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ABSTRACT
Traditional database queries follow a simple model: they define con-
straints that each tuple in the result must satisfy. This model is com-
putationally efficient, as the database system can evaluate the query
conditions on each tuple individually. However, many practical,
real-world problems require a collection of result tuples to satisfy
constraints collectively, rather than individually. In this paper, we
present package queries, a new query model that extends traditional
database queries to handle complex constraints and preferences
over answer sets. We develop a full-fledged package query system,
implemented on top of a traditional database engine. Our work
makes several contributions. First, we design PaQL, a SQL-based
query language that supports the declarative specification of pack-
age queries. We prove that PaQL is at least as expressive as integer
linear programming, and therefore, evaluation of package queries
is in general NP-hard. Second, we present a fundamental evaluation
strategy that combines the capabilities of databases and constraint
optimization solvers to derive solutions to package queries. The core
of our approach is a set of translation rules that transform a package
query to an integer linear program. Third, we introduce an offline
data partitioning strategy allowing query evaluation to scale to large
data sizes. Fourth, we introduce SKETCHREFINE, a scalable algo-
rithm for package evaluation, with strong approximation guarantees
((1±ε)6-factor approximation). Finally, we present extensive exper-
iments over real-world and benchmark data. The results demonstrate
that SKETCHREFINE is effective at deriving high-quality package
results, and achieves runtime performance that is an order of mag-
nitude faster than directly using ILP solvers over large datasets.

1. INTRODUCTION
Traditional database queries follow a simple model: they define

constraints, in the form of selection predicates, that each tuple in the
result must satisfy. This model is computationally efficient, as the
database system can evaluate each tuple individually to determine
whether it satisfies the query conditions. However, many practical,
real-world problems require a collection of result tuples to satisfy
constraints collectively, rather than individually.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 7
Copyright 2016 VLDB Endowment 2150-8097/16/03.

EXAMPLE 1 (MEAL PLANNER). A dietitian needs to design
a daily meal plan for a patient. She wants a set of three gluten-free
meals, between 2,000 and 2,500 calories in total, and with a low
total intake of saturated fats.

EXAMPLE 2 (NIGHT SKY). An astrophysicist is looking for
rectangular regions of the night sky that may potentially contain
previously unseen quasars. Regions are explored if their overall
redshift is within some specified parameters, and ranked according
to their likelihood of containing a quasar [17].

In these examples, there are some conditions that can be verified
on individual data items (e.g., gluten content in a meal), while others
need to be evaluated on a collection of items (e.g., total calories).
Similar scenarios arise in a variety of application domains, such as
investment planning, product bundles, course selection [25], team
formation [2, 21], vacation and travel planning [8], and computa-
tional creativity [27]. Despite the clear application need, database
systems do not currently offer support for these problems, and
existing work has focused on application- and domain-specific ap-
proaches [2, 8, 21, 25].

In this paper, we present a domain-independent, database-centric
approach to address these challenges: We introduce a full-fledged
system that supports package queries, a new query model that ex-
tends traditional database queries to handle complex constraints
and preferences over answer sets. Package queries are defined over
traditional relations, but return packages. A package is a collection
of tuples that (a) individually satisfy base predicates (traditional
selection predicates), and (b) collectively satisfy global predicates
(package-specific predicates). Package queries are combinatorial in
nature: the result of a package query is a (potentially infinite) set of
packages, and an objective criterion can define a preference ranking
among them.

Extending traditional database functionality to provide support
for packages, rather than supporting packages at the application
level, is justified by two reasons: First, the features of packages
and the algorithms for constructing them are not unique to each
application; therefore, the burden of package support should be lifted
off application developers, and database systems should support
package queries like traditional queries. Second, the data used
to construct packages typically resides in a database system, and
packages themselves are structured data objects that should naturally
be stored in and manipulated by a database system.

Our work in this paper addresses three important challenges:

1. Declarative specification of packages. SQL enables the declar-
ative specification of properties that result tuples should satisfy. In
Example 1, it is easy to specify the exclusion of meals with gluten
using a regular selection predicate in SQL. However, it is difficult
to specify global constraints (e.g., total calories of a set of meals
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Figure 1: Traditional database technology is ineffective at pack-
age evaluation, and the runtime of the naïve SQL formulation
(Section 2) of a package query grows exponentially. In contrast,
tools such as ILP solvers are more effective.

should be between 2,000 and 2,500 calories). Expressing such a
query in SQL requires either complex self-joins that explode the
size of the query, or recursion, which results in extremely complex
queries that are hard to specify and optimize (Section 2). Our goal
is to maintain the declarative power of SQL, while extending its
expressiveness to allow for the easy specification of packages.

2. Evaluation of package queries. Due to their combinatorial
complexity, package queries are harder to evaluate than traditional
database queries [9]. Package queries are in fact as hard as integer
linear programs (ILP) (Section 2.2). Existing database technology
is ineffective at evaluating package queries, even if one were to
express them in SQL. Figure 1 shows the performance of evaluating
a package query expressed as a multi-way self-join query in tradi-
tional SQL (described in detail in Section 2). As the cardinality of
the package increases, so does the number of joins, and the runtime
quickly becomes prohibitive: In a small set of 100 tuples from the
Sloan Digital Sky Survey dataset [28], SQL evaluation takes almost
24 hours to construct a package of 7 tuples. Our goal is to extend
the database evaluation engine to take advantage of external tools,
such as ILP solvers, which are more effective for combinatorial
problems.

3. Performance and scaling to large datasets. Integer program-
ming solvers have two major limitations: they require the entire
problem to fit in main memory, and they fail when the problem is
too complex (e.g., too many variables and/or too many constraints).
Our goal is to overcome these limitations through sophisticated
evaluation methods that allow solvers to scale to large data sizes.

In this paper, we address these challenges by designing language
and algorithmic support for package query specification and evalua-
tion. Specifically, we make the following contributions.

• We present PaQL (Package Query Language), a declarative lan-
guage that provides simple extensions to standard SQL to support
constraints at the package level. We prove that PaQL is at least
as expressive as integer linear programming, which implies that
evaluation of package queries is NP-hard (Section 2).
• We present a fundamental evaluation strategy DIRECT that com-

bines the capabilities of databases and constraint optimization
solvers to derive solutions to package queries. The core of our
approach is a set of translation rules that transform a package
query to an integer linear program. This translation allows for
the use of highly-optimized external tools for the evaluation of
package queries (Section 3).
• We introduce an offline data partitioning strategy that allows

package query evaluation to scale to large data sizes. The core
of our evaluation strategy SKETCHREFINE lies on separating the
package computation into multiple stages, each with small sub-
problems, which the solver can evaluate efficiently. In the first
stage, the algorithm “sketches” an initial sample package from

a set of representative tuples, while the subsequent stages “re-
fine” the current package by solving an ILP within each partition.
SKETCHREFINE guarantees a (1± ε)6-factor approximation for
the package results compared to DIRECT (Section 4).

• We present an extensive experimental evaluation on both real-
world data and the TPC-H benchmark (Section 5) that shows
that our query evaluation method SKETCHREFINE: (1) is able
to produce packages an order of magnitude faster than the ILP
solver used directly on the entire problem; (2) scales up to sizes
that the solver cannot manage directly; (3) produces packages
of very good quality in terms of objective value; (4) is robust to
partitioning built in anticipation of different workloads.

