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ABSTRACT
Entity resolution (ER) is the task of identifying all records in a
database that refer to the same underlying entity. This is an expen-
sive task, and can take a significant amount of money and time; the
end-user may want to take decisions during the process, rather than
waiting for the task to be completed. We formalize an online ver-
sion of the entity resolution task, and use an oracle which correctly
labels matching and non-matching pairs through queries. In this
setting, we design algorithms that seek to maximize progressive re-
call, and develop a novel analysis framework for prior proposals
on entity resolution with an oracle, beyond their worst case guaran-
tees. Finally, we provide both theoretical and experimental analysis
of the proposed algorithms.

1. INTRODUCTION
Entity resolution (ER, record linkage, deduplication, etc.) seeks

to identify which records in a data set refer to the same underly-
ing real-world entity [6, 8]. It is a challenging problem for many
reasons, intricate because of our ability to represent and misrep-
resent information about real-world entities in very diverse ways.
For example, collecting profiles of people and businesses, or spec-
ifications of products and services, from websites and social media
sites can result in billions of records that need to be resolved; these
entities are identified in a wide variety of ways that humans can
match and distinguish based on domain knowledge, but would be
challenging for automated strategies.

Although there is an obvious need for ER, traditional strategies
(which consider it to be an offline task that needs to be completed
before results can be used) can be extremely expensive in resolv-
ing billions of records. To address this concern, recent strategies
such as pay-as-you-go ER [18] and progressive deduplication [13]
propose to identify more duplicate records early in the resolution
process. In particular, Whang et al. [18] compare record pairs
in non-increasing match likelihood ordering in a blocking-aware
∗Partially supported by MIUR, the Italian Ministry of Education,
University and Research, under Project AMANDA (Algorithmics
for MAssive and Networked DAta).
†Partially supported by NSF CCF 1464310 grant.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 5
Copyright 2016 VLDB Endowment 2150-8097/16/01.

ra

rb

rc

rd

re

rf

(a)

ra

rb

rc

rd

re

rf

(b)

ra

rb

rc

rd

re

rf

(c)

ra

rb

rc

rd

re

rf

(d)

ra

rb

rc

rd

re

rf

(e)

ra

rb

rc

rd

re

rf

(f)

Figure 1: Optimal ordering for our John F. Kennedy example.
Record pairs connected by solid black (resp. red) edges are labeled
by the oracle as “matching” (resp. “non-matching”). Labels of pairs
connected by dashed edges can be inferred via transitive relations.

way. Similarly, Papenbrock et al. [13] adapt traditional sorted
neighborhood-based and blocking-based ER techniques to ensure
that record pairs with a higher match likelihood are compared first.
Such online strategies are empirically shown to enable higher recall
(i.e., more complete results) in the event of early termination or if
there is limited resolution time available. However, these works do
not provide analytical results or any formal guarantees about the
proposed online strategies.

Consider the following illustrative example, shown in Figure 1.
There are a large number of places named after John F. Kennedy
around the world, including airports, schools, bridges, plazas,
memorials, and so on.1 Given the six places (ra) John F. Kennedy
International Airport, (rb) JFK Airport, (rc) Kennedy Airport,
NY (rd) John F. Kennedy Memorial Airport, (re) Kennedy
Memorial Airport, WI, (rf ) John F. Kennedy Memorial Plaza,
humans can determine using domain knowledge that these corre-
spond to three entities: ra, rb, and rc refer to one entity, rd and re
refer to a second entity, and rf refers to a third entity.

To have higher recall earlier in the online ER process, a good or-
dering of comparing record pairs is O1: (ra, rb),(ra, rc), (rb, rc),
(rd, re), (ra, rd), (ra, rf ), (rd, rf ), (ra, re), (rb, rd), (rb, re),
(rb, rf ), (rc, rd), (rc, re), (rc, rf ), (re, rf ). Essentially, the
matching pairs are compared before the non-matching pairs, and
the recall is 1 after the fourth record pair is compared. If, instead,
record pairs were to be compared in the reverse orderingO2 ofO1,
the recall would be 0 even after comparing the first 11 record pairs,
making this ordering bad for online ER.

1 http://en.wikipedia.org/wiki/Memorials_to_
John_F._Kennedy
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An elegant abstraction for formally comparing offline ER strate-
gies was recently studied by Wang et al. [16] and Vesdapunt et
al. [14]. They propose the notion of an oracle that correctly answers
questions of the form “Do records u and v refer to the same entity?”
in the context of crowdsourcing strategies, where such questions
are answered by the crowd. ER strategies are then compared in
terms of the total number of questions asked to an oracle to achieve
a recall of 1, that is, completely resolving all the records into clus-
ters, each referring to a distinct real-world entity. The strategies
proposed by [16, 14] show how to make effective use of their ora-
cle, and its consequence that ER satisfies the transitive relations (in
which known match and non-match labels on some record pairs can
be used to automatically infer match or non-match labels on other
record pairs) to reduce the total number of questions that need to be
asked of the oracle. In particular, Wang et al. [16] propose a strat-
egy that asks oracle questions in non-increasing match probabil-
ity ordering, while the strategy of Vesdapunt et al. [14] ask oracle
questions based on ordering records in a non-increasing ordering
of expected sizes of the records’ clusters. However, minimizing the
total number of oracle questions is not a suitable optimization ob-
jective for online ER, and the strategies of [16, 14] do not always
perform well in the online setting.

Let us revisit our illustrative example. If we make use of the
transitive relations for ordering O1, the oracle would be asked only
6 record pairs (i.e., (ra, rb), (ra, rc), (rd, re), (ra, rd), (ra, rf ),
(rd, rf )), and the labels of the other 9 record pairs can be inferred.

Note that the offline ER optimization objective of minimizing
the total number of record pair queries to the oracle would also
be achieved by considering the record pair queries to the oracle in
the following ordering O3: (ra, rd), (ra, rf ), (rd, rf ), (rd, re),
(ra, rb), (ra, rc), (rb, rc), (ra, re), (rb, rd), (rb, re), (rb, rf ),
(rc, rd), (rc, re), (rc, rf ), (re, rf ). Exactly the same 6 record pair
queries would be issued to the oracle as in the ordering O1. How-
ever, the recall would be 0 after labeling the first three record pairs,
0.25 after labeling the fourth record pair, 0.5 after labeling the fifth
record pair, and 1.0 after labeling the sixth record pair, making O3

less suitable thanO1 for online ER. Let us assume that we have the
following probability estimates for record pairs2. Matching pairs:
p(rd, re) = 0.80, p(rb, rc) = 0.60, p(ra, rc) = 0.54, p(ra, rb) =
0.46. Non-matching pairs: p(ra, rd) = 0.84, p(rd, rf ) = 0.81,
p(rc, re) = 0.72, p(ra, re) = 0.65, p(rc, rd) = 0.59, p(re, rf ) =
0.59, p(ra, rf ) = 0.55, p(rb, rd) = 0.51, p(rb, re) = 0.46,
p(rc, rf ) = 0.45, p(rb, rf ) = 0.29. In this case, the technique
of Wang et al. [16] would consider pairs in the following (non-
increasing ordering of probability) ordering O4: (ra, rd), (rd, rf ),
(rd, re), (rc, re), (ra, re), (rb, rc), (rc, rd), (re, rf ), (ra, rf ),
(ra, rc), (rb, rd), (ra, rb), (rb, re), (rc, rf ), (rb, rf ). A total of
7 record pair queries would be issued to the oracle (i.e., (ra, rd),
(rd, rf ), (rd, re), (rc, re), (rb, rc), (ra, rf ), (ra, rc)), which is
more than in the ordering O1. Since higher probability node pairs
may be non-matching, this is only to be expected.

The strategies proposed by [16, 14] ask one oracle question at
a time. However, some applications may benefit a lot from ask-
ing multiple questions in parallel. For instance, in crowd-sourcing,
asking workers to execute one task at a time would not be viable
in practice. To this end, Wang et al. [16] provide a parallel version
of their strategy, such that (i) questions asked do not have transitive
dependence, and (ii) if the probability estimates are not too noisy,
performance is similar to sequential version. This parallel strategy
has similar limitations as the sequential one in the online setting.

2We let some non-matching pairs have higher probability than
matching pairs. Some observers, for instance, may consider ra and
re more likely to be the same entity, rather than ra and rb.

