
large) memory regions is a slow operation. In giving up
memory contiguity, a system makes the opposite tradeoff:
edge insertions can be significantly faster, but reads might
involve pointer chasing due to fragmentation. This is in-
deed the decision we made for GraphJet, to optimize data
structures for edge insertion. We are able to tolerate discon-
tiguous adjacency lists because sampling edges is a common
operation, and the nature of sampling means that we do not
have regular data access patterns to begin with (and hence
pointer chasing is less of a concern).

Accepting that adjacency lists will be broken into discon-
tiguous pieces (which we call slices) does not actually answer
the question of how to allocate memory for storing edges. In
particular, how much memory should we allocate for a given
vertex? Selecting a value that is too large leads to inefficient
memory utilization, because most of the allocated space will
remain empty (most tweets have little interaction). On the
other hand, selecting a value that is too small leads to ineffi-
ciencies. Imagine a tweet by a celebrity that receives a large
number of interactions very quickly (in the left-to-right in-
dex): the number of edges might grow very quickly, and if we
are overly conservative in allocating space, we might have
to repeatedly allocate new arrays, and memory allocation is
relatively costly. Furthermore, highly fragmented adjacency
list slices are wasteful in terms of memory usage due to the
need for addressing pointers that link the slices together. In
the limit, allocating space for one edge at a time is the same
as a linked list, which is obviously inefficient.

Our solution is to allocate memory for adjacency lists in
slices that double in size each time we run out of space, i.e.,
the slice sizes grow as powers of two. The first time we en-
counter a vertex, space for two edges (i.e., an array for two
integers) is allocated. The inserted edge fills the first avail-
able position in that array, leaving room for another edge.
By the time we encounter a third edge, we allocate a new
slice for storing 22 = 4 edges; after we fill that, we allocate a
new slice for 23 = 8 edges; and so on. Such a memory allo-
cation strategy is sensible because many aspects of Twitter
graphs follow power-law distributions [31]. Our allocation
strategy implicitly assumes some type of preferential attach-
ment effect, since it is an easy way to explain the existence of
power-law distributions: the more that we observe an edge
incident to a vertex, the more likely that more edges will
follow. Hence, it makes sense to exponentially increase the
amount of allocated space each time. Expanding by two is
simply the most convenient.
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Figure 6: Illustration of the edge pools. Shaded
boxes represent the adjacency list slices of a vertex
with degree 25, specified by P1(1), P2(2), P3(0), P4(0).

We organize the adjacency list slices by grouping all slices
of the same size together in what we call edge pools, which
are implemented as large arrays. The first edge pool P1 is
of length 21 · n, where n is the number of expected vertices
in a particular segment (the same value for tuning the hash
table size above, estimated from historical data). We denote
the k-th “slot” in the first edge pool as P1(k)—the actual
offset in the underlying array can be easily computed from
the slice size and k. The second edge pool is denoted P2 and
holds n/2 adjacency list slices, each of size 22. Generalizing,
the r-th edge pool is denoted Pr and holds n/2r−1 slices of
size 2r. Thus, the adjacency list of a vertex v with degree d
(in the active segment) can be specified as follows:

v → d : P1(k1), P2(k2), P3(k3), P4(k4), P5(k5)...

That is, the first 21 edges are in slot k1 in pool P1, the next
22 edges are in slot k2 in pool P2, etc. Furthermore, since
the slice sizes are fixed, we know from the vertex degree
where to insert the next edge and how much space is left in
the current slice.