2. LANGUAGE SUPPORT FOR PACKAGES
Data management systems do not natively support package

queries. While there are ways to express package queries in SQL,
these are cumbersome and inefficient.
Specifying packages with self-joins. When packages have strict
cardinality (number of tuples), and only in this case, it is possible to
express package queries using traditional self-joins. For instance,
self-joins can express the query of Example 1 as follows:

SELECT * FROM Recipes R1, Recipes R2, Recipes R3
WHERE R1.pk < R2.pk AND R2.pk < R3.pk AND

R1.gluten = ‘free’ AND R2.gluten = ‘free’ AND R3.gluten = ‘free’
AND R1.kcal + R2.kcal + R3.kcal BETWEEN 2.0 AND 2.5

ORDER BY R1.saturated_fat + R2.saturated_fat + R3.saturated_fat

This query is efficient only for constructing packages with very
small cardinality: larger cardinality requires a larger number of
self-joins, quickly rendering evaluation time prohibitive (Figure 1).
The benefit of this specification is that the optimizer can use the
traditional relational algebra operators, and augment its decisions
with package-specific strategies. However, this method does not
apply for packages of unbounded cardinality.
Using recursion in SQL. More generally, SQL can express package
queries by generating and testing each possible subset of the input
relation. This requires recursion to build a powerset table; checking
each set in the powerset table for the query conditions will yield the
result packages. This approach has three major drawbacks. First,
it is not declarative, and the specification is tedious and complex.
Second, it is not amenable to optimization in existing systems. Third,
it is extremely inefficient to evaluate, because the powerset table
generates an exponential number of candidates.

2.1 PaQL: The Package Query Language
Our goal is to support package specification in a declarative and

intuitive way. In this section, we describe PaQL, a declarative query
language that introduces simple extensions to SQL to define package
semantics and package-level constraints. We first show how PaQL
can express the query of Example 1, as our running example, to
demonstrate the new language features:

Q: SELECT PACKAGE(R) AS P
FROM Recipes R REPEAT 0
WHERE R.gluten = ‘free’
SUCH THAT COUNT(P.∗) = 3 AND

SUM(P.kcal) BETWEEN 2.0 AND 2.5
MINIMIZE SUM(P.saturated_fat)

Basic semantics. The new keyword PACKAGE differentiates PaQL
from traditional SQL queries.

Q1: SELECT * Q2: SELECT PACKAGE(R) AS P
FROM Recipes R FROM Recipes R
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The semantics of Q1 and Q2 are fundamentally different: Q1 is
a traditional SQL query, with a unique, finite result set (the entire
Recipes table), whereas there are infinitely many packages that sat-
isfy the package query Q2: all possible multisets of tuples from the
input relation. The result of a package query like Q2 is a set of pack-
ages. Each package resembles a relational table containing a collec-
tion of tuples (with possible repetitions) from relation Recipes, and
therefore a package result of Q2 follows the schema of Recipes. The
PaQL syntax permits multiple relations in the FROM clause; in that
case, the packages produced will follow the schema of the join result.

In the remainder of this paper, we focus on package queries with-
out joins. This is for two reasons: (1) The join operation is part of
traditional SQL and can occur before package-specific computations.
(2) There are important implications in the consideration of joins
that extend beyond the scope of our work. Specifically, materializing
the join result is not always necessary, but rather, there are space-
time trade-offs and system-level solutions that can improve query
performance in the presence of joins. Section 4.5 offers a high-level
discussion of these points, but these extensions are orthogonal to
the techniques we present in this work.

Although semantically valid, a query like Q2 would not occur in
practice, as most application scenarios expect few, or even exactly
one result. We proceed to describe the additional constraints in the
example query Q that restrict the number of package results.

Repetition constraint. The REPEAT 0 statement in query Q spec-
ifies that no tuple from the input relation can appear multiple times
in a package result. If this restriction is absent (as in query Q2),
tuples can be repeated an unlimited number of times. By allowing
no repetitions, Q restricts the package space from infinite to 2n,
where n is the size of the input relation. Generalizing, the specifica-
tion REPEAT K allows a package to repeat tuples up to K times,
resulting in (2+K)n candidate packages.

Base and global predicates. A package query defines two types
of predicates. A base predicate, defined in the WHERE clause,
is equivalent to a selection predicate and can be evaluated with
standard SQL: any tuple in the package needs to individually satisfy
the base predicate. For example, query Q specifies the base predicate:
R.gluten = ‘free’. Since base predicates directly filter input tuples,
they are specified over the input relation R. Global predicates are the
core of package queries, and they appear in the new SUCH THAT
clause. Global predicates are higher-order than base predicates: they
cannot be evaluated on individual tuples, but on tuple collections.
Since they describe package-level constraints, they are specified
over the package result P, e.g., COUNT(P.∗) = 3, which limits the
query results to packages of exactly 3 tuples.

The global predicates shown in query Q abbreviate aggregates
that are in reality subqueries. For example, COUNT(P.∗) = 3, is
an abbreviation for (SELECT COUNT(∗) FROM P) = 3. Using
subqueries, PaQL can express arbitrarily complex global constraints
among aggregates over a package.

Objective clause. The objective clause specifies a ranking among
candidate package results, and appears with either the MINIMIZE
or MAXIMIZE keyword. It is a condition on the package-level,
and hence it is specified over the package result P, e.g., MINIMIZE
SUM(P.saturated_fat). Similarly to global predicates, this form
is a shorthand for MINIMIZE (SELECT SUM(saturated_fat)
FROM P). A PaQL query with an objective clause returns a single
result: the package that optimizes the value of the objective. The
evaluation methods that we present in this work focus on such
queries. In prior work [6], we described preliminary techniques for
returning multiple packages in the absence of optimization objec-
tives, but a thorough study of such methods is left to future work.

While PaQL can use arbitrary aggregate functions in the global
predicates and the objective clause, in this work, we assume that
package queries are limited to linear functions. We defer the study
of non-linear functions and UDFs to future work.

2.2 Expressiveness and complexity of PaQL
Package queries are at least as hard as integer linear programs, as

the following theoretical results establish.

THEOREM 1 (EXPRESSIVENESS OF PAQL). Every integer
linear program can be expressed as a package query in PaQL.

We include the proofs of our theoretical results in the full version of
the paper [5]. At a high level, the proof employs a reduction from
an integer linear program to a PaQL query. The reduction maps the
linear constraints and objective into the corresponding PaQL clauses,
using the constraint coefficients to generate the input relation for
the package query. As a direct consequence of Theorem 1, we
also obtain the following result about the complexity of evaluating
package queries.

COROLLARY 2 (COMPLEXITY OF PACKAGE QUERIES).
Package queries are NP-hard.

In Section 3, we extend the result of Theorem 1 to also show that
every PaQL query that does not contain non-linear functions can be
expressed as an integer linear program, through a set of translation
rules. This transformation is the first step in package evaluation, but,
due to the limitations of ILP solvers, it is not efficient or scalable
in practice. To make package evaluation practical, we develop
SKETCHREFINE, a technique that augments the ILP transformation
with a partitioning mechanism, allowing package evaluation to scale
to large datasets (Section 4).

3. ILP FORMULATION
In this section, we present an ILP formulation for package queries.

This formulation is at the core of our evaluation methods DIRECT
and SKETCHREFINE. The results presented in this section are
inspired by the translation rules employed by Tiresias [22] to answer
how-to queries. However, there are several important differences
between how-to and package queries, which we discuss extensively
in the overview of the related work (Section 6).

3.1 PaQL to ILP Translation
Let R indicate the input relation, n = |R| the number of tuples

in R, R.attr an attribute of R, P a package, f a linear aggregate
function (such as COUNT and SUM), � ∈ {≤,≥} a constraint
inequality, and v ∈R a constant. For each tuple ti from R, 1≤ i≤ n,
the ILP problem includes a nonnegative integer variable xi (xi ≥ 0),
indicating the number of times ti is included in an answer package.
We also use x̄ = 〈x1,x2, . . . ,xn〉 to denote the vector of all integer
variables. A PaQL query is formulated as an ILP problem using the
following translation rules:

1. Repetition constraint. The REPEAT keyword, expressible in
the FROM clause, restricts the domain that the variables can take
on. Specifically, REPEAT K implies 0≤ xi ≤K+1.