1.1 Contributions
In this paper, we formally study the problem of online ER for

an input graph, where nodes correspond to records, and edges have
match probabilities, using the oracle abstraction of [16, 14]. We
make the following contributions.

First, we propose the use of progressive recall as the metric to
be maximized by online ER strategies. If one plots a curve of re-
call (i.e., fraction of the total number of matching record pairs that
have answered as such by the oracle, or inferred) as a function of
the number of oracle queries, progressive recall is quantified as the
area under this curve. Intuitively, progressive recall is maximized
when (a) the oracle is asked about matching record pairs before
being asked about non-matching record pairs, and (b) the oracle
is asked about matching record pairs in larger clusters (i.e., enti-
ties with many records) in a connected manner, before being asked
about matching record pairs in smaller clusters. The decision ver-
sion of our problem is NP-complete, since it generalizes the tradi-
tional optimization objective of minimizing the number of oracle
queries at the completion [14].

In our illustrative example, it is easy to verify that ordering O1

indeed maximizes progressive recall (as shown in Figure 1), con-
firming our intuition that it is the best ordering for online ER.

Second, we propose a novel benefit metric, which is a robust
estimate of the expected marginal gain in recall when processing a
previously unprocessed record or record pair. We present greedy al-
gorithms that use this benefit metric, and build on the edge-ordering
strategy of Wang et al. [16] and the node-ordering strategy of Ves-
dapunt et al. [14]. We also develop an optimized hybrid strategy
that provides a significant performance improvement in practice.

Third, we propose the edge noise model based on real-world
data, and present approximation results for the quality of the so-
lutions obtained by our strategies for optimizing progressive re-
call, and those by the strategies of [16, 14] for the traditional opti-
mization objective and for progressive recall. The analysis of [14]
showed an O(n) worst-case approximation guarantee for the algo-
rithm proposed by Wang et al. [16], and an O(k) approximation
guarantee for their own method, where n represents the total num-
ber of records, and k represents the number of actual entities. How-
ever, these worst-case behaviors are not observed in practice. Our
analysis helps to explain this discrepancy by showing that, under
the reasonable edge noise model, the algorithms of [16, 14] have
much better approximation guarantees. These improved approxi-
mation guarantees are consistent with empirical results (see below),
which show that each of these techniques does well in some cases,
but does poorly in other cases.

Fourth, we do a thorough empirical comparison of our strate-
gies with the strategies of Wang et al. [16], Vesdapunt et al. [14],
and Papenbrock et al. [13] (which was shown to dominate the tech-
niques of Whang et al. [18]) on real and synthetic datasets. We also
implement parallel versions of our strategies, based on the same
principles described in [16]. Our evaluation demonstrates the supe-
riority of our hybrid strategy over the alternatives. In particular, our
hybrid strategy shows a high progressive recall on data sets with a
skewed distribution of entity cluster sizes (e.g., Cora bibliography
data, where the strategy of Wang et al. [16] performs poorly), and
on sparse data sets (e.g., ABT-BUY Products, where the technique
of Vesdapunt et al. [14] performs poorly). Our strategy also shows
much higher progressive recall over large real data with blocking
(DBLP data) compared to the strategy of Papenbrock et al. [13].

Our results provide the foundations for an online view of the ER
task, especially in a crowdsourcing setting, which we think is both
more realistic and more flexible than its traditional offline view.
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1.2 Related Work
ER has a long history (see, e.g., [6, 8] for surveys), from the sem-

inal paper by Fellegi and Sunter in 1969 [7], which proposed the
use of a learning-based approach to build a classifier, to rule-based
and distance-based approaches (see, e.g., [6]), to the recently pro-
posed crowdsourcing and hybrid human-machine approaches (see,
e.g., [15, 10]) for this challenging task. The closest related works
to ours are the ones by Whang et al. [18] and Papenbrock et al. [13]
(for online ER strategies) and by Wang et al. [16] and Vesdapunt et
al. [14] (for the oracle model, and use of transitivity-aware strate-
gies). We have discussed these earlier in this section. Here, we
present other closely related works, and refer the reader to prior
surveys for a detailed discussion of other strategies.
Progressive recall. Progressive recall has been used by Vesdapunt
et al. [14] for experimental evaluation, and by Altowim et al. [2]. In
these works, the different approaches are compared empirically by
showing recall as a function of oracle questions or overall process-
ing time, but no formal definition of progressive recall is provided.
In [2], the authors also introduce a benefit function, which does not
take into account transitivity. It is worth noting that the algorithms
described in [2] are based on a resolve function (which is imple-
mented as a binary Naive Bayes classifier, so there is no guarantee
of correct answers) rather than our oracle abstraction.
Hybrid crowdsourcing. Many frameworks have been developed
to leverage humans for performing ER tasks [15, 10]. Wang et
al. [15] describe a hybrid human-machine framework CrowdER,
that automatically detects pairs or clusters that have a high likeli-
hood of matching, which are then verified by humans. Gokhale et
al. [10] proposed a hybrid approach for the end-to-end workflow
of ER (including blocking and matching), making effective use of
random forests classifiers and active learning via human labeling.
Dynamic crowdsourcing. Dynamic aspects of the crowdsourcing
process, different than progressive recall, are tackled in [5, 17].
Demartini et al. [5] dynamically generate crowdsourcing questions
to assess the results of human workers. Whang et al. [17] propose
a budget-based method and explore how to make a good use of
limited resources to maximize accuracy.
Oracle errors. To deal with the possibility that the crowdsourced
oracle may give wrong answers, there are simple majority voting
mechanisms or more sophisticated techniques [4, 9, 11] to handle
such errors. We do not deal with oracle errors in this paper.

1.3 Outline
The rest of this paper is organized as follows. We formulate

our problem in Section 2, and the benefit metric in Section 3. Our
oracle-based strategies for online ER are described in Section 4.
The edge noise model and our approximation results are presented
in Section 5, and our empirical evaluation is reported in Section 6.

2. PROBLEM FORMULATION
Let V = {v1, . . . , vn} be a set of n records. Given u, v ∈ V , we

say that u matches v when they refer to the same real-world entity.
We say that a complete, edge-labeled graph C = (V,E = E+ ∪
E−), is a clustering of V if C+ = (V,E+) is transitively closed,
where (u, v) ∈ E+ represents that u matches with v, and (u, v) ∈
E− represents that u is non-matching with v. In other words, C+

partitions V into cliques representing distinct real-world entities.
We call each clique a cluster of V , and denote with c(u) the cluster
of u. Let k denote the number of clusters, and c1, . . . , ck denote
the clusters in non-increasing order of size:

• the number of edges in C+ is
∣∣E+

∣∣ =
∑k
i=1

(|ci|
2

)
;

• the size of a spanning forest of C is n− k.

Consider an unknown clustering C, along with an oracle access
to C. Edges in C can either be asked to the oracle, or inferred –
positively or negatively – leveraging transitive relations. As an ex-
ample, if u matches with v, and v matches with w, then we can
deduce that u matches with w without needing to ask the oracle.
Similarly, if u matches with v, and v is non-matching with w, then
we can deduce that u is non-matching with w as well. In the fol-
lowing lemma, we report a prior result of Wang et al. [16].

LEMMA 1. Let T = T+ ∪ T− be a set of edges along with the
oracle responses, where T+ are the edges with YES (i.e., matching)
response, and T− with NO (i.e., non-matching) response.
a. An edge (u, v) can be positively inferred from T+ iff there exists

a path from u to v which only consists of T+ edges.
b. An edge (u, v) can be negatively inferred from T iff there exists

a path from u to v which consists of T+ edges and one T− edge.
c. Any other edge cannot be inferred.

Let E+
T ⊆ E+ and E−T ⊆ E− be the sets of all the edges that

can be inferred from T , positively (including edges in T+) and
negatively (including edges in T−). Let CT = (V,ET ) be the
subgraph of C induced byET . We say that CT is a T -clustering of
V . Analogously, we call each clique a T -cluster of V , and denote
with cT (u) the T -cluster of u. Given an unknown clustering C,
an oracle strategy s incrementally grows a T -clustering, by asking
edges to an oracle. As soon as E+

T = E+, all the information
about matching pairs is available to the user. This requires at least∑k
i=1 (|ci| − 1) = n − k questions (i.e., the size of a spanning

forest of C+), by Lemma 1. However, it can take much longer,
when

∣∣E+
T ∪ E

−
T

∣∣ =
(
n
2

)
, for the user to become aware that no

further questions are needed. This requires asking at least for one
question (yielding a negative answer) across every pair of clusters
ci, cj , i 6= j. Let tr be the number of questions asked by s until
E+
T = E+, and tR be the total number of questions asked by s.