To provide a concrete example, suppose vertex v1 with
degree 25 has the following adjacency list:

v1 → 25 : P1(1), P2(2), P3(0), P4(0)

The situation is illustrated in Figure 6, where the light gray
areas correspond to filled adjacency list slices of v1 (slots are
indexed from zero). Since the degree of v1 is 25, we know
that there is space for 5 more edges in the 24 slice in P4

(since 21 + 22 + 23 + 24 = 30).
A few more details suffice to round out the description

of how GraphJet manages memory allocation for adjacency
lists. Edge pools containing slices for a particular size are al-
located lazily—that is, the pools themselves are not created
until they are necessary. In practice, the maximum number
of edge pools is bounded because we control the size of each
index segment, so there is no danger of overflow. Finally,
each edge pool itself has an initial size of 2n (as described
above); if this space is exhausted, we grow the pool size by
10% each time, as many times as needed. Note that as with
the hash table size, we can tune the index segment size so
that these are rare events.

4.1.3 Read-Only Optimizations
In our design, the GraphJet storage engine manages multi-

ple temporally-partitioned index segments, only one of which
(the most recent one) ingests new edges. This means that
the rest of the index segments are immutable, and hence
we can reorganize the physical memory layout of the var-
ious data structures to support more efficient read opera-
tions. Once an index segment stops accepting new edges, a
background thread begins optimizing the storage layout of
that segment, creating a shadow copy. When the process is

completed, the storage engine atomically swaps in the new
segment and the original version is dropped.

The current optimizations in the read-only segments are
relatively straightforward: since the graph partition is now
immutable, we no longer need the edge pool structure to
store the adjacency lists. Because we know the final degree
of each vertex, we can lay out each adjacency list end to
end in a large array without any gaps. To access the edges,
we simply keep a pointer to the beginning of each adjacency
list. This layout guarantees that iteration over the edges of
a particular vertex will touch contiguous regions in memory,
thereby eliminating the overhead of pointer chasing. When
sampling edges, we also increase the probability that multi-
ple samples reside on the same cache line.

4.2 Edge Lookups and Sampling
We turn our attention next to how read operations are

handled in GraphJet. Since there is only a single writer in-
gesting new graph edges, judicious use of memory barriers is
sufficient to address memory visibility issues across multiple
threads. Memory barriers are sufficiently lightweight that
the performance penalties are acceptable.

The getLeftVertexEdges method returns an iterator that
traverses all edges incident to a vertex on the left-hand side
of the bipartite graph (there is also the symmetric call for
fetching vertices from the right-hand side, implemented in
the same way). The returned iterator is a composition of
iterators over edges in all index segments, from earliest to
latest. Since in each segment the edges are stored in inser-
tion order, the overall iteration order is also insertion order.
Within each segment, a vertex is associated with its degree
and a list of pointers into edge pools that comprise the actual
adjacency list (i.e., the slices). The actual index positions
into the integer arrays backing each edge pool can be easily
constructed from the degree information and the list of slice
pointers. To guarantee consistency, the iterator is initialized
with the degree of the vertex in the most recent (active) in-
dex segment, which prevents the client from reading edges
inserted after the API call.

The getLeftVertexRandomEdges method returns an iter-
ator over k edges uniformly sampled with replacement from
the edges incident to a vertex on the left hand side (and the
corresponding call for the right-hand side is exactly sym-
metric). Sampling randomly from within a particular index
segment is easy: we know the degree d and so we can sam-
ple a random integer uniformly from the range [0, d − 1],
which can then be easily mapped into an array location in
the underlying edge pools. What about sampling across in-
dex segments? Recall that the storage engine keeps track
of vertex degrees across all segments. We can normalize
these degrees into a probability distribution from which we
sample, where the probability of selecting an index segment
is proportional to the number of edges in that segment. If
we sample index segments in this (biased) manner and then
sample uniformly within each segment, it is equivalent to
drawing a random sample from all the edges.

Fortunately, sampling from a discrete probability distri-
bution efficiently is a problem that has been well studied.
We use the well-known alias method, which takes O(n) pre-
processing time (where n is the number of index segments),
after which values can be drawn in O(1) time [39]. The alias
method requires the construction of two tables, a probabil-
ity table and an alias table, which is performed when the
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API is called to capture the degree distribution across the
segments at that time. The two generated tables are encap-
sulated in the iterator, along with other state information
to ensure that edges added after the API call are not vis-
ible. To sample each edge, the iterator first uses the alias
method to determine the index segment to sample from, an
then draws a uniformly random sample from edges in that
index segment.