2. Base predicate. Let β be a base predicate, e.g., R.gluten= ‘free’,
and Rβ the relation containing tuples from R satisfying β. We
encode β by setting xi = 0 for every tuple ti 6∈ Rβ.

3. Global predicate. Each global predicate in the SUCH THAT
clause takes the form f (P) � v. For each such predicate, we
derive a linear function f ′(x̄) over the integer variables. A cardi-
nality constraint f (P) = COUNT(P.∗) is linearly translated into
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f ′(x̄) = ∑i xi. A summation constraint f (P) = SUM(P.attr) is
linearly translated into f ′(x̄) = ∑i(ti.attr)xi. We further illustrate
the translation with two non-trivial examples:
• AVG(P.attr)≤ v is translated as

∑i(ti.attr)xi/∑i xi ≤ v ≡ ∑i(ti.attr− v)xi ≤ 0

• (SELECT COUNT(∗) FROM P WHERE P.carbs > 0) ≥
(SELECT COUNT(∗) FROM P WHERE P.protein ≤ 5) is
translated as

Rc := {ti ∈ R | ti.carbs> 0}
Rp := {ti ∈ R | ti.protein≤ 5}
1Rc

(ti) := 1 if ti ∈ Rc; 0 otherwise.
1Rp

(ti) := 1 if ti ∈ Rp; 0 otherwise.
∑i(1Rc

(ti)−1Rp
(ti))xi ≥ 0

General Boolean expressions over the global predicates can be
encoded into a linear program with the help of Boolean variables
and linear transformation tricks found in the literature [4].

4. Objective clause. We encode MAXIMIZE f (P) as max f ′(x̄),
where f ′(x̄) is the encoding of f (P). Similarly MINIMIZE f (P)
is encoded as min f ′(x̄). If the query does not include an objective
clause, we add the vacuous objective max∑i 0 · xi.

We call the relations Rβ, Rc, and Rp described above base re-
lations. This formulation, together with Theorem 1, shows that
single-relation package queries with linear constraints correspond
exactly to ILP problems.

3.2 Query Evaluation with DIRECT
Using the ILP formulation, we develop our basic evaluation

method for package queries, called DIRECT. We later extend this
technique to our main algorithm, SKETCHREFINE, which supports
efficient package evaluation in large data sets (Section 4).

Package evaluation with DIRECT employs three simple steps:

1. ILP formulation. We transforms a PaQL query to an ILP prob-
lem using the rules described in Section 3.1.

2. Base relations. We compute the base relations, such as Rβ, Rc,
and Rp, with a series of standard SQL queries, one for each, or by
simply scanning R once and populating these relations simulta-
neously. After this phase, all variables xi such that xi = 0 can be
eliminated from the ILP problem because the corresponding tuple
ti cannot appear in any package solution. This can significantly
reduce the size of the problem.

3. ILP execution. We employ an off-the-shelf ILP solver, as a black
box, to get a solution x∗i for all the integer variables xi of the
problem. Each x∗i informs the number of times tuple ti should be
included in the answer package.

The DIRECT algorithm has two crucial drawbacks. First, it is
only applicable if the input relation is small enough to fit entirely
in main memory: ILP solvers, such as IBM’s CPLEX, require the
entire problem to be loaded in memory before execution. Second,
even for problems that fit in main memory, this approach may fail
due to the complexity of the integer problem. In fact, integer linear
programming is a notoriously hard problem, and modern ILP solvers
use algorithms, such as branch-and-cut [24], that often perform well
in practice, but can “choke” even on small problem sizes due to
their exponential worst-case complexity [7]. This may result in
unreasonable performance due to solvers using too many resources
(main memory, virtual memory, CPU time), eventually thrashing
the entire system.

Algorithm 1 Scalable Package Query Evaluation

1: procedure SKETCHREFINE(P:Partitioning, Q:Package Query)
2: pS← SKETCH(P, Q)
3: if failure then
4: return infeasible
5: else
6: p← REFINE(pS, P, Q)
7: if failure then
8: return infeasible
9: else

10: return p

4. SCALABLE PACKAGE EVALUATION
In this section, we present SKETCHREFINE, an approximate

divide-and-conquer evaluation technique for efficiently answering
package queries on large datasets. SKETCHREFINE smartly decom-
poses a query into smaller queries, formulates them as ILP problems,
and employs an ILP solver as a black-box evaluation method to an-
swer each individual query. By breaking down the problem into
smaller subproblems, the algorithm avoids the drawbacks of the
DIRECT approach. Further, we prove that SKETCHREFINE is guar-
anteed to always produce feasible packages with an approximate
objective value (Section 4.3).

The algorithm is based on an important observation: similar tu-
ples are likely to be interchangeable within packages. A group of
similar tuples can therefore be “compressed” to a single representa-
tive tuple for the entire group. SKETCHREFINE sketches an initial
answer package using only the set of representative tuples, which is
substantially smaller than the original dataset. This initial solution is
then refined by evaluating a subproblem for each group, iteratively
replacing the representative tuples in the current package solution
with original tuples from the dataset. Figure 2 provides a high-level
illustration of the three main steps of SKETCHREFINE:

1. Offline partitioning (Section 4.1). The algorithm assumes a par-
titioning of the data into groups of similar tuples. This partitioning
is performed offline (not at query time), and our experiments
show that SKETCHREFINE remains very effective even with
partitionings that do not match the query workload (Section 5.2.3).
In our implementation, we partition data using k-dimensional
quad trees [11], but other partitioning schemes are possible.

2. Sketch (Section 4.2.1). SKETCHREFINE sketches an initial
package by evaluating the package query only over the set of
representative tuples.

3. Refine (Section 4.2.2). Finally, SKETCHREFINE transforms
the initial package into a complete package by replacing each
representative tuple with some of the original tuples from the
same group, one group at a time.

SKETCHREFINE always constructs approximate feasible packages,
i.e., packages that satisfy all the query constraints, but with a pos-
sibly sub-optimal objective value that is guaranteed to be within
certain approximation bounds (Section 4.3). SKETCHREFINE may
suffer from false infeasibility, which happens when the algorithm
reports a feasible query to be infeasible. The probability of false
infeasibility is, however, low and bounded (Section 4.4).

In the subsequent discussion, we use R to denote the input rela-
tion of n tuples, ti ∈ R, 1 ≤ i ≤ n. R is partitioned into m groups
G1, . . . ,Gm. Each group G j, 1≤ j ≤ m, has a representative tuple
t̃ j, which may not always appear in R. We denote the partitioned
space with P= {(G j, t̃ j) | 1≤ j ≤ m}. We refer to packages that
contain some representative tuples as sketch packages and packages
with only original tuples as complete packages (or simply packages).
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Figure 2: The original tuples (a) are partitioned into four groups and a representative is constructed for each group (b). The initial
sketch package (c) contains only representative tuples, with possible repetitions up the size of each group. The refine query for group
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We denote a complete package with p and a sketch package with
pS, where S ⊆ P is the set of groups that are yet to be refined to
transform pS into a complete answer package p.

4.1 Offline Partitioning
SKETCHREFINE relies on an offline partitioning of the input

relation R into groups of similar tuples. Partitioning is based on a
set of k numerical partitioning attributes, A, from the input relation
R, and uses two parameters: a size threshold and a radius limit.

DEFINITION 1 (SIZE THRESHOLD, τ). The size threshold τ,
1≤ τ≤ n, restricts the size of each partitioning group G j , 1≤ j ≤ m,
to a maximum of τ original tuples, i.e., |G j| ≤ τ.