Then it holds: (i) tr ≥ n− k; (ii) tR ≥ n− k +
(
k
2

)
.

We refer to the above lower-bound values for tr and tR as t∗r
and t∗R, respectively. The values tr and tR account for all the ques-
tions, irrespective of the answer (which can be either positive or
negative). Let us now define t+r as the total number of positive
questions (that is, questions returning a positive answer) asked by s
for E+

T = E+, and let t+R be the total number of positive questions
asked by s. It follows that t+r = t+R, and that both are equal to the
size of a spanning forest of C+, i.e., n− k.
Recall. As more of the cluster structure on C is revealed, the recall
of s increases. We define two recall functions of s,

• recall(t) = |E+
T |/|E+|, where T is the set of the first t

oracle responses, i.e., t = |T |.

• recall+(t) =
∣∣∣E+

T+

∣∣∣/|E+|, where T+ is the set of the first
t positive oracle responses, i.e., t =

∣∣T+
∣∣.

For any value of t, it holds recall(t) ≤ recall+(t) ≤ M ,
where M is given by the following Lemma 2.

LEMMA 2. Let k′ be the biggest index in [1, k] such that∑k′

i=1(|ci| − 1) ≤ t, and let t′ be the size of a spanning for-
est of c1 ∪ c2 ∪ · · · ∪ ck′ , that is t′ =

∑k′

i=1(|ci| − 1). Then,

M =
∑k′

i=1 (|ci|2 )+(t−t′
2 )∑k

i=1 (|ci|2 )
.

PROOF. Due to transitive relations, recall+(t′) is maximized
by a strategy s′ which finds the top k′ clusters in non-increasing
order of size, yielding recall+(t′) =

∑k′
i=1 (|ci|2 )/|E+|. Similarly,
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recall+(t) is maximized by a strategy s that does like s′ after
the first t′ questions, and then asks a spanning forest of any sized

t−t′ subgraph of ck′+1. For s, recall+(t) =
∑k′

i=1 (|ci|2 )+(t−t′
2 )

|E+| .

Since
∣∣E+

∣∣ =
∑k
i=1

(|ci|
2

)
, the bound follows.

2.1 Progressive Recall
The recall of s denotes the fraction of positive edges found,

among those of the unknown clustering C. It is the simplest mea-
sure of the amount of the information that is available to the user
at a given point. However, it cannot distinguish the dynamic be-
haviour of different strategies. To this end, we define two progres-
sive recall functions, denoting the area under the recall-questions
curves recall(t) and recall+(t).

• precall(t) =
∑t
t′=1 recall(t′).

• precall+(t) =
∑t
t′=1 recall

+(t′).

Let us consider a strategy s∗ for which precall is maximized.
s∗ first grows the largest cluster c1 by asking adjacent edges be-
longing to a spanning tree of c1. That is, every asked edge shares
one of its endpoints with previously asked edges. After c1 is grown,
s∗ grows in sequence c2, . . . , ck in a similar fashion. Finally, s∗

asks edges in E− in any order, until all the labels are known. Af-
ter the smallest cluster ck is fully grown, |T | = t∗r , E+

T = E+,
recall(t) = 1 and E−T = ∅. The final phase requires

(
k
2

)
addi-

tional questions. Therefore s∗ minimizes both tr and tR.
Benefit metrics. Both progressive recall functions of a strategy
s can be expressed as fractions of the corresponding functions of
s∗. We refer to progressive recall of s∗ as precall∗ (for s∗,
precall=precall+). We refer to such ratio functions as nor-
malized progressive recall functions:

• nPrecall(t) = precall(t)
precall∗(t) , in particular we define

benefit=nPrecall(t∗r).

• nPrecall+(t) = precall+(t)
precall∗(t) , in particular we define

benefit+=nPrecall+(t∗r)

We choose to express benefit metrics with respect to t∗r rather
than t∗R. Normalized progressive recall functions get closer to 1 as t
gets bigger, and tR can vary up to

(
n
2

)
on very sparse instances. In-

stead, t∗r is bounded by n. We note that benefit = 1 if and only
if s = s∗, while a strategy different from s∗ can have benefit+

= 1 as long as the order of positive responses is the same as s∗.

2.2 Oracle problem
We are now ready to define formally our problem.

PROBLEM 1. Given a set of records V , an oracle access to C,
a subset V ′ ⊆ V , and a function p(u, v) returning the probabil-
ity that u and v are matching ∀u, v ∈ V ′, find the strategy that
maximizes benefit+.

We report for comparison the problem studied in [14, 16]. Prob-
lem 2 is NP-hard [14], as well as Problem 1.

PROBLEM 2. Given a set of records V , an oracle access to C,
and a function p(u, v) returning the probability that u and v are
matching ∀u, v ∈ V , find the strategy that minimizes tR.

LEMMA 3. Problem 1 is NP-hard.

PROOF. Problem 2 is NP-hard [14], and Problem 1 is at least as
hard as Problem 2. Indeed, a strategy solving Problem 1 also solves
Problem 2, but not vice versa.
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Figure 2: Examples of edge and node benefit values for our John
F. Kennedy example. Colors and dashes have the same meaning
as in Figure 1. The benefit of edge (ra, rb) in Figure 2a shows
that we expect to find out 2 ∗ 1 ∗ 0.46 = 0.92 positive edges, by
asking (ra, rb) to the oracle. If (ra, rb) turns out to be positive (the
probability estimate of such event is p(ra, rb) = 0.46), indeed, our
current result earns two new positive edges, namely (ra, rb) itself,
and (rb, rc), which can be inferred using Lemma 1. In Figure 2b
we show the benefit of node rb, by setting P to the only nodes for
which we have information stored in T , {ra, rc, rd}. To this end,
we first compute the aggregated benefits of rb with respect to the
two T -clusters in P , namely {ra, rc} and {rd}. Specifically, the
former shows that we expect to find out 0.46+0.60 = 1.06 positive
edges, by discovering that rb belongs to {ra, rc} (i.e., by asking
(ra, rb) or (rb, rc) to the oracle), and the latter that we expect to
find out 0.51 positive edges, by discovering that rb belongs to {rd}
instead. The benefit of the node rb is finally set to the maximum
aggregated benefit, i.e., 1.06.

In this paper, we consider previous and new strategies, and: (i)
formally analyze their benefit+, which is affected only by the
order in which positive questions are asked; (ii) experimentally
evaluate benefit+ and benefit.

3. BENEFIT OF QUESTIONS
Let us discuss what information we have a priori, when T = ∅.

As input to the considered problems, we have a (partial) function
p : V × V → [0, 1] returning the probability that u and v are
matching. We can compute a function ps : V → R returning the
expected cluster size of a node v (excluding v itself).

ps(v) =
∑
u∈V \v

p(u, v) (1)

p can be used as the probability estimate that a non-inferable
edge belongs to E+, and ps as the estimated cluster size of a node
v for which most incident edges are non-inferable.

Given a non-inferable edge (u, v), we use its probability estimate
p(u, v), for computing the expected number of edges be that could
be positively inferred if u and v are matching (including (u, v) it-
self). This denotes the expected marginal gain in recall when pro-
cessing the single edge (u, v).

be(u, v) = |cT (u)| ∗ |cT (v)| ∗ p(u, v) (2)

We refer to the function be as the benefit of an edge.
Given a node v for which all its incident edges are non-inferable,

that is, cT (v) consists of the singleton {v}, we use the probability
estimate for computing the expected number of edges bv that could
be positively inferred (i.e., the marginal gain in recall) if any out of
a given bunch of edges incident to v, belongs to E+. Consider the
bunch of edges connecting v to a set of T -clusters P.

bv(v, P ) = maxc∈CT :c6={v},c⊆P bvc(v, c) (3)
bvc(v, c) = pv(v, c) ∗ |c| (4)

where pv is the probability estimate that v belongs to T -cluster c.
We refer to the function bv as the benefit of a node, and to the
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function bvc as the aggregated benefit of a node with respect to a
T -cluster. In the following, we sometimes refer to the aggregated
benefit of v with respect to cT (u), as the aggregated benefit of the
edge (v, u), and use both notations bvc(v, u) and bvc(v, c), where
c = cT (u), equivalently.