5. REAL-TIME RECOMMENDATIONS
GraphJet supports two types of queries: content recom-

mendation queries—for a user, compute a list of tweets that
the user might be interested in, and similarity queries—for
a given tweet, compute a list of related tweets. Here, we de-
scribe three different algorithms, which should be thought
of as “building blocks” from which the actual deployed algo-
rithms are built. For certain use cases, GraphJet output is
best viewed as a set of candidates that are further reranked
and filtered by machine-learned models.

5.1 Full SALSA
A large portion of the traffic to GraphJet comes from

clients who request content recommendations for a partic-
ular user. An example is our home timeline recommenda-
tions service, where we wish to compute a list of tweets that
a user might be interested in at a given moment. To serve
this query, we run a personalized SALSA algorithm, similar
to the Wtf algorithm described in Section 2.1.2, on the in-
teraction graph in GraphJet. The main difference, of course,
is that the algorithm exploits real-time signals.

The simplest form of this query is to begin with the vertex
in the bipartite interaction graph that corresponds to the
query user and run SALSA [23]. This involves performing
the following random walk: starting from a vertex on the
left-hand side u, select one of its incident edges uniformly
to visit t, a vertex on the right-hand side. Then, from t,
select one of its incident edges uniformly to walk back to
the left-hand side. This is repeated an odd number of steps.
To introduce personalization, we include a reset step on the
left-to-right edge traversals: with a fixed probability α, we
restart from the query vertex to ensure that the random
walk doesn’t “stray” too far from the query vertex, which is
the same intuition behind personalized PageRank [13, 4]. At
the end of this random walk, we can compute a distribution
of visits for the right-hand vertices.

On top of this starting point, we introduce an additional
refinement. In some cases, the query user may not exist
in the interaction graph—if the user hasn’t been active re-
cently. To address this, we start the random walk from a
seed set instead of a single user vertex. The seed set is config-
urable, but a common choice is the circle of trust of the user,
as discussed in Section 2.1.2. Intuitively, this makes sense,
since users are interested in current consumption patterns
in their egocentric networks. When starting from a seed
set, for the random walk restarts, we select a random vertex
from the seed set with equal probability.

The output of this full SALSA algorithm is a ranked list
of vertices on the right-hand side of the bipartite interaction
graph. Note that these tweets may not have any direct in-
teractions with the seed set at all. This is a strength of the
algorithm for users with a sparse seed set, but it can lead
to noisy results for users with a dense seed set. Further-
more, having direct public interactions (such as retweets and

likes) enables the product to serve a social proof—explaining
why a particular recommendation was generated. This typ-
ically results in better user understanding of the recommen-
dations, leading to higher engagement.

5.2 Subgraph SALSA
Suppose we wish to only serve recommendations for which

we can generate some “social proof”. This can be accom-
plished in our random walk algorithm by restricting the out-
put set to only neighbors (on the right-hand side) of the
seed set. The fanout of the seed set is usually not very
large, and moreover we can downsample edges from seed
set vertices to bound the vertex degrees (to avoid creating
overly-unbalanced graphs). This produces a subgraph of the
complete bipartite interaction graph that we can then run
our SALSA algorithm on.

This particular algorithm takes a seed set (for example, a
user’s circle of trust), constructs (i.e., materializes) a small
subgraph in memory, and runs the following PageRank-like
algorithm: We begin with a uniform distribution of weights
in the seed set (summing to one). In each left-to-right iter-
ation, we take the weight w(u) of each vertex u and divide
it equally among u’s neighbors, i.e., each neighbor t of u re-
ceives weight w(u)/d(u) where d(u) is the degree of u. Each
right-hand vertex sums the weights received from the left-
hand side. The same weight distribution process from the
right-hand side vertices to their left-hand neighbors consti-
tutes a symmetric right-to-left iteration. We iterate until
convergence.

