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ABSTRACT
Graphs or networks provide a powerful abstraction to view
and analyze relationships among different entities present
in a dataset. However, much of the data of interest to an-
alysts and data scientists resides in non-graph forms such
as relational databases, JSON, XML, CSV and text. The
effort and skill required in identifying and extracting the rel-
evant graph representation from data is often the prohibitive
and limits a wider adoption of graph-based analysis of non-
graph data. In this paper, we demonstrate our system called
GraphViewer, for accelerated graph-based exploration and
analysis. It automatically discovers relevant graphs implicit
within a given non-graph dataset using a set of novel rule-
based and data-driven techniques, and optimizes their ex-
traction and storage. It computes several node and graph
level metrics and detects anomalous entities in data. Fi-
nally, it summarizes the results to support interpretation by
a human analyst. While the system automates the compu-
tationally intensive aspects of the process, it is engineered to
leverage human domain expertise and instincts to fine tune
the data exploration process.

1. INTRODUCTION
Graphs help capture interactions and relationships be-

tween entities. Phenomena such as financial transactions,
social interactions, biological structures, movements of peo-
ple and goods, are naturally represented as graphs. The
analyses of such processes in a graph-theoretic manner pro-
vides us additional insights into the characteristic of the en-
tities and dynamics of the network as a whole. For instance,
centrality based metrics such PageRank, or Betweenness tell
us the relative importance of different entities in the net-
work. On the other hand, graph-level metrics such as den-
sity or conductivity help us reason about the characteristics
of the graph as a whole. Techniques such as clustering or
anomaly detection on graphs help with fraud detection, ad-
vertising suggestions, and retail targeting amongst others.
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In spite of the inherent strength of graph-based analysis of
datasets, it is still not widely used. This is due to the reason
that much of the data in the digital world resides in non-
graph formats such as relational databases or XML or CSV
or unstructured text. The burden of identifying and extract-
ing a potentially meaningful graph from such data is placed
on the analyst. Several graphs that are implicitly present
are not explicitly visible. In a complex XML schema or a
relational database with dozens of tables, for instance, this
task becomes especially prohibitive. Moreover, extraction
of graphs from such datasets requires the analyst to write
complex code or queries. For instance, consider a simple
schema of an author-publication database in Figure 4, which
can yield graphs such as co-authorship, author-publication,
authorship in the same conference, etc. The co-authorship
graph extraction query in SQL can be seen Figure 3(b).
With complex schemas, and complex graph definitions, such
extraction queries become significantly more complex. In
case of non-relational source formats, the querying mecha-
nism requires more intricate programming. While there has
been recent work on declarative specification for graph ex-
traction [9] [6], the analyst is still required to overcome the
burden of identifying and expressing a potentially meaning-
ful graph. The work presented in this paper is motivated by
the complexity of graph discovery in data analytics.

Figure 1 describes the typical methodology for perform-
ing graph-based exploration of a dataset, where an analyst
would extract a graph, run a particular algorithm and in-
terpret results. This is repeated in a recursive manner until
she finds the right combination of a graph and algorithm
for a desired outcome. This activity is time-consuming,
intensive in query or code writing, and repetitive in na-
ture. With the objective of saving analyst cycles and the
need to write ETL code, we propose a system for graph dis-
covery, extraction and analysis from non-graph data, called
GraphViewer1. The cornerstone of GraphViewer is an en-
gine called GraphMapper that enumerates and extracts sev-
eral implicit graphs in a given dataset and relieves the an-
alyst the burden of graph discovery and extraction. Fur-
ther, the Metric Computation and Summarization (MCS)
engine matches all the graphs obtained from the GraphMap-
per with compatible algorithms based on each graph’s type
and characteristic. It then runs the algorithms, collects and
summarizes result for analyst’s interpretation. While the
methodology is based on automated enumeration, extrac-
tion and analysis of the underlying graphs, the system is

1 GraphViewer at IBM Research: https://ibm.biz/Bd4AMr
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receptive to an analyst’s domain expertise and instinct. It
tunes the execution plans as per the analyst’s directions.