For computing pv we take the mean probability of edges con-
necting v to a given cluster c (which is distinct from cT (v)) as an
estimate, because that is a robust estimate (and also follows as an
upper bound from the Markov inequality).

pv(v, uc) =

∑
u∈c p(u, v)

|c| (5)

We note that while the benefit of an edge (v, u) only considers
the estimated probability of (v, u), the aggregated benefit takes into
account all the probabilities of other edges (v, w), such that w ∈
cT (u). Therefore all the edges (v, w), such that w ∈ cT (u) will
have the same aggregated benefit.

Recall the illustrative example from Section 1, and the probabil-
ity estimates of the matching and non-matching edges. Figure 2
shows the benefit of sample edges and nodes when T+ = (ra, rc)
and T− = (ra, rd).

4. ORACLE STRATEGIES
A strategy s for Problem 1 needs to store new responses from

the oracle, in such a way that edges that cannot be inferred as in
Lemma 1 can be computed efficiently, and asked to the oracle af-
terwards. To this end we introduce the query(u, v) method, that
returns the response for (u, v) from the oracle, and updates the data
structures used by a strategy accordingly. We also introduce few
auxiliaries methods, that will be used by the considered strategies:

• top-e(w) returns the top-w non-inferable edges, in non-
increasing order of p.

• top-v(w) returns the top-w nodes with no incident infer-
able edges, in non-increasing order of ps.

• edges({v}, P ) returns an iterator over the non-inferable
edges connecting a singleton cluster {v} to T -clusters in
P ⊆ CT , in non-increasing order of p.

• edges’({v}, P ) returns an iterator over the non-inferable
edges connecting a singleton cluster {v} to T -clusters in
P ⊆ CT , in non-increasing order of bvc.

In the following, we sometimes refer to the w parameter as the
window size – or simply window – of a strategy.
Complexity of update and auxiliary methods. We refer to the
total number of operations that a strategy performs for resolv-
ing V as its work. Assuming that edges that are inferable are
never asked to the oracle, the minimum work for resolving V is
t∗R = (n − k) +

(
k
2

)
. For efficiently computing edges that can-

not be inferred as in Lemma 1, we use a graph data structure
GS, where nodes are T -clusters and edges are non-inferable edges.
Upon a positive response from the oracle we contract the corre-
sponding edge, and upon a negative response we delete the cor-
responding edge. During edge contraction, only one of the max-
imum probability edges between two clusters survives. This re-
quires O(n(n− k) + tR) work, as in the following lemma.

LEMMA 4. query method requires O(n(n− k) + tR) work.

PROOF. The fundamental operation of our algorithm is a form
of edge contraction. The result of contracting the edge (u, v) is
new supernode uv. For each node w /∈ {u, v}, in GS, edges (w, u)

Algorithm 1 swang, described by Wang et al.

1: while V not resolved do
2: (u, v)← top-e(1)
3: T ← T∪ query(u, v)
4: end while

Algorithm 2 svesd, described by Vesdapunt et al.

1: P ← top-v(1)
2: while P 6= V do
3: v ← top-v(1)
4: l← edges({v}, P )
5: while l.next() do
6: (u, v)← l.getNext()
7: T ← T∪ query(u, v)
8: if (u, v) ∈ E then break end if
9: end while

10: P ← P ∪ {v}
11: end while

and (w, v) are replaced by an edge (w, uv) having probability set to
max{p(w, u), p(w, v)}. Finally, the contracted nodes u and v with
all their incident edges are removed. If the edge (w, uv) needs to
be asked, we ask to the oracle if w and the lowest-id node in the su-
pernode, e.g., u, are matching3. When GS is represented using ad-
jacency lists or an adjacency matrix, a single edge contraction op-
eration can be implemented with a linear number of updates. Since
the total number of edge contractions and deletions is bounded by
n− k and tR respectively, the claim follows.

Using our contract/delete algorithm, top-e, edges and
edges’ can be done in O(1) time. For implementing top-e, we
assume that edges are sorted during a preprocessing phase in non-
increasing order of p and are available in a list LE. query method
can maintain LE updated at no additional work. edges is simply
an iterator over the adjacency list of u’s supernode. For implement-
ing edges’ we need in addition an independent execution of the
contraction/delete algorithm, where probability scores of replace-
ment edges upon contraction are set to mean probability of replaced
edges (bvc is computed as in Eq. 4). Analogously to top-e, for
implementing top-v, we assume that nodes are sorted during a
preprocessing phase in non-increasing order of ps and are available
in a list LV. Upon a new response from the oracle, let (u, v) be the
relative edge, LV can be maintained updated by removing nodes u
and v at no additional work than query.

4.1 Prior Strategies
In this section, we describe strategies by Wang et al. [16] and by

Vesdapunt et al. [14] in our framework. Such strategies have been
designed as a solution to Problem 2 and we use them as a frame of
comparison for our strategies.
Wang et al. The strategy shown in Algorithm 1 selects the first
non-inferable edge in non-increasing order of probability estimate
p, and asks it to the oracle. It continues as long as there are non-
inferable edges. swang does constant additional work than query.
In our John F. Kennedy example (see Section 1 for pairwise proba-
bility estimates), the first question made by swang is (ra, rd), which
is the edge with the highest value of p, yielding a negative answer,
and then (rd, rf ), (rd, re), and so on. We notice that in real cases,
negative edges may be asked before positive edges as well.
Vesdapunt et al. The strategy shown in Algorithm 2 maintains a
set P of “processed” nodes, having the invariant that all the edges
3 Any of the endpoints of the contracted edge can be used. We use
the lowest-id node for sake of simplicity.

388



ra

rb

rc

rd

re

rf
P

(a)

ra

rb

rc

rd

re

rf
P

(b)

Figure 3: Example of svesd’s invariant-maintaining procedure, on
the clustering of Figure 1. Colors and dashes have the same mean-
ing as in Figure 1. In the leftmost figure we show the set P after
processing 2 nodes. In the rightmost figure we show what happens
when node rc is added to P : let (ra, rc) be the edge selected at line
6 of Algorithm 2. When a positive response is received, the edges
connecting rc to P can be inferred and rc is added to P .

Algorithm 3 sedge(w).

1: while V not resolved do
2: W ← top-e(w)
3: (u, v)← argmaxW be(u, v)
4: T ← T∪ query(u, v)
5: end while

connecting nodes in P have been either asked or inferred. The
strategy selects the first node with no inferable incident edges in
non-increasing order of estimated cluster size ps, and adds it to P
until P = V . Every time a node v is selected, before adding it
to P , edges connecting v and P are asked to the oracle in non-
increasing order of p, until P ∪ {v} satisfies the invariant. This
can be achieved in two ways: (i) a positive response is received;
(ii) all the edges connecting v andP have been asked (with negative
responses). If (i) is the case, all the edges connecting v and P that
have not been asked can be inferred either positively or negatively
(becauseP satisfies the invariant) as in Figure 3. svesd does constant
additional work than query. In our John F. Kennedy example, P
is set initially to {rd}, which is the node with the highest value of ps
(although it belongs to the second largest cluster)4. Next selected
node is re, and the first question made by svesd is (re, rd), yielding a
positive answer. P is updated to {rd, re}. Next selected node is ra,
and the second question made by svesd is (ra, rd), which is the edge
with highest probability among those connecting ra to P , yielding
a negative answer. (ra, re) is not asked, as it can be negatively
inferred. P is updated to {rd, re, ra} and so on. We notice that in
real cases, expected cluster sizes may lead to a different ordering
than actual cluster sizes, as in our illustrative example.
Other examples. swang and svesd executions over real dataset and
actual probability estimates are shown in Section 6.3.

4.2 Strategies for Progressive Recall
The goal of the strategies described in Section 4.1 is minimizing

the total number of questions tR asked to the oracle. Hence benefit
is not taken into account explicitly. Our strategies instead, as more
cluster structure is revealed by the oracle, select what edge to ask
the oracle as to maximize the expected marginal gain in recall.
Edge ordering. The strategy shown in Algorithm 3 selects the
highest benefit edge (as in Equation 2) among the top-w non-
inferable edges in non-increasing order of p. Then it asks the
edge to the oracle and repeat this process until E+

T = E+ and
E−T = E−. Initially, when T = ∅, all the edges have benefit equal
to their probability estimate, then the first asked edge is the same as

4 Values of ps are ps(rd) = 3.55, ps(re) = 3.22, ps(ra) = 3.04,
ps(rc) = 2.90, ps(rf ) = 2.69, ps(rb) = 2.32

Algorithm 4 shybrid(w, τ, θ).

