Rudolf: Interactive Rule Refinement System for Fraud Detection

Tova Milo*
 Tel-Aviv University

! {milo, slavanovi}@post.tau.ac.il

ABSTRACT

Credit card frauds are unauthorized transactions that are made or
attempted by a person or an organization that is not authorized by
the card holders. In addition to machine learning-based techniques,
credit card companies often employ domain experts to manually
specify rules that exploit domain knowledge for improving the de-
tection process. Over time, however, as new (fraudulent and legiti-
mate) transaction arrive, these rules need to be updated and refined
to capture the evolving (fraud and legitimate) activity patterns. The
goal of the RUDOLF system that is demonstrated here is to guide
and assist domain experts in this challenging task.

RUDOLF automatically determines a best set of candidate adap-
tations to existing rules to capture all fraudulent transactions and,
respectively, omit all legitimate transactions. The proposed modifi-
cations can then be further refined by domain experts based on their
domain knowledge, and the process can be repeated until the ex-
perts are satisfied with the resulting rules. Our experimental results
on real-life datasets demonstrate the effectiveness and efficiency of
our approach. We showcase RUDOLF with two demonstration
scenarios: detecting credit card frauds and network attacks. Our
demonstration will engage the VLDB audience by allowing them
to play the role of a security expert, a credit card fraudster, or a
network attacker.

1. INTRODUCTION

Credit card frauds are unauthorized transactions that are made
or attempted by a person or an organization that is not authorized
by the card holders. Fraud with general-purpose cards (credit, debit
cards etc.) is a billion dollar industry and companies are therefore
investing significant efforts in identifying and preventing them.

In this demo, we present RUDOLF, a system that is capable of
assisting domain experts to define and refine rules for fraud detec-
tion. The system addresses a real problem that is faced by a credit
card company whose name we cannot disclose. Everyday, the com-
pany receives new transactions that are made through credit cards
that are issued by the company and a core part of the company’s
operations is to identify all fraudulent transactions in the database.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.

Proceedings of the VLDB Endowment, Vol. 9, No. 13

Copyright 2016 VLDB Endowment 2150-8097/16/09.

Slava Novgorodov !

Wang-Chiew Tan 2

2 University of California, Santa Cruz

1465

2tan@cs.ucsc.edu

To this end, models based on machine-learning techniques have
been developed to score each transaction and transactions whose
scores are above a certain threshold are classified as fraudulent.
However, the models and scoring system are never always precise.
There are always some fraudulent transactions that are missed by
the models and, likewise, there are always some legitimate transac-
tions that are wrongly identified as fraudulent. For this reason, the
credit card companies do not rely entirely on automatically inferred
models to determine fraudulent transactions. In addition, they also
rely on rules that are written by domain experts.

Intuitively, a rule captures a set of transactions in the database
and the goal is to arrive at a set of rules that, together with the
automatically derived scores, will capture precisely the fraudulent
transactions. The use of rules written by domain experts has the
advantage that it allows employing domain knowledge to handle
rare special cases. Furthermore, experts can also leverage domain
knowledge to detect frauds even before they are fully manifested
in the transactions. For example, the credit card company may be
informed of potential credit card frauds from a certain IP in Latvia
in the coming week. Hence, in this case, the experts can proac-
tively write rules ahead of time to capture those transactions from
Latvia. Similarly, an expert may see evidence for fraud purchases
in a certain store, and knowing that such frauds often propagate to
neighborhood stores, write rules ahead of time to protect surround-
ing businesses.

Writing rules to capture precisely fraudulent transactions is a
challenging task that is exacerbated over time as the types of fraud-
ulent transactions evolve or as new knowledge is learnt. There is
typically already an existing set of rules that were curated by do-
main experts and the rules work well for capturing fraudulent trans-
actions up to a certain day. However, these rules need to be adapted
over time to capture new types of frauds that may occur. For ex-
ample, there may be new reported fraudulent transactions coming
from a certain type of store at a certain time that did not occur be-
fore and hence, not caught by existing rules. Analogously, there
may be some transactions that were identified by the existing rules
as fraudulent but later verified by the card holders to be legitimate.
Hence, the rules have to be adapted or augmented over time to cap-
ture all (but only) fraudulent transactions. ' The goal of RUDOLF,
the system that we demonstrate here, is to assist domain experts in
achieving the challenging goal.