The output of this algorithm is a list of ranked right-hand
vertices (tweets), as in the full SALSA case. We make a
few observations: From the performance standpoint, this al-
gorithm is much faster than the full SALSA version since
it only needs to access the complete interaction graph once
to materialize the subgraph. The subgraph usually fits into
cache, and so the weight distribution steps benefit from good
reference locality. Additionally, this algorithm only requires
a left-to-right segment index, so the memory consumption
in GraphJet is roughly half of the fully-indexed case. From
the algorithmic perspective, note that this approach ignores
second-order interaction information: specifically, it ignores
all paths from the seed set to the fanout vertices through
other user vertices that are outside the seed set. This in
essence is the tradeoff between the full and subgraph ver-
sions of our SALSA algorithm—both have their uses, but in
different circumstances.

5.3 Similarity
In addition to content recommendation queries, GraphJet

also supports similarity queries that return all vertices (of
the same type) similar to a query vertex. For concreteness,
we focus on queries for tweets, but the symmetric process
applies to users as well.

Specifically, given a query vertex t, we wish to find other
vertices that receive engagement from a similar set of users
that t received engagements from. This can be formalized
in terms of cosine similarity between two vertices t1 and t2:

Sim(t1, t2) =
N(t1) ∩N(t2)√
|N(t1)| · |N(t2)|

where N(t) denotes the left-side neighbors of vertex t. Thus,
for a query vertex t, our goal is to construct a ranked list of
tweets with respect the similarity metric.
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Figure 7: GraphJet deployment architecture.

Our algorithm for this is also based on random walks:
given a vertex t, we first sample its neighborhood N(t) to
obtain a set NS(t). Then, for each vertex u ∈ NS(t) we
sample u’s neighbors to produce a set of candidates that
might be similar to t. We can set weights on each of the
sampling steps such that the expected number of visits for
each candidate t′ is proportional to Sim(t, t′). By repeating
this sampling process many times, we can compute both the
candidate vertices and estimates of their similarities. The
algorithm then returns these candidates sorted by similarity.

We describe this algorithm only at a high level because
these sampling techniques are quite similar to ones that have
been described in previous work [15]. However, we do note a
few interesting aspects: The choice of cosine similarity can be
easily changed to any similarity metric that can be computed
via set intersections, for example, Jaccard similarity. Also,
the similarity query can be augmented with a seed set in an
analogous manner to the content recommendation queries:
we observe that computing similar tweets to a set of given
tweets often produces higher quality results.

6. DEPLOYMENT AND PERFORMANCE
The deployment architecture of GraphJet is shown in Fig-

ure 7. At the core, we have a fleet of servers each running
a GraphJet instance. Since each individual server holds a
complete copy of the interaction graph, fault tolerance is
handled by replication, which also determines the overall
throughput of the service. Each GraphJet instance ingests
graph edges from a Kafka queue of user–tweet interaction
events, which is a filtered and cleaned version of the “client
events” stream from Twitter’s unified logging pipeline; see
Lee et al. [21] for more details. In steady state, the bipartite
interaction graph stored in each GraphJet instance can hold
O(109) edges using less than 30 GB of RAM.

GraphJet provides a Thrift-based API for recommenda-
tion requests. All server instances are viewed as a Server-
Set, which is an abstraction for a replicated service [22].
The ServerSet abstraction is widely used within Twitter and
generically handles issues such as load-balancing (performed
on the client side), retries, backoffs, etc., and is resilient to
many common failure scenarios such as “thundering herds”
(a scenario in which all clients are successively redirected to
the same backend server, thus causing cascading failures).
Service discovery is handled by ZooKeeper: GraphJet servers
register with ZooKeeper at a known location when they are
ready to serve traffic, and clients consult the service registry
for request routing and load balancing.

GraphJet began receiving production traffic in early 2014.