1: P ← top-v(1)
2: while P 6= V do
3: W ← top-v(w)
4: v ← argmaxW bv(v, P )
5: l← edges’({v}, P )
6: for i = 1, b = 1; l.next() ∧ i ≤ τ ∧ b > θ; i++ do
7: u← l.getNext()
8: b← bvc(v, u)
9: T ← T∪ query(u, v)

10: if (u, v) ∈ E then break end if
11: end for
12: P ← P ∪ {v}
13: end while
14: sedge(w)

in swang. As more edges of C are revealed by the oracle, however,
high probability edges may have low benefit and vice versa.

For instance, let (u, v) be the highest-probability non-inferable
edge at a certain point of the execution, and let u and v be singleton
T -clusters. The marginal gain in recall that we would get by asking
(u, v) to the oracle is ≤ 1

|E+| .
If top-e(w) contains a higher benefit edge (w, z), sedge will

ask (w, z) to the oracle rather then (u, v), even though p(w, z) <
p(u, v). The higher the value ofw the higher the chance that lower-
probability higher-benefit edges are preferred to (u, v). If w = 1
then sedge = swang.
sedge does O(w (n− k)) additional work than query. Comput-

ing the benefit of edges in the window can indeed be done during
edge contraction and deletion in O(w) and O(1) additional time
respectively. If w = qn for a given constant q, sedge does asymp-
totically the same work as previous strategies.

In our John F. Kennedy example, the first question made by
sedge(2), is the same as swang, that is (ra, rd). As long as all the T -
clusters have size 1, sedge and swang make the same choices, since
the benefit of edges is equal to their probability estimate. After
(rd, re) is asked, yielding a positive response, the highest bene-
fit edge in the window {(rc, re), (rb, rc)} ((ra, re) can be nega-
tively inferred) is still equal to the highest probability edge, that is
(rc, re). After (rb, rc) is asked, the two strategies start making dif-
ferent choices. swang selects (ra, rf ), and sedge(2) selects (ra, rc)
(be(ra, rf ) = 0.55 and be(ra, rc) = 2∗1∗0.54 = 1.08) complet-
ing cluster c1.
Hybrid ordering. The strategy shown in Algorithm 4 maintains
a set P of “processed” nodes as in Algorithm 2, but no invariant
is guaranteed. That is, some edges incident to nodes in P may
be non-inferable at some point. The strategy selects the highest
benefit node (as in Equation 3), among the top w nodes in V \ P
in non-increasing order of ps, and adds it to P until P = V . Every
time a node v is selected, before adding it to P , edges connecting v
and P are asked to the oracle in non-increasing order of bvc, until
one of the following condition is satisfied: (i) a positive response
is received; (ii) all the edges connecting v and P have been asked
(with negative responses); (iii) the benefit does not exceed a given
threshold θ; (iv) the number of questions related to node v exceeds
a given amount of trials τ . The first two conditions are the same as
svesd. When P = V , non-inferable edges can still remain, which
are eventually processed using sedge(w) strategy.

If w = 1 then two extremes behaviors are possible:

• if τ = n and θ = 0 then no questions are deferred to sedge,
and shybrid = svesd, except for the order in which edges in the
inner loop are processed.
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• if τ = 0 or θ = n then all the questions are deferred to sedge,
and shybrid = swang.

We set default values for θ and τ , to 0.3 and logn respectively.
Computing the benefit of w nodes takes O(nw) time, and line

4 is executed n times, requiring O(n2w) additional work than
query. If w is equal to a given constant q, shybrid does asymp-
totically the same work as previous strategies and sedge.

In our John F. Kennedy example, P is set initially to {rd} as in
svesd. Let us consider shybrid(n,n,−1), i.e., window size n, and no
constraints for trials and benefit. Differently from svesd, the next
selected node is ra, whose benefit bv(ra, P ) is 0.84, and the first
question is (ra, rd). P is updated to {rd, ra}. Next selected node is
rf , whose benefit bv(rf , P ) is 0.81, and the second question made
is (rf , rd). P is updated to {rd, ra, rf} and so on.5.
Other examples. sedge and shybrid executions over real dataset and
actual probability estimates are shown in Section 6.3.

5. ANALYSIS OF STRATEGIES
In this section, we formally analyze the strategies discussed in

the previous section under a reasonable noise model. Our noise
model closely resembles the observed noise in estimating proba-
bility values in cora [12] dataset. cora is a widely used bibli-
ography data set, and has been used in many prior works on ER
(see, e.g., [14]). Define an indicator random variable Xu,v for
every pair of nodes u, v such that Xu,v = 1 if u and v represent
the same entity, and Xu,v = 0 if u and v are different entities. Let
p(u, v) denote the matching probability score between two nodes
u and v. If the matching function p is perfect, then one must have
p(u, v) = 1 if u and v are the same entity, that is Xu,v = 1, and
p(u, v) = 0 if u and v are different entities, that is Xu,v = 0.
That is Pr [Xu,v] = p(u, v). However, in the real world, matching
probability functions are not perfect, and are corrupted by noise.
To model noise in computing probability values, we define a noise
parameter ηu,v ∈ [0, 1] for every pair of nodes u, v drawn from
a probability distribution Du,v . Then, p(u, v) = ηu,v if u and v
represent different entities, that is Xu,v = 0. p(u, v) = 1− ηu,v if
u and v represent the same entity, that is Xu,v = 1. Once again we
consider Pr [Xu,v] = p(u, v). Our analysis in this paper for vari-
ous algorithms is based on this edge noise model. Handling other
noise models is part of our ongoing work.

Figure 4 represents the distribution of estimated probabilities of
matching and non-matching edges in cora data set. We see for
matching edges (green), more than 70% of edges are in the range
5 In this setting, as long as all the T -clusters have size 1, questions
will be asked in non-increasing order of p as in swang. The benefit
of nodes is indeed equal to the maximum probability edges incident
to P . For instance when P = {rd, ra, rf}, the maximum benefit
node is re (bv(re, P ) = 0.80) and the maximum probability edge
incident to P is (rd, re), which has probability estimate 0.80.

of [0.7, 1], and for non-matching edges almost 95% of edges have
scores between [0, 0.1]. For the rest of the matching edges below
0.7, they follow a near uniform distribution. Similarly, for non-
matching edges with score above 0.1, they follow a near uniform
distribution. In the analysis, we therefore assume the following dis-
tributions. For matching edges, with probability

(
1− α

n

)
, α > 0,

the score is above 0.7, and the remaining probability mass is dis-
tributed uniformly in [0, 0.7). For non-matching edges, with prob-
ability

(
1− β

n

)
, β > 0, the score is below 0.1 and the remaining

probability mass is distributed uniformly in (0.1, 1]. Unif [x, y]
denotes the uniform distribution in the range (x, y].

5.1 Minimizing Total Number of Questions
In the following, we provide approximation results for previous

strategies swang and svesd, when solving Problem 2. As discussed in
Section 2, the minimum number of questions that need to be asked
to the oracle, in order to identify the k clusters, is t∗R = n−k+

(
k
2

)
.

Analysis of Wang et al.’s algorithm.

THEOREM 1. swang gives an O(log2 n)-approximation algo-
rithm under the edge noise model with α ≤ n

2
, β = O(logn).

PROOF. Let us consider the querying process of swang, and let
us fix a cluster ci whose size is at least 4 logn. At the end of the
process, swang will ask |ci| − 1 edges from ci that form a spanning
tree. Let us use STi to denote that spanning tree. Let Ri denote
the “negative” edges, i.e., belonging to E−, incident on nodes in
ci that are queried before all the edges in STi are queried. Let
Ri = {(u1, x1), (u2, x2), ..., (ua, xa)} for some natural number
a ≥ 0, uj ∈ ci, j = 1, 2, .., a and xj 6∈ ci, j = 1, 2, ..., a.

Consider the time when the last edge in STi is selected for query-
ing. Just before that, there must be exactly 2 components of ci
when restricted to already known edges in ci. Denote these two
components by c1i and c2i . The number of edges across c1i and
c2i in the ground truth C is |c1i ||c2i | ≥ |ci| − 1. For any edge
(s, t), s ∈ c1i , t ∈ c2i , it must hold that p(s, t) ≤ minj p(uj , xj).
It must also hold that there are exactly a non-matching edges with
score higher than max(s,t)∈c1i×c

2
i
p(s, t).