Note that our goal resembles in part that of previous works on
query/rule refinement, which attempt to automatically identify min-
imal changes to the query/rule in order to to insert or remove certain
items from the query result [3, 2, 8, 10]. However, a key difference
here is that such minimal modifications often do not capture the

'Likewise, the models that are developed based on machine learn-
ing techniques will need to be re-trained.

actual “ground truth”, namely the nature of ongoing attack, which
may yet be fully reflected in the data. By interacting with domain
experts to fine-tune rules, important domain knowledge can be ef-
fectively imported into the rules to detect the pattern of frauds often
even before they are manifested in the transactions themselves.
Finding an optimal set of changes to the rules to capture all fraud-
ulent transactions and omit legitimate transactions is NP-hard in
general. In light of this, RUDOLF employs heuristics to assist
a domain expert in refining rules. The interactive rule-refinement
framework of RUDOLF allows a domain expert to systematically
follow-up on the suggestions provided by RUDOLF, fine-tuning
them as needed based on her insights and domain knowledge.
While most of our exposition on the features of RUDOLF is
based on credit card frauds, we emphasize that RUDOLF is a
general-purpose system that can interact with experts to refine rules.
As we shall demonstrate, RUDOLF can also be applied to refine
rules to capture evolving network attacks over time (see Section 4).
Our experimental results on real-world datasets [5] further prove
that RUDOLF is effective and efficient tool for these purposes.

Demonstration Overview We will demonstrate the operation of

RUDOLF using two different real-world publicly available datasets.

A credit card transactions dataset, which we use to showcase the
usefulness of our approach directly for credit card frauds, and a
network traffic log, which we use to demonstrate the generality of
our solution beyond credit card frauds and its applicability to other
fraud scenarios. In both scenarios we will invite VLDB16 atten-
dees to play the role of security experts as well as that of attackers
(providing both, in each case, brief relevant background). We will
demonstrate how RUDOLF works interactively with the experts to
adapt the rules in response the incoming data. In parallel, we will
gain an insight into the system operation through its administrator
mode screen. See Section 4 for full details.

2. TECHNICAL BACKGROUND

We will briefly present our underlying model, and illustrate main
concepts using a simplified example.
Transaction relation A transaction relation is a set of tuples (or
transactions) where, each tuple denotes a transaction. In the con-
text of the credit card scenario, each tuple denotes a purchase made
through some credit card. The transaction relation is appended with
more transactions over time. We assume that the domain of every
attribute A has a partial order associated with it. A transaction may
be fraudulent which means that the transaction is suspicious and
possibly carried out illegally. Conversely, some transactions may
be verified to be legitimate. Transactions which are neither fraudu-
lent nor legitimate are called unlabeled transactions.
Rules Credit card experts specify a set of rules that can be ap-
plied to a transaction relation to discover fraudulent transactions.
For simplicity and efficiency of execution, the rules are typically
written over a single relation, which is a universal transaction rela-
tion that includes all the necessary attributes (possibly aggregated
or derived from many other database relations) for fraud detection.
Hence, it is not necessary to consider explicit joins over different
relations in the rule language. Similarly, for simplicity, our rules
contain only one condition over each attribute. Multiple disjunc-
tive conditions over the same attribute can be expressed in multiple
rules. Other extensions to the rule language are possible but will
not be considered in this demo. Note that the rule language that we
consider, albeit simple, forms the core of common rule languages
used by actual systems.

A rule is a conjunction of one or more conditions over the at-
tributes of the transaction relation. More precisely, a rule is of the
form a1 A ... A o, Where m is the arity of the transaction relation,

Time [Amount | Transaction Type [Location]

18:02 107 Online, no CCV Online Store F
18:03 106 Online, no CCV Online Store F
18:04 112 Online, with CCV Online Store IL,
19:08 114 Online, no CCV Online Store F
19:10 111 Online, with CCV Online Store

20:53 46 Offline, without PIN | GAS StationB | F
20:54 48 Offline, without PIN | GAS StationB | F
20:58 44 Offline, without PIN | GAS StationB | F
20:58 47 Offline, with PIN Supermarket

20:59 49 Offline, with PIN GAS Station A

Figure 1: Transaction relation on day n + 1.