DEFINITION 2 (RADIUS LIMIT, ω). The radius r j ≥ 0 of a
group G j is the greatest absolute distance between the representa-
tive tuple of G j , t̃ j , and every original tuple of the group, across all
partitioning attributes:

r j = max
t j∈G j
attr∈A

|t̃ j.attr− t j.attr|

The radius limit ω, ω≥ 0, requires that for every partitioning group
G j, 1≤ j ≤ m, r j ≤ ω.

The size threshold, τ, affects the number of clusters, m, as smaller
clusters (lower τ) implies more of them (larger m), especially on
skewed datasets. As we discuss later (Section 4.2), for best re-
sponse time of SKETCHREFINE, τ should be set so that both m
and τ are small. Our experiments show that a proper setting can
yield to an order of magnitude improvement in query response time
(Section 5.2.2). The radius limit, ω, should be set according to a
desired approximation guarantee (Section 4.3). Note that the same
partitioning can be used to support a multitude of queries over the
same dataset. In our experiments, we show that a single partitioning
performs consistently well across different queries.
Partitioning method. Different methods can be used for parti-
tioning. Our implementation is based on k-dimensional quad-tree
indexing [11]. The method recursively partitions a relation into
groups until all the groups satisfy the size threshold and meet the
radius limit. First, relation R is augmented with an extra group ID
column gid, such that ti.gid= j iff tuple ti is assigned to group G j.
The procedure initially creates a single group G1 that includes all
the original tuples from relation R, by initializing ti.gid= 1 for all
tuples. Then, it recursively proceeds as follows:
• The procedure computes the sizes and radii of the current groups

via a query that groups tuples by their gid value. The same group-
by query also computes the centroid tuple of each group. The

centroid is computed by averaging the tuples in the group on each
of the partitioning attributes A.

• If group G j has more tuples than the size threshold, or a radius
larger than the radius limit, the tuples in group G j are partitioned
into 2k subgroups (k = |A|). The group’s centroid is used as the
pivot point to generate sub-quadrants: tuples that reside in the
same sub-quadrant are grouped together.

Our method recursively executes two SQL queries on each subgroup
that violates the size or the radius condition. In the last iteration, the
last group-by query computes the centroids for each group. These
are the representative tuples, t̃ j, 1≤ j ≤ m, and are stored in a new
representative relation R̃(gid,attr1, . . . ,attrk).

Alternative partitioning approaches. We experimented with dif-
ferent clustering algorithms, such as k-means [15], hierarchical
clustering [20] and DBSCAN [10], using off-the-shelf libraries such
as Scikit-learn [26]. Existing clustering algorithms present various
problems: First, they tend to vary substantially in the properties of
the generated clusters. In particular, none of the existing clustering
techniques can natively generate clusters that satisfy the size thresh-
old τ and radius limit ω. In fact, most of the clustering algorithms
take as input the number of clusters to generate, without offering any
means to restrict the size of each cluster nor their radius. Second,
existing implementations only support in-memory cluster computa-
tion, and DBMS-oriented implementations usually need complex
and inefficient queries. On the other hand, space partitioning tech-
niques from multi-dimensional indexing, such as k-d trees [3] and
quad trees [11], can be more easily adapted to satisfy the size and
radius conditions, and to work within the database: our partitioning
method works directly on the input table via simple SQL queries.

One-time cost. Partitioning is an expensive procedure. To avoid
paying its cost at query time, the dataset is partitioned in advance
and used to answer a workload of package queries. For a known
workload, our experiments show that partitioning the dataset on the
union of all query attributes provides the best performance in terms
of query evaluation time and approximation error for the computed
answer package (Section 5.2.3). We also demonstrate that our query
evaluation approach is robust to a wide range of partition sizes, and
to imperfect partitions that cover more or fewer attributes than those
used in a particular query. This means that, even without a known
workload, a partitioning performed on all of the data attributes still
provides good performance.

The radius limit is necessary for the theoretical guarantee of the
approximation bounds (Section 4.3). However, we show empirically
that partitioning satisfying the size threshold alone produces satisfac-
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tory answers while reducing the offline partitioning cost: Meeting
a size threshold requires fewer partitioning iterations than meeting
a radius limit especially if the dataset is sparse across the attribute
domains (Section 5).
Dynamic partitioning. In our implementation of SKETCHREFINE,
the choice of partitioning is static. Our technique also works with a
dynamic approach to partitioning: by maintaining the entire hierar-
chical structure of the quad-tree index, one can traverse the index
at query time to generate the coarsest partitioning that satisfies the
required radius condition. However, our empirical results show that
this approach incurs unnecessary overhead, as static partitioning
already performs extremely well in practice (Section 5).

4.2 Query Evaluation with SKETCHREFINE
During query evaluation, SKETCHREFINE first sketches a package

solution using the representative tuples (SKETCH), and then it refines
it by replacing representative tuples with original tuples (REFINE).
We describe these steps using the example query Q from Section 2.1.

4.2.1 SKETCH
Using the representative relation R̃ (Section 4.1), the SKETCH

procedure constructs and evaluates a sketch query, Q[R̃]. The result
is an initial sketch package, pS, containing representative tuples that
satisfy the same constraints as the original query Q:

Q[R̃]: SELECT PACKAGE(R̃) AS pS
FROM R̃

WHERE R̃.gluten = ‘free’
SUCH THAT

COUNT(pS.∗) = 3 AND
SUM(pS.kcal) BETWEEN 2.0 AND 2.5 AND
(SELECT COUNT(∗) FROM pS WHERE gid = 1)≤ |G1|
AND . . .
(SELECT COUNT(∗) FROM pS WHERE gid = m)≤ |Gm|

MINIMIZE SUM(pS.saturated_fat)

The new global constraints, highlighted in bold, ensure that every
representative tuple does not appear in pS more times than the
size of its group, G j. This accounts for the repetition constraint
REPEAT 0 in the original query. Generalizing, with REPEAT K,
each t̃ j can be repeated up to |G j|(1+K) times. These constraints
are simply omitted from Q[R̃] if the original query does not contain
a repetition constraint.

Since the representative relation R̃ contains exactly m representa-
tive tuples, the ILP problem corresponding to this query has only
m variables. This is typically small enough for the black box ILP
solver to manage directly, and thus we can solve this package query
using the DIRECT method (Section 3.2). If m is too large, we can
solve this query recursively with SKETCHREFINE: the set of m
representatives is further partitioned into smaller groups until the
subproblems reach a size that can be efficiently solved directly.

The SKETCH procedure fails if the sketch query Q[R̃] is infeasi-
ble, in which case SKETCHREFINE reports the original query Q as
infeasible (Algorithm 1). This may constitute false infeasibility, if
Q is actually feasible. In Section 4.4, we show that the probability
of false infeasibility is low and bounded, and we present simple
methods to avoid this outcome.

4.2.2 REFINE
Using the sketched solution over the representative tuples, the

REFINE procedure iteratively replaces the representative tuples with
tuples from the original relation R, until no more representatives are
present in the package. The algorithm refines the sketch package pS,
one group at a time: For a group G j with representative t̃ j ∈ pS, the

algorithm derives package p̄ j from pS by eliminating all instances
of t̃ j; it then seeks to replace the eliminated representatives with
actual tuples, by issuing a refine query, Q[G j], on group G j:

Q[G j]: SELECT PACKAGE(G j) AS p j
FROM G j REPEAT 0
WHERE G j.gluten = ‘free’
SUCH THAT

COUNT(p j.∗) + COUNT(p̄ j.∗) = 3 AND
SUM(p j.kcal) + SUM(p̄ j.kcal) BETWEEN 2.0 AND 2.5

MINIMIZE SUM(p j.saturated_fat)

The query derives a set of tuples p j, as a replacement for the oc-
currences of the representatives of G j in pS. The global constraints
in Q[G j] ensure that the combination of tuples in p j and p̄ j satisfy
the original query Q. Thus, this step produces the new refined sketch
package p′S′ = p̄ j ∪ p j, where S′ = S\{(G j, t̃ j)}.