There are overall (n − |ci|)|ci| non-matching edges incident on
some node in ci. Among them, the expected number of edges that
have values higher than 0.1 is β

n
(n− |ci|)|ci| ≤ β|ci| ≤ logn|ci|.

Therefore, if the maximum value of matching edges across c1i and
c2i is above 0.1, then the expected size of Ri will be less than
logn|ci|.

On the other hand, the probability that the maximum of all the
matching edges across c1i and c2i have value less than 0.1 is at most(
α
n

)logn ≤ 1
n

.
Therefore, we have

E [|Ri|] ≤ logn|ci|+
1

n
n|ci| = (logn+ 1)|ci|

Suppose the number of clusters of size at most 4 logn − 1 is r.
The total number of negative edges with both end points in such
small clusters is at most 16 log2 n. Then, if tR denotes the total
number of questions asked to the oracle by swang strategy, we have

E [tR] ≤
∑

i:|ci|≥4 logn

E [|Ri|] + 16

(
r

2

)
log2 n+

+

k∑
i=1

(|ci| − 1) +

(
k

2

)
≤ O(log2 n)t∗R
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This is in contrast to the result by Vesdapunt et al. [14], who
showed in the worst case, Wang et al. may ask O(nt∗R) questions.
They consider a very high noise level, where between two clusters
of size n

2
, 1

2
∗ n

2

4
− 1 record pairs can be misclassified as match-

ing. Under our noise model, this happens with vanishingly low
probability. For example, consider pairs of clusters in the cora
data set with the largest number of inter-cluster edges (u, v) with
p(u, v) > 0.5: for a pair of clusters with sizes 55 and 149 re-
spectively, swang yields 81 negative questions more than s∗ (which
needs 1 negative question) on average over 10 runs, which is far
from the worst case ( 55∗149

2
− 1 = 4096.5) described in [14]. This

is the worst situation we found across cluster pairs in cora. For an-
other pair of clusters with sizes 55 and 117 respectively, swang asks
1 negative question, just like s∗. Consistently, we see this later be-
havior in most cluster pairs in cora. Our analysis explains why in
practice swang is much more effective than the predicted worst case
analysis of Vesdapunt et al.
Analysis of Vesdapunt et al.’s algorithm. Vesdapunt et al. [14]
provided a different algorithm: svesd estimates the cluster size
which contains a node v, and orders the nodes according to that
order. At any time, the number of clusters maintained is at most k.
When a node v is chosen, at most k questions are required to find
out the cluster which contains v. Therefore, this gives an O(k)-
approximation on the overall number of questions tR.

THEOREM 2. svesd gives an O(log2 n)-approximation algo-
rithm under the edge noise model with α ≤ n

2
, β = O(logn).

PROOF. Let Cv denote the true cluster size containing v, and
Ĉv =

∑
u∈V p(u, v) its estimated cluster size. Let c(v) denote the

cluster that contains v.

E
[
Ĉv
]

=
∑
u∈V

E [p(u, v)] ≈ 0.7|c(v)|+ 0.1n

This shows that Ĉv is a highly biased estimate of Cv and unless Cv
is substantially large ω(

√
n), the ordering by Ĉv could be arbitrary.

Therefore, even under the edge noise model, svesd may pick first k
nodes that belong to k different clusters. As a result

(
k
2

)
“negative”

questions, i.e., questions resulting in a negative answer, are issued.
Onward the nodes chosen must belong to one of the selected k clus-
ters. Suppose the algorithm chooses a node v that belongs to cluster
ci. Let Rv denote the “negative” edges, i.e., belonging to E−, in-
cident on node v and clusters c1, c2, .., ci−1, ci+1, ..., ck that have
probability value higher than the highest probability value edge, in
the ground truth C, connecting v to ci. Let the highest probability
value edge connecting v to ci have value 1− η. Now following the
same analysis as in Theorem 1, we get the desired approximation
bound for svesd

For our application k is often Ω(n), so this gives an exponential
improvement over the worst case guarantees of svesd analysis.

5.2 Maximizing Progressive Recall
Recall from Section 2 that (i) |c1| ≥ |c2| ≥ |c3| ≥ .... ≥ |ck|;

(ii) for maximizing progressive recall the best strategy is s∗, and
(iii) the minimum number of questions that need to be asked to the
oracle for E+

T = E+ is t∗r = n− k.
Let EOPTt be the maximum number of edges that can be pos-

itively inferred after t ≤ t∗r questions. Let Et denote the num-
ber of edges that can be positively inferred after t questions. If
t =

∑j
i=1 (|ci| − 1) + l where l < |cj+1| − 1, then

EOPTt =

j∑
i=1

(
|ci|
2

)
+

(
l

2

)

It is tempting to use the following notion of approximation for

progressive recall: mint
EOPT

t
Et

However, such a measure is overly
pessimistic. For example, if the first edge asked to the oracle
by a strategy yields a negative answer, then E1 = 0, whereas
EOPT1 = 1, and the approximation factor is unbounded. Simi-

larly, considering
EOPT

t∗r
Et∗r

is also a bad measure. Assume there are
n
2

clusters each of size 2, then even with independent edge noise
model, we can have n

2
non-matching record pairs with probability

value higher than the probability values of the n
2

matching ones.
Hence, the approximation factor will be∞.

Since s∗ asks all the “positive” questions first (i.e., resulting in
a positive answer), we therefore only look at the ordering of pos-
itive questions under various strategies. That is, we only consider
t questions that result in positive answers. Let FOPTt denote the
maximum number of edges that can be positively inferred after t
questions all of which result in positive answers, and let F t denote
the number of edges that can be positively inferred by an algorithm
again when all of the t questions return positive answers. Then:

benefit+ ≥ min
t

FOPTt

F t

is the approximation factor of the proposed algorithm.

PROPOSITION 1. swang has an approximation factor of Ω(n)
under progressive recall.

PROOF. swang algorithm can have an approximation ratio as bad
as O(n). Suppose C contains one big cluster of size n

3
and n

3
clusters each of size 2. Consider t = n

3
, swang can pick n

3
edges

from each of 2-sized clusters, whereas the optimum algorithm s∗

picks n
3
− 1 edges from the one big cluster and one edge from

one of the small clusters. Therefore, we have F t = n
3

, whereas
FOPTt =

(n
3
2

)
.

PROPOSITION 2. svesd has an approximation factor of Ω(
√
n)

under progressive recall.

PROOF. Consider
√
n clusters each of size

√
n. svesd can pick

first
√
n nodes each from a different cluster. After that the next√

n − 1 positive questions can correspond to a single edge from
each of

√
n− 1 different clusters. Therefore while F t =

√
n− 1,

we have FOPTt =
(√

n
2

)
= O(n).

We now focus our attention on our edge ordering methodology,
sedge. The choice of w restricts the number of edges that the al-
gorithm considers for computing benefit. For analysis purpose, we
use an unrestricted window size w.

PROPOSITION 3. Suppose ei1 , ei2 , ..., eik are the first edges
picked from clusters ci1 , ci2 , ..., cik respectively in the order they
are chosen by sedge. If ij = j and edge noise is chosen from
Unif(0, 1

2
) then sedge achieves optimum progressive recall.

PROOF. ij = j ensures that the first edge in the ground truth C
picked is from the largest size cluster c1. Suppose e1 = (u, v) then
if |c1| = 2, c1 is fully complete, and the algorithm behaves same
as s∗. Otherwise, |c1| > 2. Let w ∈ c1 \{u, v}, then the benefit of
the edge (u,w) is 2(1− ηu,w) and the benefit of the edge (v, w) is
2(1− ηv,w). Let without loss of generality, benefit of edge (u,w)
be higher than (v, w), now consider any other edge that does not
contain either u or v, benefit of that edge, denoted (a, b) is 1−ηa,b.
Now if 2(1 − ηu,w) ≤ 1 − ηa,b then 1 ≤ 2ηu,w − ηa,b ≤ 2ηu,w,
or ηu,w ≥ 1

2
which is not possible. Therefore, our sedge strategy

always picks an edge that grows the cluster c1 in a connected way,
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exactly like s∗. Following the argument, the algorithm completes
the cluster c1, then c2, then c3 and so on giving optimum value for
progressive recall.

Note that under the Unif(0, 1
2
) noise model, swang asks the min-

imum number of overall queries, but in terms of progressive recall,
its performance could be as bad as O(n) from the best case.