In this work, our focus is on enabling the analyst to per-
form graph based knowledge discovery conveniently and ef-
ficiently. Our key contributions are, (a) a novel method-
ology for performing graph-based exploration of non-graph
datasets; and (b) an engine for graph enumeration, extrac-
tion, and graph-based exploration on a variety of non-graph
datasets. Note that we do not focus on suggesting new met-
rics of graph analysis or anomaly detection, but utilize the
existing work in that area to compliment our system. We
refer the interested reader to explore those topics through
Aggarwal [1, Chapter 17,19] and Akoglu et al. [2]. In the rest
of this paper, we present an overview of the GraphViewer
system and briefly describe it components, GraphMapper
and MCS in Section 2. In Section 3, we present the user in-
terface and describe the usability and demonstration plans,
including some insights from our analysis of the 2016 US
presidential candidate debate transcripts.

Figure 3: Graph Generator tool with two different graph extraction queries for a small DBLP dataset.

3. DEMONSTRATION
Finally, we briefly describe the interactive graph discovery and

exploration front-end that we have developed, and discuss the demon-
stration plan. The front-end allows a user to: (a) connect to an ex-
isting relational database and view its schema, (b) write queries in
our DSL to extract different graphs, (c) explore the graphs through
node-link visualizations and various global and node-level metrics,
and (d) compare graphs extracted using different queries. Figure 3
shows one such snapshot where the user connects to the DBLP
database. On the top left, the database name and other connec-
tion details can be specified. Load Schema displays the list of
tables, attribute information, and constraints such as primary and
foreign keys. The New Query option creates a new pane on the
right. Here, the user would write a graph extraction query using the
schema details displayed on the left.
Extract Graph initiates the graph generation task at the back-

end, along with the computation of several global and node-level
metrics. Upon its completion, a small subset of the extracted graph
is displayed using a force-directed layout. It also displays graph
statistics such as node count, density, diameter, etc., and a plot
of the node degree distribution. The user can visualize specific
portions of the graph through the Another Sample option by
specifying a keyword in the text-box besides it. The system uses a
keyword search on nodes’ attributes and returns a subgraph around
the node with the first occurrence. In case of a missing keyword
or the hint being unusable, a random subgraph is presented in-
stead. Using the Node Analysis option, a user can view and
sort by different metrics for nodes, such as degree, betweenness
centrality, PageRank, clustering coefficient, and others. Multiple
query panes, launched through the New Query option, are aligned
such that different queries and graphs are vertically juxtaposed for
comparison. Moreover, by selecting Export Graph, the en-
tire generated graph can be serialized to disk into one of the stan-
dard formats in the drop-down list. This gives the user the ability
to load the graph into any graph library that supports these for-

mats, and execute graph algorithms against it. Finally, if the user
is unfamiliar with the dataset and wants to explore, she can use
the Auto-generate Graphs option. Based upon the database
schema, it automatically populates a few panes with valid extrac-
tion queries and resultant graphs.

Demonstration Plan: During the demonstration, the conference
attendees will be able to use the front-end to write graph extraction
queries over various pre-populated datasets, and visually explore
the results. The conference attendees will also be encouraged to
think about potential graphs among the entities in the dataset, and
how those can be mapped to the proposed graph extraction DSL.
Certain pre-selected queries will be used to demonstrate graph ex-
ploration and comparison. We will also demonstrate how users can
effortlessly operate upon the extracted graphs using the Python Net-
workX graph library and its built-in graph algorithms.

Acknowledgments: This work was supported by NSF under grant
IIS-1319432, and by an IBM Faculty Award.
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Figure 1: Illustration of graph analytics methodology: (1)
graph extraction from the dataset, (2) running an analysis
algorithm on the graph, (3) interpretation of results, (4)
running a different algorithm on the same graph, (5) finding
another graph from the dataset.

2. GRAPHVIEWER OVERVIEW
We begin with a brief overview of the components in

GraphViewer, followed by a description of specific compo-
nents, GraphMapper and MCS, respectively; we conclude
with the system implementation details.