Since G j has at most τ tuples, the ILP problem corresponding to
Q[G j] has at most τ variables. This is typically small enough for the
black box ILP solver to solve directly, and thus we can solve this
package query using the DIRECT method (Section 3.2). Similarly to
the sketch query, if τ is too large, we can solve this query recursively
with SKETCHREFINE: the tuples in group G j are further partitioned
into smaller groups until the subproblems reach a size that can be
efficiently solved directly.

Ideally, the REFINE step will only process each group with repre-
sentatives in the initial sketch package once. However, the order of
refinement matters as each refinement step is greedy: it selects tuples
to replace the representatives of a single group, without considering
the effects of this choice on other groups. As a result, a particular
refinement step may render the query infeasible (no tuples from the
remaining groups can satisfy the constraints). When this occurs,
REFINE employs a greedy backtracking strategy that reconsiders
groups in a different order.
Greedy backtracking. REFINE activates backtracking when it en-
counters an infeasible refine query, Q[G j]. Backtracking greedily
prioritizes the infeasible groups. This choice is motivated by a sim-
ple heuristic: if the refinement on G j fails, it is likely due to choices
made by previous refinements; therefore, by prioritizing G j, we
reduce the impact of other groups on the feasibility of Q[G j]. This
heuristic does not affect the approximation guarantees (Section 4.3).

Algorithm 2 details the REFINE procedure. The algorithm log-
ically traverses a search tree (which is only constructed as new
branches are created and new nodes visited), where each node corre-
sponds to a unique sketch package pS. The traversal starts from the
root, corresponding to the initial sketch package, where no groups
have been refined (S = P), and finishes at the first encountered
leaf, corresponding to a complete package (S= /0). The algorithm
terminates as soon as it encounters a complete package, which it
returns (line 3). The algorithm assumes a (initially random) re-
finement order for all groups in S, and places them in a priority
queue (line 6). During refinement, this group order can change by
prioritizing groups with infeasible refinements (line 24).
Run time complexity. In the best case, all refine queries are feasible
and the algorithm never backtracks. In this case, the algorithm
makes up to m calls to the ILP solver to solve problems of size up to
τ, one for each refining group. In the worst case, SKETCHREFINE
tries every group ordering leading to an exponential number of calls
to the ILP solver. Our experiments show that the best case is the
most common and backtracking occurs infrequently.

4.3 Approximation Guarantees
SKETCHREFINE provides strong theoretical guarantees. We

prove that for a desired approximation parameter ε, we can de-
rive a radius limit ω for the offline partitioning that guarantees
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Algorithm 2 Greedy Backtracking Refinement

1: procedure REFINE(pS, P, Q)
2: if S= /0 then . Base case: all groups already refined
3: return pS
4: F← /0 . Failed groups
5: . Arrange S in some initial order (e.g., random)
6: U← priorityQueue(S)
7: while U 6= /0 do
8: (G j, t̃ j)← dequeue(U)
9: . Skip groups that have no representative in pS

10: if t̃ j /∈ pS then
11: continue
12: p′

S′ ← Refine pS on group G j
13: if Q[G j] is infeasible then
14: if S 6= P then . If pS is not the initial package
15: . Greedily backtrack with non-refinable group
16: F← F∪{(G j, t̃ j)}
17: return failure(F)
18: else
19: . Greedily recurse with refinable group
20: p← REFINE(p′

S′ ,P,Q)

21: if failure(F′) then
22: F← F∪F′
23: . Greedily prioritize non-refinable groups
24: prioritize(U,F)
25: else
26: return p
27: . None of the groups in S can be refined (invariant: F = S)
28: return failure(F)

that SKETCHREFINE will produce a package with objective value
(1± ε)6-factor close to the objective value of the solution generated
by DIRECT for the same query.

THEOREM 3 (APPROXIMATION BOUNDS). For any feasible
package query with a maximization (minimization, resp.) objec-
tive and approximation parameter ε, 0≤ ε < 1 (ε≥ 0, resp.), any
database instance, any set of partitioning attributes A, superset
of the numerical query attributes, any size threshold τ, and radius
limit:

ω = min
1≤ j≤m
attr∈A

γ |t̃ j.attr|, where γ = ε (γ = ε

1+ε
, resp.) (1)

The package produced by SKETCHREFINE (if any) is guaranteed to
have objective value≥ (1− ε)6OPT (≤ (1+ ε)6OPT , resp.), where
OPT is the objective value of the DIRECT solution.

At a high level, the proof includes two steps: In the first step,
we prove that the initial sketch package is a (1± ε)3-approximation
with respect to DIRECT; In the second step, we prove that the final
package produced by SKETCHREFINE is a (1± ε)3-approximation
with respect to the initial sketch package.

In general, enforcing this radius limit, especially with lower ε

values, may cause the resulting partitions to become excessively
small. While still obeying the approximation guarantees, this could
increase the number of resulting partitions and thus degrade the
running time performance of SKETCHREFINE. In the worst case,
SKETCHREFINE could degenerate into DIRECT. This is an im-
portant trade-off between running time and quality that we have
observed in our experimental data as well, and it is a very common
characteristic of most approximation schemes [30].

4.4 The Case of False Infeasibility
For a feasible query Q, false negatives, or false infeasibility, may

happen in two cases: (1) when the sketch query Q[R̃] is infeasible;

(2) when greedy backtracking fails (possibly due to suboptimal
partitioning). In both cases, SKETCHREFINE would (incorrectly)
report a feasible package query as infeasible. False negatives are,
however, extremely rare, as the following theorem establishes.

THEOREM 4 (FALSE INFEASIBILITY). For any feasible pack-
age query, any database instance, any set of partitioning attributes
A that is a superset of the query attributes, any size threshold τ, and
any radius limit ω, SKETCHREFINE finds a feasible package with
high probability that inversely depends on query selectivity.

The selectivity of a package query denotes the probability of a
random package being infeasible (thus, lower selectivity implies
higher probability of a random package being feasible). To prove
this result, we show that if a random package is feasible, then
with high probability the sketch query and all refine queries are
feasible. Thus, lower selectivity implies higher probability that
SKETCHREFINE successfully terminates with a feasible package.

We discuss four potential ways to deal with false infeasibility,
which we plan to explore in future work:

1. Hybrid sketch query. A simple method to avoid false infeasi-
bility in the SKETCH step is to merge the sketch query Q[R̃] with
one of the refine queries. This “hybrid” sketch query would select
original tuples for one of the groups, and at the same time select
representative tuples for the remaining groups. Groups can be tried
in any order (e.g., in random order), until one of the hybrid sketch
queries is feasible.

2. Further partitioning. In some cases, the centroid of a group may
not be a very good representative (e.g., when the data is skewed).
This can sometimes result in false negatives. Further partitioning by
reducing the size threshold τ may eliminate the problem.

3. Dropping partitioning attributes. A more principled approach
consists of “projecting” the partitioning onto fewer dimensions
by reducing the number of partitioning attributes. In doing so,
some groups merge, increasing the chance that previously infeasible
groups become feasible. The choice of attributes to remove from
the partitioning can be guided by the last infeasible ILP problem.
Most ILP solvers provide functionality to identify a minimal set of
infeasible constraints: removing any constraint from the set makes
the problem feasible.1 Removing the attributes that participate in
these constraints from the partitioning can increase the odds of
discovering a feasible solution.