The above proof relies on choosing the first edge from each clus-
ter according to the non-increasing order of cluster size. However,
it is possible with skewed cluster distribution that this ordering is
violated. In the worst case, sedge may choose to complete the min-
imum size cluster first and so on, but every time it grows a cluster
to completion, instead of giving a fragmented view. Our hybrid or-
dering methodology, shybrid, is designed to avoid such a scenario
by providing a mechanism to select edges from clusters in non-
increasing order of cluster size. We now analyze the shybrid strategy
where we ignore the conditions (iii) and (iv) for querying. The con-
ditions (iii) and (iv) are used for the sake of optimization since if
the benefit of a node falls below a certain threshold or more than t
questions have already resulted in negative answers then it is likely
that this node starts a new cluster.

PROPOSITION 4. Suppose E [|ci|] > E [|cj |], j > i, i, j ∈
[1, k] then shybrid achieves optimum progressive recall.

This is easy to see since under this assumption, the algorithm al-
ways picks all the nodes from the first cluster, then the nodes from
the second cluster and so on. Therefore, we now consider the worst
case scenario, where the expected sizes may not reflect the true size
and the first k nodes picked may correspond to k different clusters.

PROPOSITION 5. Suppose vi1 , vi2 , ..., vik are the “second”
nodes picked from clusters ci1 , ci2 , ..., cik respectively in the or-
der they are chosen by shybrid. If ij = j and edge noise is chosen
from Unif(0, 1

2
) then shybrid achieves optimum progressive recall.

The proof of the proposition is similar to Proposition 3. Essen-
tially, once we have two representatives from the largest cluster, no
matter what the edge noise is, the benefit of a third node in the same
cluster is higher than any other node in a different cluster and so on.
Thus the algorithm first completes the first cluster, then the second
cluster and so on optimizing the progressive recall.

In the worst case, shybrid provides an O(
√
n)-approximation

to progressive recall. Intuitively, only the expected sizes of the
clusters bigger than Θ(

√
n) are preserved due to the Chernoff-

Hoeffding bound. Thus the algorithm performs close to optimal
as long as clusters of size greater than Θ(

√
n) are considered. Af-

ter that, if there are r clusters of size O(
√
n), then shybrid can grow

these clusters from the smallest size to largest in the worst scenario.
If Smax and Smin are respectively the maximum and minimum
size clusters among the r clusters that is Smin ≤ Smax ≤

√
n,

then the worst case approximation factor is Smax
Smin

<
√
n. For lack

of space, the detailed proof can be found in the full version.

6. EXPERIMENTS
In this section we discuss the results of our experiments. We

compare all the algorithms on both synthetic and real, publicly
available, datasets. We implemented our and prior strategies [16,
14, 13] in Java, in a common framework. Edges and nodes are
sorted during a preprocessing phase, and ties are broken randomly.
For each strategy, we take the average recall from the same 5 inde-
pendent runs of the random tie break process. We ran experiments
on a machine with two CPU Intel Xeon E5520 units with 16 cores
each, running at 2.67GHz, with 16MB of cache and 64GB RAM.

dataset cora skew sqrtn prod dblp

n 1,878 900 900 2,173 3,057,838
k 191 93 30 1,092 2,980,737
k′ 124 93 30 1,076 54,542
|c1| 236 50 30 3 159
|E| 62,891 8,175 13,050 1,086 299,683
t∗r 1,687 807 870 1,081 77,101
ER D D D CC D

origin RR SS SS RR RS

Table 1: Number of nodes n (i.e., records), number of clusters
k (i.e., entities), number of non-singleton clusters k′,size of the
largest cluster |c1|, size of the spanning forest t∗r , type of ER (dirty
or clean–clean), and origin (real or synthetic) of the data.

dataset cora skew sqrtn prod dblp

#blocks 1 1 1 1 341,280
sim. Jaro [19] Ideal Ideal Jaccard Jaro [19]
R 1.8M 0.4M 0.4M 2.4M 1.8B
n′ 1,878 900 900 2,173 53, 279

Table 2: Number of blocks, similarity functions, record pairs R,
and n′ values. Similarity in cora and prod is computed as in [17,
15]. We emphasize that the similarity function used for dblp has
no connection with the one used for the silver standard. The “ideal”
function returns 1 if two records are matching and 0 otherwise.

6.1 Datasets
Some of our datasets have real attribute values and come with

their own real gold standard. We refer to such datasets as Real-
Real (RR). Other datasets have synthetic attribute values and a syn-
thetic gold standard (Synthetic-Synthetic, short. SS). The remain-
ing dataset has real attribute values and a synthetic gold standard,
that we refer to as “silver” standard (Real-Synthetic, short. RS).
We compute the silver standard as in [13] (see Section 8.1 of [13]).
The main properties of the datasets are listed in Table 1:

• cora [12] is a bibliography dataset. Each record contains
title, author, venue, date, and pages attributes.

• prod [1] is a product dataset of mappings from 1,081
abt.com products to 1,092 buy.com products. Each record
contains name and price attributes.

• skew and sqrtn contain fictitious hospital patients data, in-
cluding name, phone number, birth date and address, that we
produced using the data set generator of the Febrl system [3].

• dblp6 is a bibliographic index on computer science articles.

6.1.1 Clusters
The clustering graphs of cora and prod datasets, Ccora and

Cprod, are the two extremes of a spectrum. On one side, Ccora is
extremely dense and few of the largest clusters account for most
recall, thus, there is much gain in exploiting transitivity (t∗r <<∣∣E+

∣∣). On the other side, prod is extremely sparse and there is
negligible gain in exploiting transitivity (t∗r ≈

∣∣E+
∣∣). (See Figure 5

for detailed visualizations.) In the middle of the spectrum:

• Cskew contains few (≈ logn) large (size ≈ n
logn

) clusters,
some (≈

√
n) intermediate (size ≈

√
n) clusters, and a long

tail (≈ n
logn

) of small (size ≈ logn) clusters.
6www.informatik.uni-trier.de/ ley/db/, 13 Aug. 2015.
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(a) cora (b) prod

Figure 5: Clustering graphs (i.e., C) for the RR datasets. Edge
colors represent similarity scores between records (green is higher).
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Figure 6: Similarity-probability mappings for the RR datasets.
Record pairs with similarity values below 0.7 for cora and 0.1
for prod, match with probability < 0.003. The black line shows
the identity function for comparison.

• Csqrtn contains exactly
√
n clusters of size

√
n.

• Cdblp has skewed size distribution and is very sparse at the
same time: only 5.4× 10−6% of record pairs are duplicates.

6.1.2 Probabilities
We compute edge similarities, and map them to probabilities us-

ing buckets, as in Section 3.1 of [17]. Our approach is scalable and
more general than [17]: it includes blocking, a general method for
selecting bucket size, and efficient probability estimation.
Blocks. Let R be the number of record pairs between which we
compute similarities. When n is large, computing all

(
n
2

)
pairwise

similarities is not feasible. We assign records to (possibly multi-
ple) blocks and compute similarities only between pairs in the same
block. We further limit the computation to the firstO(npolylogn)
pairs (which we consider feasible), by considering blocks in non-
decreasing order of size. All the remaining

(
n
2

)
− R pairs are not

submitted to the strategy, and are finally set as non-matching.

• We compute dblp blocks based on title and author tokens.
We observed that log2 n is the smallest O(polylogn) func-
tion which allows for including all the matching pairs which
share at least a block, thus we set R = n log2 n.

• We consider each of other datasets as consisting of a single
block (consistently with [17, 15]) and set R =

(
n
2

)
.

See Table 2 for details about blocking and similarity functions used.
Buckets. We evenly divide the R record pairs into buckets accord-
ing to their similarity and use ground truth to compute probabil-
ity for each bucket. We would like many buckets in order to get
enough probability values in the mapping, and at the same time,
we would like large buckets in order to get a robust probability es-
timate. A natural way to achieve this is byO(

√
R) buckets of equal

0.10

1.00

10.00

100.00

1000.00

 1  10  100

e
x
p
e
x
te

d
 s

iz
e

size

(a) cora

0.10

1.00

10.00

100.00

1000.00

 1  10  100

e
x
p
e
x
te

d
 s

iz
e

size

(b) prod

Figure 7: Expected size of clusters for the RR datasets. The black
line shows the identity function.

size O(
√
R). To this end, we create similarity buckets containing

n′

2
pairs7, where n′ is such that

(
n′

2

)
= bRc (see Table 2).