«; is a condition is of the form ‘A; op s” or ‘A; € [s, €]’, A; is the
ith attribute of the transaction relation, op € {=, <,>, <, >}, and
s and e are constants.

More formally, if ¢ is a rule that is specified over a transaction
relation I, then ¢(I) denotes the set of all tuples in I that satisfies
¢. We say that ¢(I) are the transactions in I that are captured by
. If @ denotes a set of rules over I, then ®(1) = U 4 ¢(I). In
other words, ®(I) denotes the union of results of evaluating every
rule in ® over I. Observe that ®(I) C I since every rule selects a
subset of transactions from /.

EXAMPLE 1. To illustrate consider the following simple exam-
ple. Figure 1 shows a set of transactions, ordered by the time of the
transaction, that are recently received. Ignore for now the “F”/“L”
labels of some of the transactions. Each tuple also has a score,
omitted from the table for conciseness, that shows the degree of
confidence (that is derived by a model based on machine learning
techniques) that the tuple is fraudulent.

Consider the following simplified set ® of existing rules that were
used to capture fraudulent transactions until today.
r11) Time € [18:00, 18:05] A Amt € [110,115]
r12) Time € [18:55, 19:00] A Amt € [110,115]
ro) Time € [21:00, 21:15] N\ Amt € [40,50] N\ Location=‘GAS Station A’

Intuitively, the first two rules capture a suspicion of two attacks
on an online store taking place at the first and last few minutes of
6pm, charging amounts around $110-115. The last rule captures
a fraud pattern at Gas station A where false charges of amounts
between 40 to 50$ are made soon after the closing time at 9pm.
In practice each rule also includes some threshold condition (not
shown) on the score for each transaction, i.e. the degree of confi-
dence that the transaction is fraudulent, as well as additional con-
ditions on the user/settings/etc. We will omit the scores and the
additional conditions for simplicity and focus on the rules in this
example. The current set of rules captures only the two shaded
tuples shown in the transaction relation. Now, assume that the
transactions that are labeled with “F” (resp. “L”) are transac-
tions that were reported, e.g. by the card holder, to be fraudulent
(resp. legitimate). Clearly, the new fraudulent transactions are not
captured by the existing rules and furthermore, the rules wrongly
capture some legitimate transaction. The rules thus naturally need
to be refined to correctly capture the ongoing fraud attempts and
adequately classify all transactions.

The main algorithm behind RUDOLF Our goal is assist the
domain experts in refining a set of rules so that, to the extent possi-
ble, all and only all fraudulent transactions are captured. In [5], we
show that computing an optimal set of modifications to the rules
even for special cases of the above problem (when there are new
fraudulent transactions and no new legitimate transactions, or the
converse: when there are no new fraudulent transactions but only

1466

legitimate transactions) are NP-hard in general. To bypass the hard-
ness results, we develop two heuristic algorithms to identify the
best set of rule modifications in these two special cases, then com-
bine them to arrive at a solution for the general problem.

Intuitively, the first algorithm identifies the best modifications to
the rules to capture the missed fraudulent transactions. It first clus-
ters all fraudulent transactions (old and new) into groups of similar
tuples, and represents each cluster by a generalized representative
tuple. The algorithm then proceeds to identify a best rule modifica-
tions from a list of top-k rules that will capture the representative
tuple (and hence, all tuples) of each cluster. (The top-k rules are
the best k rules in terms of minimizing modification costs.) The
proposed modifications are verified with the domain expert, who
may decline, accept, or further adapt the proposed changes.

As the resulting rules may still wrongly capture some legitimate
tuples, our second algorithm attempts to modify the rules to exclude
legitimate transactions. For that, the algorithm identifies rules that
wrongly capture legitimate tuples and “splits” one of their attributes
so that the legitimate tuples are avoided. Intuitively, a split on an
attribute A duplicates the original rule but modifies the condition
on A so that the legitimate tuple will not be captured. The attribute
that is selected is the one that maximizes the “benefit” of the mod-
ification. Like before, the expert can choose to decline, accept, or
further modify the suggested modifications. As the resulting rules
may also exclude some fraudulent transactions, the expert may re-
peat the two phases until a satisfactory set of rules is arrived.