2.1 System Architecture
GraphViewer’s high level architecture and data flow can

be seen in Figure 2. GraphMapper generates a Graph Spec
describing a list of enumerated graphs for the input dataset.
The user may modify, add or remove graph descriptions from
the specification. The specified graphs are then extracted
and passed on to the MCS. MCS matches the graphs with
a list of metric computation algorithms, constructing a Run
Spec, which may be modified according the analyst’s prefer-
ence. The final specification is executed and the results are
presented in a summarized manner, ready for interpretation.

2.2 Graph Discovery and Extraction
GraphMapper uses a principled approach for analyzing

a given dataset and enumerating a set of graphs that are
implicitly present in the dataset. The key steps in this ap-
proach are: (a) first reads (and mines) entity types and the
direct relationships between the entity-types found in the
data; (b) abstracts them in a network of entity-types and
relationships; and (c) based on the connected components
of the network, it discovers further (hidden) relationships,
which in turn, form the basis for enumerating data graphs
from the given dataset. These steps are explained below.

When possible, GraphMapper exploits the structure in
the data to determine entities and relationships. For in-
stance, in a normalized relational schema, it makes use of
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Figure 2: GraphViewer architecture. The dashed connec-
tions reflect the analyst’s ability to modify a specification.

the knowledge of primary keys or uniqueness constraints to
find potential node-sets; and, it uses the knowledge of foreign
keys, co-attributes (in the same relation) or functional de-
pendencies to describe relationships between various entity
groups or node-sets. Additionally, in cases where such struc-
ture is absent in the data, it adopts a data-driven approach
to locate entities and relationships. For instance, in textual
data, it performs entity-resolution to extract different enti-
ties that are categorized by their types, such as “person”,
“organization”, “location”, forming different node-sets; it
uses natural language processing techniques, and addition-
ally, several heuristics such as proximity of occurrence or
co-occurrence to determine the potential relationships. For
semi-structured datasets such as JSON, XML, or tabular
datasets such as CSV, GraphMapper tries to induce struc-
ture and relationships using a host of techniques. These
include a survey on entity resolution by Brizan et al. [3],
XML to relational schema conversion by Lee et al. [4], iden-
tification of knowledge graphs [7], and automatic schema
matching for relational databases [8].

We now describe the graph enumeration setup in the con-
text of a relational data source, that was briefly introduced
in [9]. For a relational dataset D Let N be the set of po-
tential node-set entity groups, for instance, the primary key
attributes in a relational database. Let N ′ be the set of all
remaining entity groups, for instance, the non-primary key
attributes in the schema. We define a schema graph2, GS
with N ∪N ′ as its nodes. An edge in GS indicates a direct
relationship between two nodes, such as the one derived from
a functional dependency between a primary key and another
attribute in a relation, or a foreign key constraint. Note that
the nodes of the schema-graph are not actual entities, but
entity types, and edges are undirected. In reference to the
schema shown in Figure 4(a), two such nodes of the schema
graph are Author.id and Conference.year, but not actual
values of author-ids or conference years, respectively. Fig-
ure 3(a) illustrates the corresponding schema graph.

The technicalities of schema graph construction depend
on the type of data source. For instance, in text data, the
entity groups and their inter-relations are derived using the
NLP techniques described earlier. For simplicity and want
of space, we restrict the explanation to relational datasets.

A data graph that may be derived fromD is described by a
path p from N1 to N2 in GS such that N1, N2 ∈ N . Note that

2 The schema graph is a meta-graph on entity types in D,
not be confused with the data graphs extracted from D.

1558



9 8

41

2 3

11

10

6

7

5

id name

id

title
cid

id name

loc

year

pid

aid

conference( id, name, loc, year)

author( id, name, )

publication( id, title, cid ) 

authorpublication( pid, cid ) 

Potential node-set/
 entity type

Ordinary attribute

Foreign Key
Co-attributes

(a) Illustration of a schema graph over the author-
publication schema described in Figure 4(a). The
co-authorship relationship is described by the path
9→ 10→ 11→ 10→ 9.