Mapping. We extract a random sample from each bucket, by uni-
formly picking a fraction π = 2 logn′

n′ record pairs, and ask the
oracle the corresponding questions for the top Z = n′

logn′ buckets
with highest similarity. The highest similarity values are mapped
to the corresponding fraction of positive responses, while the re-
maining buckets are mapped to 0. The responses collected in this
phase can be stored and re-used during the execution of the strategy.
Since the expected number of questions isO(n′), the impact on the
overall number of questions is small. In Figure 6, we compare the
similarity-probability mapping of our method and the exhaustive
method, which asks all the questions to the oracle (π = 1). The
plots show the trimmed average, the minimum, and the maximum
probability obtained in 10 runs of the experiment. In the figure,
we show only the buckets with similarity above a certain threshold,
such that probability is never < 0.01, which are anyway less than
Z. The results suggest that our method can provide good prob-
ability estimates in practical applications. Note that in [17] and
subsequent works the similarity-probability mapping is done using
the exhaustive method. This is simple and effective for comparing
algorithms, and we use it in the following experiments.
Expected size. We use probabilities for computing the expected
cluster size of each node (as in Eq. 1) and for sorting edges and
nodes during the preprocessing phase. Figure 7 plots the expected
size of cluster ps(v) of each node v against its actual size |c(v)|,
which we know from the ground truth. The results show that nodes
belonging to small clusters can have large values of ps(v) and vice
versa. In prod, there is no correlation between the two quantities.

6.2 Evaluation
We study the recall functions of sedge, shybrid, swang, and svesd,

as the number of questions t and the number of positive questions
t+ increase8; the graphs for t+ are omitted for reasons of space.
Progressive recall functions are quantified as the area under these
curves. In order to visually quantify normalized and benefit func-
tions described in Section 2, we plot the recall function of s∗ as
frame of comparison for the different datasets as a black “+” curve.

We also include in the evaluation the approaches described
in [13, 18]. Although they are designed for optimizing running
time, rather than number of questions, they also solve the same ba-
sic problem of maximizing intermediate recall. Since the approach
in [18] is outperformed by [13] (we refer the reader to [13] for de-
tailed discussion and comparison), we only show the recall function

7Some buckets can have size sightly larger when more than n′/2
pairs have the same similarity score.
8Results for swang and svesd on the RR datasets are comparable to
those shown in [14]. Small differences are due to small variations
in the similarity probability mapping process.
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Figure 8: Progressive recall of sedge. swang=sedge(1) (see Section 4).

of the latter9, which we refer to as spape. To this end, we provide
the algorithms in [13] with an oracle access to the gold standard
and count the number of distinct questions asked.

• We compare our strategies with w = {1, n} to swang, svesd
and spape, on RR and SS datasets. Larger windows do not
improve on w = n, except for cora, on which sedge(2n)
does slightly better than any other sedge setting.

• Since [16] describes a parallel version of swang, we compare
our strategies to swang in a parallel setting, on cora.

• Using dblp, we show the performance of our strategies on
a large, dirty dataset, and compare them to spape (which is
the only strategy tested in previous works on large datasets).
We do not use large values of w, because it would make the
computation too slow. However, we show that even small
values of w = log n have good performance.

Edge ordering. Figure 8 shows the progressive recall of sedge.
We first note that: swang performs poorly in cora, svesd performs
poorly in prod, and spape performs poorly in cora, skew and
prod. We then note that, with exception of prod, our sedge strat-
egy with largest window has better or comparable performance than
any other strategy. In cora, skew and sqrtn, sedge has high gain
with an increasing window, because higher benefit questions have
increasingly more chances to be asked first. In prod, where every
cluster has size at most 3, benefit has limited impact on the com-
putation and sedge(1) is the best setting. Poor performances of spape
can be due to its lack of mechanisms for growing largest clusters
first and for inferring negative edges. The latter has the most effect
on prod. See Figure 8d for comparison.
Hybrid ordering. Figure 9 shows the progressive recall of shybrid
with default settings. shybrid(w = 1) has similar behaviour as svesd,
because they process nodes in the same order (see Section 4 for
a detailed discussion). We first note that window size has moder-
ate effect for cora and skew, which are the two datasets showing
some skew in the size distribution of clusters. This is due to the fact
that in both datasets the node ordering produced by the expected
9 As suggested by the authors, we use their PSNM algorithm for the
small single-block datasets, and their PB algorithm for the larger
dblp dataset. Furthermore, we ran the experiments with different
settings and selected for each dataset those yielding the best results.
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Figure 9: Progressive recall of shybrid with default settings. In
skew and sqrtn, window size n yields optimal behaviour. In
cora, questions are asked based on node benefit up to t ≈ 2000,
and after that point based on edge benefit. In prod the same hap-
pens after t ≈ 750 questions. It is interesting to notice that for
θ = 0.5, in prod, all the questions are deferred to the edge benefit
phase, i.e., shybrid=sedge (we do not show the plots for lack of space).
In both SS dataset no node/edge benefit switch occurs instead.

sedge(1) sedge(n) sedge(2n) shybrid(1) shybrid(n)
0.0067 0.0022 0.0022 0.0052 0.0077

Table 3: Average loss in recall (ALR) of shybrid and sedge strategies
for different values of w, over all of the iterations. ALR is defined
as the average difference between the recall at the end of an itera-
tion, and the recall of the sequential strategy at the corresponding
value of t. Positive values indicate higher recall of the latter.

size of clusters, is a good estimate of the optimal node ordering.
Differently, in sqrtn and prod, which are the two datasets with
constant (or nearly constant) cluster sizes, the node ordering pro-
duced by the expected size of clusters is a random permutation of
V . We then note that our shybrid(1) strategy has better or compara-
ble performances than any other strategy. In non-extremely sparse
datasets, progressive recall can be further increased using w = n,
yielding optimal benefit for the SS datasets.
Parallel strategies. Asking questions sequentially may not be suit-
able in many applications. For instance, in crowd-sourcing, it pro-
hibits workers from doing tasks in parallel and leads to long com-
pletion times. We use the same approach as [16] for selecting at
most n

logn
non-redundant questions10 during the execution of our

strategies and, at each iteration, we ask the oracle to answer all the
questions in parallel. Figure 10 shows the progressive recall of the
parallel versions of our strategies, compared to the parallel version
of swang [16]. See Table 3 for a detailed comparison.
Large datasets. In Figure 11, we show the results of our experi-
ments for dblp. We show the progressive recall of sedge and shybrid,
with respect to all the matching record pairs that share at least a
block11. The results suggest that even when w is small with respect
to n, our strategies have much better performance than spape.

10That is, whose response cannot be inferred from other responses.
11 Even though evaluating the blocking strategy is out of the scope
of this paper, we mention that almost 15% of the record pairs that
are in the silver standard do not share any block, that is, do not have
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Figure 10: Progressive recall of parallel shybrid and sedge strategies
for different values of w and default values of other parameters, us-
ing cora dataset. Each data point corresponds to a single iteration.
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Figure 11: Progressive recall of shybrid and sedge strategies for w =
logn, θ = 0 and τ = log n, using dblp dataset.

6.3 Example Visualization
In this section we show the different T -clusterings grown by the

considered strategies, with their best settings, on cora. In Fig-
ure 12 we show the T -clusterings after |c1| − 1 = 235 questions.
Ideally, the largest cluster can be grown fully. In practice, swang has
grown the tighter connected “subclusters” (corresponding to high-
est probabilities edges), svesd has grown part of the largest clusters
(corresponding to highest expected-size nodes, which are not those
with the highest actual sizes), and sedge has fully grown c2. shybrid
is the only strategy which has fully grown the largest cluster.

7. CONCLUSION
We formally address the problem of maximizing progressive re-

call in an online setting for the ER task. In this framework, we
present a novel benefit metric and two greedy algorithms that use
this benefit metric. We show that our problem is NP-hard, and
formally analyze the quality of the solutions obtained by previous
strategies and our greedy algorithms. We evaluate all the consid-
ered strategies over real and synthetic datasets. The results suggest
that our greedy algorithms are robust across all sparse and dense
datasets, showing higher progressive recall than previous strategies.

In our future work, we plan to extend our results to include errors
in the oracle answers. Our goal is to model mistakes that a real
oracle, such a crowd or an expert worker, could make in the labeling
process, and design robust strategies in an online setting.
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