Full details of the algorithm and our experimental study can be
found in [5]. In particular, our experiments compare the fraud pre-
diction accuracy of the rules generated with RUDOLF to that of the
common fully-manual approach where experts refine rules them-
selves, as well as to fully-automatic state of the art Machine Learn-
ing detection, demonstrating the superiority or our approach.

EXAMPLE 2. To continue with our example, note that by slightly
adjusting the time and amount intervals and having the third rule
cover also Gas station B, we could obtain a set of rules that capture
the fraudulent transactions and avoid the legitimate ones. However,
such minimal changes often do not correspond to the best or correct
changes. By interacting with RUDOLF, the domain experts can
view/accept/reject/modify the suggestions provided by RUDOLF,
arriving for instance at the following set of rules.

7"’1) Time € [18:00, 19:10] N\ Amt € [105,115] N\ Type = Online,no CCV.
T’Q) Time € [20:45,21:15] A\ Amt € [40,50] N\ Location < Gas Station N\
Type = Offline, no PIN.

Intuitively, the updated rule v} conveys the conclusion that the
previous first two rules reflect in fact part of a single more general
fraud attempt consisting of online transactions without CCV that
occur in the evening, charging amounts between $105-115. Sim-
ilarly, v4 reflects the conclusion that the gas station frauds that
started at a single station further expand to gas stations in gen-
eral via offline transactions without code around closing time, of
amounts between $40-50.

Each rule above is derived based on refinement suggestions by
RUDOLF and further adaptations by domain experts. For ex-
ample, rule r1’ is obtained because RUDOLF determines that a
minimal way to change rule R11 in Example 1 to capture a good
set of fraudulent transactions is to modify the condition “Amt €
[110,115]” to “Amt € [106,115]”. The domain expert further gen-
eralizes the condition to “Amt € [105,115]” since rounded bounds
are more common in fraud patterns. So rule R11 is modified to

Time € [18:00,18:05] N\ Amt € [100,115]

Next, since the first legitimate transaction is captured by this rule,
RUDOLF proposes to exclude it by splitting the rules either on the
time attribute (specifically to omit 18:04) into

___________ RUDOLF L
1
. 1
_— 1
Rules 1
- 1
%) 1
= o !
c =
g — £ Rule.s. ;
= 2 moldlflcatlons
@ > £ /
£ 5 | Rulps & = EJ rt
é 3| Transactions ~*P¢

Fraud
| Reporter €

External Fraud Reports ‘

Figure 2: RUDOLF System Architecture

a) Time € [18:00,18:03] A Amt € [100,115].
b) Time = 18:05 N\ Amt € [100,115].

or on the Type attribute into
a’) Time € [18:00,18:05] A Amt € [100,115] A Type < Offline.
b’) Time € [18:00,18:05] A Amt € [100,115] A Type = Online,no CCV.

There is a partial order (not described) that corresponds to the
type attribute. Without going into the details of the partial order, the
above split on the type attribute will omit transactions that are per-
formed online, with CCV code. Using domain knowledge that only
online purchases, especially those without CCVs are of concern,
our domain expert chooses the second split option but eliminates
the rule (a'). To capture the remaining fraudulent transactions
RUDOLF now proposes to the expert to expand the time interval
in (b'), which explains how ri above was arrived (and rule Ris,
that is now redundant, eliminated). A similar process is carried
out for the remaining rules and fraudulent/legitimate transactions,
arriving at rule ro (and eliminating the now redundant rule R12).
Further details on how the final set of rules is derived can be found
in our full paper [5].

3. SYSTEM OVERVIEW

RUDOLF is implemented in PHP (back-end), JavaScript (front-
end) and uses MySQL as the database engine. The system archi-
tecture is depicted in Figure 2.