4. Iterative group merging. In a brute-force approach, we can
merge groups iteratively, until the sub-queries become feasible. In
the worst case, this process reduces the problem to the original
problem (i.e., with no partitioning), and thus it is guaranteed to find
a solution to any feasible query, at the cost of performance.

4.5 Discussion
SKETCHREFINE is an evaluation strategy for package queries

with three important advantages. First, it scales naturally to very
large datasets, by breaking down the problem into smaller, manage-
able subproblems, whose solutions can be iteratively combined to
form the final result. Second, it provides flexible approximations
with strong theoretical guarantees on the quality of the package
results. Third, while our current implementation of SKETCHREFINE
employs ILP solvers to evaluate the generated subproblems, our
algorithm can use any other black box solution for package queries,
even solutions that work entirely in main memory, and whose effi-
ciency drastically degrades with larger problem sizes. We plan to
explore these alternatives in our future work.
1This set is usually referred to as irreducible infeasible set (IIS).
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Parallelizing SKETCHREFINE. Its data partitioning and problem
division strategies give SKETCHREFINE great potential for par-
allelization. However, the proper parallelization strategy is non-
obvious, and is a nontrivial part of future work. A simple paralleliza-
tion strategy could perform refinement on several groups in parallel.
However, since refinements make local decisions, this process is
more likely to reach infeasibility, requiring costly backtracking steps
and resulting in wasted computation. Alternatively, parallelization
may focus on the backtracking process, using additional resources
to evaluate different group orderings in parallel.

Handling joins. In this paper, we focused on package queries
over single relations. Handling joins poses interesting implications,
orthogonal to the evaluation techniques that we presented in this
work. In the presence of joins, the system can simply evaluate
and materialize the join result before applying the package-specific
transformations. However, the materialization of the join result is
not always necessary: DIRECT generates variables through a single
sequential scan of the join result, and thus the join tuples can be
pipelined into the ILP generation without being materialized. How-
ever, not materializing the join results means that some of the join
tuples will need to be recomputed to populate the solution package.
Therefore, there is a space-time trade-off in the consideration of
materializing the join. Further, this trade-off can be improved with
hybrid, system-level solutions, such as storing the record IDs of
joining tuples to enable faster access during package generation.
These considerations are well-beyond our current scope, and are
orthogonal to the techniques that we present in this work.

5. EXPERIMENTAL EVALUATION
In this section, we present an extensive experimental evaluation

of our techniques for package query execution, both on real-world
and on benchmark data. Our results show the following properties
of our methods: (1) SKETCHREFINE evaluates package queries an
order of magnitude faster than DIRECT; (2) SKETCHREFINE scales
up to sizes that DIRECT cannot handle directly; (3) SKETCHREFINE
produces packages of high quality (similar objective value as the
packages returned by DIRECT); (4) the performance of SKETCHRE-
FINE is robust to partitioning on different sets of attributes as long
as a query’s attributes are mostly covered. This makes offline parti-
tioning effective for entire query workloads.

5.1 Experimental Setup
Software. We implemented our package evaluation system as a
layer on top of a traditional relational DBMS. The data itself resides
in the database, and the system interacts with the DBMS via SQL
when it needs to perform operations on the data. We use PostgreSQL
v9.3.9 for our experiments. The core components of our evaluation
module are implemented in Python 2.7. The PaQL parser is gener-
ated in C++ from a context-free grammar, using GNU Bison [12].
We represent a package in the relational model as a standard rela-
tion with schema equivalent to the schema of the input relation. A
package is materialized into the DBMS only when necessary (for
example, to compute its objective value).

We employ IBM’s CPLEX [16] v12.6.1 as our black-box ILP
solver. When the algorithm needs to solve an ILP problem, the cor-
responding data is retrieved from the DBMS and passed to CPLEX
using tuple iterator APIs to avoid having more than one copy of the
same data stored in main memory at any time. We used the same
settings for all solver executions: we set its working memory to
512MB; we instructed CPLEX to store exceeding data used during
the solve procedure on disk in a compressed format, rather than

TPC-H query Q1 Q2 Q3 Q4 Q5 Q6 Q7
Max # of tuples 6M 6M 6M 6M 240k 11.8M 6M

Figure 3: Size of the tables used in the TPC-H benchmark.

Dataset Dataset size Size threshold τ Partitioning time
Galaxy 5.5M tuples 550k tuples 348 sec.
TPC-H 17.5M tuples 1.8M tuples 1672 sec.

Figure 4: Partitioning time for the two datasets, using the work-
load attributes and with no radius condition.

using the operating system’s virtual memory, which, as per the doc-
umentation, may degrade the solver’s performance; we instructed
CPLEX to emphasize optimality versus feasibility to dampen the ef-
fect of internal heuristics that the solver may employ on particularly
hard problems; we enabled CPLEX’s memory emphasis parameter,
which instructs the solver to conserve memory where possible; we
set a solving time limit of one hour; we also made sure that the
operating system would kill the solver process whenever it uses the
entire available main memory.

Environment. We run all experiments on a ProLiant DL160 G6
server equipped with two twelve-core Intel Xeon X5650 CPUs at
2.66GHz each, with 15GB or RAM, with a single 7200 RPM 500GB
hard drive, running CentOS release 6.5.

Datasets and queries. We demonstrate the performance of our
query evaluation methods using both real-world and benchmark
data. The real-world dataset consists of approximately 5.5 million
tuples extracted from the Galaxy view of the Sloan Digital Sky
Survey (SDSS) [28], data release 12. For the benchmark datasets
we used TPC-H [29], with table sizes up to 11.8 million tuples.

For each of the two datasets, we constructed a set of seven pack-
age queries, by adapting existing SQL queries originally designed
for each of the two datasets. For the Galaxy dataset, we adapted
some of the real-world sample SQL queries available directly from
the SDSS website.2 For the TPC-H dataset, we adapted seven of the
SQL query templates provided with the benchmark that contained
enough numerical attributes. We performed query specification
manually, by transforming SQL aggregates into global predicates or
objective criteria whenever possible, selection predicates into global
predicates, and by adding cardinality bounds. We did not include
any base predicates in our package queries because they can always
be pre-processed by running a standard SQL query over the input
dataset (Section 3), and thus eliminated beforehand. For the Galaxy
queries, we synthesized the global constraint bounds by multiplying
the original selection constraint bound by the expected size of the
feasible packages. For the TPC-H queries, we generated global con-
straint bounds uniformly at random by multiplying random values
in the value range of a specific attribute by the expected size of
the feasible packages. The original TPC-H SQL queries involve
attributes across different relations and compute various group-by
aggregates. In order to transform these queries into single-relation
package queries, we processed the original TPC-H tables to produce
a single pre-joined table, obtained with full outer joins, containing
all attributes needed by all the TPC-H package queries in our bench-
mark. This table contained approximately 17.5 million tuples. For
each TPC-H package query, we then extracted the subset of tuples
having non-NULL values on all the query attributes. The size of
each resulting table is reported in Figure 3.

Comparisons. We compare DIRECT with SKETCHREFINE. Both
methods use the ILP formulation (Section 3) to transform package

2http://cas.sdss.org/dr12/en/help/docs/realquery.aspx
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Figure 5: Scalability on the Galaxy benchmark. SKETCHREFINE uses an offline partitioning computed on the full dataset, using the
workload attributes, τ = 10% of the dataset size, and no radius condition. DIRECT scales up to millions of tuples in about half of the
queries, but it fails on the other half. SKETCHREFINE scales up nicely in all cases, and runs about an order of magnitude faster than
DIRECT. Its approximation ratio is always low, even though the partitioning is constructed without radius condition.