The first use case was to discover content beyond a new
user’s direct network and to inject the content into the user’s
home timeline. This addressed the cold start problem of in-
tegrating new users into Twitter. Today, GraphJet results
are deployed much more broadly: beyond injecting inter-
esting and relevant tweets into a user’s home timeline, the
system also powers “activity digest” emails that are sent pe-
riodically to users and live push notifications to mobile de-
vices. At the beginning of 2016, the entire service receives
tens of thousands of recommendation requests per second,
with results reaching many millions of users each day.

In what follows, we report on the performance of a sin-
gle GraphJet instance in a production environment. The
following metrics were measured on our current hardware
configuration, which consists of servers with two Intel Xeon
6-core processors (E5-2620 v2) running at 2.10 GHz.

With a cold start (server restart or when new servers join
the service), GraphJet is able to sustain one million edge in-
sertions per second reading from the Kafka queue to “catch
up” to the current state of the graph. After this initial boot-
strap phase, the ingestion rate drops down to tens of thou-
sands of edges per second, which is the typical engagement
rate for the types of interactions we are interested in.

In a stress test within a production environment, we mea-
sured client-observed latency (i.e., including network latency,
RPC overhead, etc.) for a recommendation request using the
subgraph SALSA algorithm. An individual GraphJet server
is able to support up to 500 recommendation requests per
second, with a latency profile of p50 = 19ms, p90 = 27ms,
and p99 = 33ms at that load. Note that this represents the
complete end-to-end latency for computing a recommenda-
tion, which includes fetching the relevant portions of the in-
teraction graph to construct the bipartite subgraph, as well
as running the recommendation algorithm itself (i.e., multi-
ple weight-distribution passes until convergence). Each in-
dividual recommendation request translates into many API
calls to the underlying storage engine, which based on our
rough calculations correspond to several million edge read
operations per second. This represents a lower bound on the
raw performance of the underlying storage engine, since the
recommendation engine needs to perform computations be-
yond edge lookups. It is difficult to benchmark the storage
engine directly due to the challenge of generating a realistic
edge query load in isolation.

In terms of availability, over a typical 30-day period, the
success rate of the system in delivering recommendations,
as measured from the clients, is consistently above 99.99%
in terms of requests across all users. This high availability
stems from our simple design. Our internal Kafka queue
is fully replicated across multiple data centers, and there-
fore GraphJet only needs to handle read-path failures. We
have implemented cross-datacenter failover in reading from
Kafka; even in the case of catastrophic Kafka failure, Graph-
Jet can continue serving recommendations (albeit with in-
creasingly stale data in memory). Once Kafka recovers,
the GraphJet instances can resume ingesting new edges and
“catch up” in a completely transparent manner.

7. RELATED WORK

7.1 Production Recommendation Systems
In this paper, we have attempted to trace the broad arc

of how graph recommendations systems at Twitter have
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evolved over the years. Although there is a tremendous
amount of work on recommender systems in the academic
literature, relatively few papers describe actual production
systems, and those that do (e.g., [29, 10, 1]) focus mostly on
algorithms, as opposed to systems infrastructure—which is
the perspective we take.

A well-known case study of “real-world” recommendations
comes from the Netflix Prize, which in 2006 offered an award
of $1 million dollars to improve Netflix’s recommendations
by 10% in terms of root mean squared error (RMSE) and
provided public data for training algorithms to accomplish
this goal. In 2009 this milestone was achieved; the Netflix
team evaluated the winning solution but found that “the
additional accuracy gains that we measured [compared to
relatively simple baselines] did not seem to justify the engi-
neering effort needed to bring them [the winning methods]
into a production environment” [32]. Furthermore, the Net-
flix team spoke of a fundamental shift from US DVDs to
global streaming as reshaping the very nature of the recom-
mendation problem—they pointed out the growing impor-
tance of real-time recommendations in this context. This
experience resonates with us and the Netflix case study high-
lights a gap between the academic study of recommendation
algorithms and the practice of building production recom-
mender systems, and it is precisely this gap that we hope to
help narrow.