Nodes: Select Author.id from Author;
Edges: Select A1.id, A2.id from Author A1, 
Author A2, AuthPub AP1, AuthPub AP2 WHERE 
AP1.aid = A1.aid AND AP2.aid = A2.aid AND 
AP1.pid = AP2.pid;

(b) Co-authorship data graph extraction query.

Figure 3: Schema Graph and graph extraction query.

p may be a loop or traverse same intermediate or end nodes
as well as edges more than once. For the same terminal node,
i.e., N1 = N2, we obtain homogeneous graphs, for N1 6= N2,
bipartite graphs. Further extensions of this may involve
finding a tree instead of a path between three terminal nodes
instead of two, and so on. An enumeration of all such paths
in GS gives us the enumeration of all graphs in D. Note that
the number of graphs obtainable is unbounded in general.
For instance, while multiple traversals of the same loop will
yield a syntactically correct graph, it is unlikely represent
a meaningful interpretation. We use certain heuristics to
trim the number of enumerations, typically those restricted
to multiple traversals of the same nodes and edges. A set
of enumerations that are further extracted from the dataset
is called a graph specification. Each graph description in
the specification is translated to an extraction code or a
query; Figure 3(b) shows the required query to generate a
particular data graph from D. Note that the GraphMapper
auto-generates and deploys these queries, not the analyst.
Storage and Extraction Optimizations: The graph
extraction process uses optimizations similar to multi-query
optimization in relational databases. Specifically, it avoids
redundant fetching of nodes and join sets. The set of ex-
tracted graphs are stored in a compact manner, utilizing
overlaps of nodes and edges between different graphs. We
store nodes, edges or attribute repeated across a set of graphs
only once, along with bitmaps and additional tables for
book-keeping, that signify component-graph correspondence.

2.3 Metric Computation and Summarization
Upon enumeration of a set of graphs SG = {G1, G2 . . . },

we match these with the set of available metric computa-
tion algorithms AAD = {A1, A2 . . . }. A subset of the cross-
product of the two sets, SG × AAD, is called the run spec-
ification. The described cross product between graph and
algorithms is typically large and the number of candidates
in a run specification is pruned by matching the suitability
of the algorithm to the graph. Some of attributes used for
pruning include the graph type, i.e., directness, weighted-
ness, density, etc. After this matching, the algorithms are
run and the results are summarized in manner similar to a
data cube, i.e., using different aggregation and group-by cri-
teria (further elaborated in Section 3), in order to facilitate

easy and quick interpretation by the analyst.
Implementation: The core system is implemented in Java
and uses the JUNG library3 for some of its graph opera-
tions. Stanford coreNLP suite [5] is used for text processing
tasks. The web front-end uses JavaScript and JQuery for its
interactive components, along with Java Servlets processing
webserver requests. We currently use node centrality based
graph metrics, such as betweenness, degree, closeness, clus-
tering coefficient, page rank, HITS, etc.

3. DEMONSTRATION
In this section, we briefly describe the interactive explo-

ration process of GraphViewer, and discuss the demonstra-
tion plan. The user interface allows the analyst to (a) load
a non-graph data source from one of the many formats, and
view the structure or sample contents of the input; (b) auto-
generate a set of graph enumerations, and add/remove to
that list; (c) auto-synthesize a specification for specific met-
ric computation or anomaly detection algorithms on various
graphs, and edit that specification; (d) explore the set of
metrics computed or anomalies detected using a group-by or
aggregation by the graph, entity (node), entity type or the
algorithm used; (e) explore specific entities in detail.

The Data Source tab lets a user specify a data source
type and import details. Upon successful loading, an appro-
priate summary of the data structure (relational schema,
XML hierarchy, etc.) and a sample of the data is displayed.
Clicking Generate Graph Spec, moves the focus on to the
Graph Spec tab, as shown in Figure 4(b). It displays the
selection of node-sets and graph definitions, respectively, as
computed by GraphMapper’s default rules. The user can
edit the rules as well as specific definitions of the node-sets
or graphs. Additionally, the View Graph option lets the user
browse through a physical layout of the graph in an interac-
tive manner with filters and color controls to change the ap-
pearance of the graph layout. With the desired graph speci-
fication, a user clicks Generate Run Spec which extracts the
specified graphs and switches context to the next tab.