Direct SketchRefine

T
im

e 
(s

)

Q1

101

102

10% 40% 70% 100%

�������������������:
Mean: 1.18, Median: 1.14

Dataset size

Q2

101

102

10% 40% 70% 100%

�������������������:
Mean: 8.27, Median: 6.04

Dataset size

Q3

101

102

10% 40% 70% 100%

�������������������:
Mean: 1.60, Median: 1.50

Dataset size

Q4

102

10% 40% 70% 100%

�������������������:
Mean: 1.00, Median: 1.00

Dataset size

Q5

100

10% 40% 70% 100%

�������������������:
Mean: 1.90, Median: 2.00

Dataset size

Q6

101

102

10% 40% 70% 100%

�������������������:
Mean: 1.80, Median: 2.00

Dataset size

Q7

101

102

10% 40% 70% 100%

�������������������:
Mean: 1.89, Median: 1.95

Dataset size

Figure 6: Scalability on the TPC-H benchmark. SKETCHREFINE uses an offline partitioning computed on the full dataset, using the
workload attributes, τ = 10% of the dataset size, and no radius condition. DIRECT scales up to millions of tuples in all queries. The
response time of SKETCHREFINE is about an order of magnitude less than DIRECT, and its approximation ratio is generally very
low, even though the partitioning is constructed without radius condition.

queries into ILP problems: DIRECT translates and solves the orig-
inal query; SKETCHREFINE translates and solves the sub-queries
(Section 4), and uses hybrid sketch query (Section 4.4) as the only
strategy to cope with infeasible initial queries.

Metrics. We evaluate methods on their efficiency and effectiveness.

Response time: We measure response time as wall-clock time to
generate an answer package. This includes the time taken to translate
the PaQL query into one or several ILP problems, the time taken to
load the problems into the solver, and the time taken by the solver to
produce a solution. We exclude the time to materialize the package
solution to the database and to compute its objective value.

Approximation ratio: Recall that SKETCHREFINE is always guar-
anteed to return an approximate answer with respect to DIRECT
(Section 4.3). In order to assess the quality of a package returned by
SKETCHREFINE, we compare its objective value with the objective
value of the package returned by DIRECT on the same query. Using
Ob jS and Ob jD to denote the objective values of SKETCHREFINE
and DIRECT, respectively, we compute the empirical approximation
ratio Ob jD

Ob jS for maximization queries, and Ob jS
Ob jD for minimization

queries. An approximation ratio of one indicates that SKETCHRE-
FINE produces a solution with same objective value as the solution
produced by the solver on the entire problem. Typically, the ap-
proximation ratio is greater than or equal to one. However, since
the solver employs several approximations and heuristics, values
lower than one, which means that SKETCHREFINE produces a better
package than DIRECT, are possible in practice.

5.2 Results and Discussion
We evaluate three fundamental aspects of our algorithms: (1) their

query response time and approximation ratio with increasing dataset
sizes; (2) the impact of varying partitioning size thresholds (τ) on

SKETCHREFINE’s performance; (3) the impact of the attributes used
in offline partitioning on query runtime.

5.2.1 Query performance as data set size increases
In our first set of experiments, we evaluate the scalability of our

methods on input relations of increasing size. First, we partitioned
each dataset using the union of all package query attributes in the
workload: we refer to these partitioning attributes as the workload
attributes. We did not enforce a radius condition (ω) during parti-
tioning for two reasons: (1) to show that an offline partitioning can
be used to answer efficiently and effectively both maximization and
minimization queries, even though they would normally require dif-
ferent radii; (2) to demonstrate the effectiveness of SKETCHREFINE
in practice, even without having theoretical guarantees in place.

We perform offline partitioning setting the partition size threshold
τ to 10% of the dataset size. Figure 4 reports the partitioning times
for the two datasets. We derive the partitionings for the smaller data
sizes (less than 100% of the dataset) in the experiments, by randomly
removing tuples from the original partitions. This operation is
guaranteed to maintain the size condition.

Figures 5 and 6 report our scalability results on the Galaxy and
TPC-H benchmarks, respectively. The figures display the query
runtimes in seconds on a logarithmic scale, averaged across 10 runs
for each datapoint. At the bottom of each figure, we also report the
mean and median approximation ratios across all dataset sizes. The
graph for Q2 on the galaxy dataset does not report approximation
ratios, because DIRECT evaluation fails to produce a solution for
this query across all data sizes. We observe that DIRECT can scale
up to millions of tuples in three of the seven Galaxy queries, and
in all of the TPC-H queries. Its run-time performance degrades, as
expected, when data size increases, but even for very large datasets
DIRECT is usually able to answer the package queries in less than
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Figure 7: Impact of partition size threshold τ on the Galaxy benchmark, using 30% of the original dataset. Partitioning is performed
at each value of τ using all the workload attributes, and with no radius condition. The baseline DIRECT and the approximation ratios
are only shown when DIRECT is successful. The results show that τ has a major impact on the running time of SKETCHREFINE, but
almost no impact on the approximation ratio. DIRECT can be an order of magnitude faster than DIRECT with proper tuning of τ.
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Figure 8: Impact of partition size threshold τ on the TPC-H benchmark, using the full datasets. Partitioning is performed at each
value of τ using all the workload attributes, and with no radius condition. The baseline DIRECT and the approximation ratios are
only shown when DIRECT is successful. The results show that τ has a major impact on the running time of SKETCHREFINE, but
almost no impact on the approximation ratio. DIRECT can be an order of magnitude faster than DIRECT with proper tuning of τ.

a few minutes. However, DIRECT has high failure rate for some of
the Galaxy queries, indicated by the missing data points in some
graphs (queries Q2, Q3, Q6 and Q7 in Figure 5). This happens when
CPLEX uses the entire available main memory while solving the
corresponding ILP problems. For some queries, such as Q3 and Q7,
this occurs with bigger dataset sizes. However, for queries Q2 and
Q6, DIRECT even fails on small data. This is a clear demonstration
of one of the major limitations of ILP solvers: they can fail even
when the dataset can fit in main memory, due to the complexity of the
integer problem. In contrast, our scalable SKETCHREFINE algorithm
is able to perform well on all dataset sizes and across all queries.
SKETCHREFINE consistently performs about an order of magnitude
faster than DIRECT across all queries, both on real-world data and
benchmark data. Its running time is consistently below one or two
minutes, even when constructing packages from millions of tuples.

Both the mean and median approximation ratios are very low,
usually all close to one or two. This shows that the substantial
gain in running time of SKETCHREFINE over DIRECT does not
compromise the quality of the resulting packages. Our results in-
dicate that the overhead of partitioning with a radius condition is
often unnecessary in practice. Since the approximation ratio is not
enforced, SKETCHREFINE can potentially produce bad solutions,
but this happens rarely. In our experiments, this only occurred with
query Q2 from the TPC-H benchmark.

5.2.2 Effect of varying partition size threshold
The size of each partition, controlled by the partition size thresh-

old τ, is an important factor that can impact the performance of
SKETCHREFINE: Larger partitions imply fewer but larger subprob-
lems, and smaller partitions imply more but smaller subproblems.
Both cases can significantly impact the performance of SKETCHRE-
FINE. In our second set of experiments, we vary τ, which is used

during partitioning to enforce the size condition (Section 4.1), to
study its effects on the query response time and the approximation
ratio of SKETCHREFINE. In all cases, along the lines of the previous
experiments, we do not enforce a radius condition. Figures 7 and 8
show the results obtained on the Galaxy and TPC-H benchmarks,
using 30% and 100% of the original data, respectively. We vary
τ from higher values corresponding to fewer but larger partitions,
on the left-hand size of the x-axis, to lower values, corresponding
to more but smaller partitions. When DIRECT is able to produce
a solution, we also report its running time (horizontal line) as a
baseline for comparison.