Outside RUDOLF, the Machine Learning module scores each
transaction and also provides a threshold over which transactions
are suspected as fraudulent. These scores may then be used by the
rules. The experts connect to, examine the transactions and rules,
and adapt the rules through the User Interface. Within RUDOLF,
there are three core modules: Manager, Rules Engine and Fraud
Reporter. The Manager module is the main module of the sys-
tem that executes our algorithm for rules refinement and interacts
with all other parts of the system. The Manager module inter-
acts with the Rules Engine module, which is the module that ma-
nipulates (i.e., modifies or add or even delete) the rules that are
stored in the Rules Database. The Manager module also interacts
with the Fraud Reporter module, which receives external requests
to label transactions as fraudulent or legitimate (e.g., when credit
card holders notify the credit card company of fraudulent transac-
tions or about legitimate transactions that were wrongly misclas-
sified as fraudulent and thus rejected). Upon receiving reports of
fraud/legitimate transactions, the Fraud Reporter module passes
the transactions that are misclassified by existing rules to the Man-
ager module for further inspection by the experts. The expert ob-
tains the list of misclassified transactions and may attempt to mod-
ify the existing rules to remedy this. At the same time, the Manager
also interacts with Rules Engine and executes our algorithms to ob-
tain modifications to the existing rules that will help capture all
missed fraudulent transactions and avoid misclassifying legitimate
transactions. The rules and modifications are displayed via the UL

1467

STATISTICS

Transaction:

“$104H22:17HCredh (ardHOane,no CVVHShoesStoreH

Possible edits: Sum > 103
Rule 1: Time > 22:00, Swm-=—338, Transaction Type = ‘Online' Accept / Edit

Time > 22:16 .
Rule 2: Fime=22:38, Sum > 100, Transaction Type = 'Online' Accept / Edit

STATISTICS

RULES: 17 LAST EDITS:
EXPERTS: 11 RULE #7: HME>—22:31 = TIME > 22:00
RULE #6: SUM—126 :: SUM > 100
EDITS MADE: 5 RULE #3: TYRE = 'ONLINE! - TYPE = 'ONLINE, NO CVV'

TRANSACTIONS: 170 RULE #8: FME={16:06,36:361 =
FRAUD DETECTED: 10
MISSING FRAUD: &4

TIME = [16:00, 16:45]

Figure 3: RUDOLF UI: mark incorrect/add missing answers
4. DEMONSTRATION SCENARIO

We plan to demonstrate the functionalities of RUDOLF interac-
tively through two scenarios. The first scenario deals with credit
cards fraud detection and uses a real-life transactions data set from
[4]. This dataset contains attributes including amount, date, card
type, location, etc. with some transactions identified as fraudulent
and others as legitimate. Transactions from the dataset will be grad-
ually streamed in and the given set of rules will need to be adapted
to capture them. The demo attendees will play here two roles: secu-
rity experts and credit card fraudsters. To the ones playing security
experts, RUDOLF will pose questions to solicit feedback on how
the existing rules should be modified to capture incoming fraudu-
lent transactions or to write new rules. The users playing the fraud-
ster will be able to introduce new fradulent transactions that form
new fraud patterns and we will demonstrate how RUDOLF inter-
actively works with the experts to refine the rules to capture these
attacks as well. The second scenario deals with the detection of
network attacks. For that we will use network traffic data from net-
work sniffers [9]. Transactions in this dataset contains attributes
such as time, source/destination IP, port, etc. Here again we will
have the demo attendees play both the roles of security experts as
well as network attackers and demonstrate how RUDOLF can in-
teractively modify the rules to capture the new attacks.