Figure 4(b) shows a Run Spec which contains specifica-
tion of anomaly detection algorithms to be run on specific
graphs and the anomaly selection criteria4. The analyst can
chose to modify, remove a suggested specification or add a
new one. Upon clicking Execute, the algorithms are run as
per the specifications and once complete, the Results tab
displays all the computed anomalies or metrics. As shown in
Figure 4(c), the user may choose to browse the anomalies by
grouping them by the anomalous entity i.e., node, the entity
type, graph from which the anomaly was discovered, or the
algorithm used. The analyst may also summarize the results
using one of these criteria. This helps the analyst to com-
pare different entities in the dataset based on their overall
anomalous behavior, or which are the graphs or algorithms
that are more useful in finding certain anomalies. Finally,
the Explore tab (not shown) facilitates the exploration of
data in an entity-based manner, i.e., one may specify an en-
tity of interest and only the graphs extraction and analyses
around that entity will be performed. This tab also contains
features Find Similar Anomalies and Export Graphs.

3 http://jung.sourceforge.net
4 RunSpec and Results tabs have separate modes for view-
ing anomaly detection and metric computation, respectively.
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In a case of textual data exploration through Graph Viewer,
we analyzed transcripts of the nine GOP and six Demo-
cratic Party presidential debates held between August 6,
2015 and February 13, 2016. GraphMapper was able to
generate various graphs based on entity-sets labeled Person,
Location, and Organization; it mined relationships between
entities using several different criteria such as co-occurrence
of two entities in the same sentence or same paragraph, a
subject-predicate-object relationship between entities, etc.
We ended up with dozens of different graphs for each debate
dataset, such as a bi-partite weighted graph between persons

(a) Graph specification describes graph enumerations
which can be modified by a user.

(b) The run spec matches graphs with algorithms. It
is generated automatically and a user can modify it.

(c) Browsing Anomalies.

Figure 4: GraphMapper

and locations, a directed graph of who mentioned whom, a
graph reflecting co-occurrence of all entities, to name a few.
Curious to find a graph model that reflects the popular-
ity of candidates (from polls) in the debate, we performed
an entity-based exploration to conclude that a betweenness
centrality and pagerank from a person co-mentions graph,
are the most indicative factors. In the the bi-partite graph
between persons and locations, we looked at the connectiv-
ity of different presidential candidates to a cluster of loca-
tion entities such as “Syria”, “Iran”, “Iraq”, etc. to gauge
the candidates’ relative reference to foreign policy topics.
We also observed that the disparity between the two major
Democratic candidates in terms of links with various enti-
ties, reduced from 0.6 to 0.39 (Jaccard) over 3 months.

We believe that the underlying graph enumeration and
the ability to slice and dice a multiplicity of metrics on each
graph is what enabled us to gain these quick insights into
these datasets. Also, the GraphViewer framework is easily
extensible by plugging additional techniques for detecting
entities and relationships from data, as well as performing
a wider set of graph analytics. We continue to work on op-
timizing the graph retrieval, storage, and analysis aspects
of the system. Additionally, we are working on extracting
temporal graphs from timestamped datasets, as well as, im-
plementing the system in a distributed, scaled-out fashion.
Demonstration Plan: During the conference, the atten-
dees will be given a preview of the system through the
demonstration of a prepared anomaly detection and a graph
discovery scenario, each. Further, they will use the inter-
face for “graphically” exploring the following datasets: (a)
DBLP publications records5 (database and XML); (b) New
York city public records datasets on transportation, health
and environment6 (CSV); (c) Presidential debates for 2016
election7 (text) (d) an anonymized DNS transactions log
database (CSV); (e) the novel, A Tale of Two Cities by
Charles Dickens (text); (f) Chicago’s crime dataset8 (JSON).
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