7.2 Graph Analytics Frameworks
The shortcomings of MapReduce for graph processing are

well-known in the research community [28]. Today, there
are of course many graph analytics frameworks that address
the limitations of MapReduce, but at the time when we were
planning a replacement for Cassovary (circa 2011), there
were no viable alternatives. Pregel was known [30], but the
open-source Giraph implementation did not exist yet. There
were a few academic research papers on iterative formula-
tions of MapReduce [12, 41], but nothing that was close to
production ready. Therefore, at the time, implementing the
RealGraph on Hadoop seemed like a reasonable decision,
which we discussed in Section 2.2.

Later, when we recognized the importance of real-time
processing (circa 2012), we did build initial prototypes on
Storm. As we discussed in Section 2.3, it was not sufficient
for our needs both in terms of performance and expressivity.
This was before the development of Heron, Spark Streaming,
and Flink—today, there are more choices in the space of real-
time processing platforms. However, these alternative are
still tuple-oriented, and so the challenge of expressing graph-
centric operations remains. We believe that we made the
right decision to build custom infrastructure in MagicRecs
and GraphJet.

7.3 Real-Time Graph Stores
The general architecture of GraphJet borrows heavily from

Earlybird, Twitter’s production real-time search engine [7].
Early on, we drew the connection between managing post-
ings lists in real-time search and managing adjacency lists in
real-time graphs. The issue of memory allocation for post-
ings lists was studied in depth separately [3], thus providing
us with a good understanding of the design space. Temporal
partitioning of index segments was also a design borrowed
from Earlybird, which allowed us to prune the interaction
graph in an efficient (but coarse-grained) manner.

Tracing the intellectual lineage of Earlybird further back,
there is substantial work in the information retrieval litera-
ture on incremental indexing ([9, 35, 6, 8, 24], just to pro-
vide a few examples) that is relevant to building inverted
indexes in real time. Although most of the work consid-
ered on-disk indexes, a different point in the design space,
many of the tradeoffs, for example, between contiguous and
discontiguous index segments (Section 4.1.2), were already
well known; see Asadi and Lin [2] for a recent study. In this
respect, GraphJet acknowledges and builds on related work
dating back at least a few decades.

It is, of course, possible to use any key–value store to hold
the adjacency lists that comprise a graph, thus serving as a
real-time graph store (cf. [34]). A wide range of key–value
stores are available (a survey is beyond the scope of this pa-
per), but Redis in particular supports a command (LPUSH)
that inserts specified values at the head of the list stored at
a key. The implementation of the command, however, lacks
the memory allocation optimizations in GraphJet. Further-
more, Redis lacks a mechanism for pruning these lists; al-
though it would be possible to implement temporal parti-
tioning, it would basically be replicating some of the main
design features in GraphJet.

In the space of graph stores specifically designed for non-
static graphs, we are aware of a number of commercial of-
ferings (e.g., Neo4j, Titan, OrientDB) and research systems.
The research systems implement a range of different strate-
gies for managing evolving graph data structures, including
linked lists of edge blocks in Stinger [11], compacting cir-
cular buffers in Trinity [34], and partitioned edge buffers in
GraphChi-DB [20]. We have not undertaken a study com-
paring these different techniques, but such an evaluation
would be interesting future work.

8. CONCLUSIONS
This paper traces the evolution of graph recommenda-

tions at Twitter over four generations of systems: Cassovary,
RealGraph, MagicRecs, and GraphJet. All of these systems
were essentially from-scratch implementations, not because
we were enamored with system building, but because each
represented a reformulation of the graph recommendation
problem that highlighted fundamental shortcomings in the
previous systems. This progression highlights a pragmatic,
solution-oriented approach to system design and building,
and we hope that our experience can help bridge the gap
between the academic study of recommendation algorithms
and the practice of building production systems.
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