To ensure that our demonstration is engaging, we designed an in-
teractive multiplayer game with a scoring system where players that
play the experts role are awarded points for writing/modifying rules
some that they correctly capture the frauds, with high precision
and recall, while attendees playing the fraudsters role are awarded
points when their attacks are not fully captures by the derived rules.
Since not all the conference attendees are credit card/network secu-
rity experts, we will provide the audience with information sheets
describing some of the the basic principles in each of the domains.
We also designed the game to include different levels of challenges,
ranging from really simple fraud/network attack patterns to demon-
strate the basics of RUDOLF to an advanced fraud/network attacks
based on real world scenarios that we obtain by consulting with
real domain experts. For example, an attack pattern may be “Pack-
ets directed to port 80, of size smaller then 16 bytes”. (A minimal
HTTP requests consists of 16 bytes, hence this request looks suspi-
cious.) We will begin our demonstration by presenting the game, its
goal and rules. We will then allow our audience to play, while we
explain the underlying algorithms in RUDOLF at the same time.
For example, a player playing an experts role can start the game
with a proposed fraud transaction that is not currently captured but
needs to be captured by the rules. The first screen presented to
the player contains the fraudulent transaction and a list of possible
edits to a “best” set of rules in order to capture the fraudulent trans-
action. The player can either choose an edit from the options, or
customize a given edit (Figure 3). Once the fraudulent transactions
are captured, the player will continue to the next phase of the algo-
rithms to refine the rules to avoid capturing legitimate transactions
(again, by editing existing rules to exclude those transactions). At
every stage of the game, the player can opt to see statistics on how

Figure 4: RUDOLF UI: administrator view

many fraudulent transactions are captured, or still omitted, or how
many legitimate tuples were caught by mistake. Players that play
the fraudsters will use another computer and through a dedicated
screen will generate an attack by selecting or providing a fraud pat-
tern. We will leverage the game to elevate and discuss the details
and nuances of our algorithms, and especially the decisions taken
by RUDOLF that led to the questions it poses. In particular, we
will exploit opportunities to explain why certain edits were chosen
by the system and the effect of the experts” answers on the system’s
state. Once players have completed the game, we will display the
Administrator web page (Figure 4), which shows the aggregated
statistics for all players and attacks (e.g., the total number of rules
edited, frauds detected, missing frauds, etc.).

Related work We describe only the main related work next. Tra-
ditionally, methods for detecting frauds and intrusions were largely
based on machine learning and data mining methods (see, for ex-
ample, [1, 7]). In fact, a KDD cup was held in 1999 [6] to encour-
age the development of a network intrusion detector, which is a
predictive model capable of distinguishing between “bad” connec-
tions, called intrusions or attacks, and “good” normal connections.
Our work complements predictive models for intrusion detection.
RUDOLF is applied after an initial model for fraud detection is
learnt or derived, to capture (resp. clear) additional fraudulent (le-
gitimate) tuples that may be missed (misclassified) by the models
and maintain the rules over time. We have mentioned above the re-
lationship to query/rule refinement [3, 2, 8, 10] and the advantage
of incorporating experts knowledge in the process.
Acknowledgements This work has been partially funded by the
European Research Council under the FP7, ERC grant MoDaS,
agreement 291071 and by a grant from the Blavatnik Cyber Se-
curity center. Tan is partially supported by NSF grant IIS-1450560
and I1S-1524382.

5 REFERENCES

] P. K. Chan and S. J. Stolfo. Toward scalable learning with
non-uniform class and cost distributions: A case study in credit card
fraud detection. In KDD, pages 164—168, 1998.

[2] A.Chapman and H. V. Jagadish. Why not? In SIGMOD, 2009.

[3] S. Chaudhuri. Generalization and a framework for query
modification. In ICDE, pages 138-145, 1990.

[4] Ucsd data mining contest 2009 (via private communication).
http://www.quansun.com/
ucsd-data-mining-contests.htm.

[5] Rudolf (full version). Submitted.
http://slavanov.com/research/rudolf-full.pdf.

[6] Kdd cup 99, intrusion detector learning. https://kdd.ics.
uci.edu/databases/kddcup99/kddcup99.html.

[7]1 Y. Kou, C.-T. Lu, S. S, and Y.-P. Huang. Survey of fraud detection
techniques. ICNSC, 2:749-754, 2004.

[8] D. Mottin, A. Marascu, S. B. Roy, G. Das, T. Palpanas, and
Y. Velegrakis. A probabilistic optimization framework for the
empty-answer problem. PVLDB, 6(14):1762-1773, 2013.

[9] Caida network dataset. http://www.caida.org/data/overview/.

[10] M. Volkovs, F. Chiang, J. Szlichta, and R. J. Miller. Continuous data
cleaning. In ICDE, pages 244-255, 2014.

1468