Our results show that the partition size threshold has a major
impact on the execution time of SKETCHREFINE, with extreme
values of τ (either too low or too high) often resulting in slower
running times than DIRECT. With bigger partitions, on the left-hand
side of the x-axis, SKETCHREFINE takes about the same time as
DIRECT because both algorithms solve problems of comparable size.
When the size of each partition starts to decrease, moving from left to
right on the x-axis, the response time of SKETCHREFINE decreases
rapidly, reaching about an order of magnitude improvement with
respect to DIRECT. Most of the queries show that there is a “sweet
spot” at which the response time is the lowest: when all partitions
are small, and there are not too many of them. The point is consistent
across different queries, showing that it only depends on the input
data size (refer to Figure 3 for the different TPC-H data sizes). After
that point, although the partitions become smaller, the number of
partitions starts to increase significantly. This increase has two
negative effects: it increases the number of representative tuples,
and thus the size and complexity of the initial sketch query, and
it increases the number of groups that REFINE may need to refine
to construct the final package. This causes the running time of
SKETCHREFINE, on the right-hand side of the x-axis, to increase
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Figure 9: Increase or decrease ratio in running time of
SKETCHREFINE with different partitioning coverages. Cover-
age one, shown by the red dot, is obtained by partitioning on
the query attributes. The results show an improvement in run-
ning time when partitioning is performed on supersets of the
query attributes, with very good approximation ratios.

again and reach or surpass the running time of DIRECT. The mean
and median approximation ratios are in all cases very close to one,
indicating that SKETCHREFINE retains very good quality regardless
of the partition size threshold.

5.2.3 Effect of varying partitioning coverage
In our final set of experiments, we study the impact of offline

partitioning on the query response time and the approximation ratio
of SKETCHREFINE. We define the partitioning coverage as the ratio
between the number of partitioning attributes and the number of
query attributes. For each query, we test partitionings created using:
(a) exactly the query attributes (coverage = 1), (b) proper subsets of
the query attributes (coverage < 1), and (c) proper supersets of the
query attributes (coverage > 1).

For each query, we report the effect of the partitioning coverage
on query runtime as the ratio of a query response time over the same
query’s response time when coverage is one: a higher ratio (> 1)
indicates slower response time and a lower ratio (< 1) indicates a
faster response time. Figure 9 reports the results on the Galaxy and
the TPC-H datasets. The Galaxy dataset has many more numerical
attributes than the TPC-H dataset, allowing us to experiment with
higher values of coverage. The response time of SKETCHREFINE
improves on both datasets when the offline partitioning covers a
superset of the query attributes, whereas it tends to increase when
it only considers a subset of the query attributes. The mean and
median approximation ratios are consistently low, indicating that
the quality of the packages returned by SKETCHREFINE remains
unaffected by the partitioning coverage. These results demonstrate
that SKETCHREFINE is robust to imperfect partitionings, which
do not cater precisely to the query attributes. Moreover, using a
partitioning over a superset of a query’s attributes typically leads to
better performance. This means that partitioning can be performed
offline using the union of the attributes of an anticipated workload,
or even using all the attributes of a relation.

6. RELATED WORK
Package recommendations. Package or set-based recommenda-
tion systems are closely related to package queries. A package
recommendation system presents users with interesting sets of items
that satisfy some global conditions. These systems are usually
driven by specific application scenarios. For instance, in the Cours-
eRank [25] system, the items to be recommended are university
courses, and the types of constraints are course-specific (e.g., pre-
requisites, incompatibilities, etc.). Satellite packages [1] are sets
of items, such as smartphone accessories, that are compatible with

a “central” item, such as a smartphone. Other related problems in
the area of package recommendations are team formation [21, 2],
and recommendation of vacation and travel packages [8]. Queries
expressible in these frameworks are also expressible in PaQL, but
the opposite does not hold. The complexity of set-based package
recommendation problems is studied in [9], where the authors show
that computing top-k packages with a conjunctive query language is
harder than NP-complete.

Semantic window queries and Searchlight. Packages are also
related to semantic windows [17]. A semantic window defines a
contiguous subset of a grid-partitioned space with certain global
properties. For instance, astronomers can partition the night sky into
a grid, and look for regions of the sky whose overal brightness is
above a specific threshold. If the grid cells are precomputed and
stored into an input relation, these queries can be expressed in PaQL
by adding a global constraint (besides the brightness requirement)
that ensures that all cells in a package must form a contiguous region
in the grid space. Packages, however, are more general than semantic
windows because they allow regions to be non-contiguous, or to
contain gaps. Moreover, package queries also allow optimization
criteria, which are not expressible in semantic window queries.

A recent extension to methods for answering semantic window
queries is Searchlight [18], which expresses these queries in the form
of constraint programs. Searchlight uses in-memory synopses to
quickly estimate aggregate values of contiguous regions. However,
it does not support synopses for non-contiguous regions, and thus it
cannot solve arbitrary package queries. Searchlight has several other
major differences with our work: (1) it computes optimal solutions
by enumerating the feasible ones and retaining the optimal, whereas
our methods do not require enumeration; (2) Searchlight assumes
that the solver implements redundant and arbitrary data access paths
while solving the problems, whereas our approach decouples data
access from the solving procedure; (3) Searchlight does not provide
a declarative query language such as PaQL; (4) unlike SKETCHRE-
FINE, Searchlight does not allow solvers to scale up to a very large
number of variables. At the time of this submission, Searchlight has
not been made available by the authors and thus we could not run a
comparison for the types of queries that it can express.

How-to queries. Package queries are related to how-to queries [22],
as they both use an ILP formulation to translate the original queries.
However, there are several major differences between package
queries and how-to queries: package queries specify tuple collec-
tions, whereas how-to queries specify updates to underlying datasets;
package queries allow a tuple to appear multiple times in a pack-
age result, while how-to queries do not model repetitions; PaQL is
SQL-based whereas how-to queries use a variant of Datalog; PaQL
supports arbitrary Boolean formulas in the SUCH THAT clause,
whereas how-to queries can only express conjunctive conditions.

Constraint query languages. The principal idea of constraint
query languages (CQL) [19] is that a tuple can be generalized as
a conjunction of constraints over variables. This principle is very
general and creates connections between declarative database lan-
guages and constraint programming. However, prior work focused
on expressing constraints over tuple values, rather than over sets
of tuples. In this light, PaQL follows a similar approach to CQL
by embedding in a declarative query language methods that handle
higher-order constraints. However, our package query engine design
allows for the direct use of ILP solvers as black box components, au-
tomatically transforming problems and solutions from one domain
to the other. In contrast, CQL needs to appropriately adapt the algo-
rithms themselves between the two domains, and existing literature
does not provide this adaptation for the constraint types in PaQL.
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ILP approximations. There exists a large body of research in
approximation algorithms for problems that can be modeled as
integer linear programs. A typical approach is linear programming
relaxation [30] in which the integrality constraints are dropped and
variables are free to take on real values. These methods are usually
coupled with rounding techniques that transform the real solutions
to integer solutions with provable approximation bounds. None of
these methods, however, can solve package queries on a large scale
because they all assume that the LP solver is used on the entire
problem. Another common approach to approximate a solution to
an ILP problem is the primal-dual method [13]. All primal-dual
algorithms, however, need to keep track of all primal and dual
variables and the coefficient matrix, which means that none of these
methods can be employed on large datasets. On the other hand,
rounding techniques and primal-dual algorithms could potentially
benefit from the SKETCHREFINE algorithm to break down their
complexity on very large datasets.
Approximations to subclasses of package queries. Like pack-
age queries, optimization under parametric aggregation constraints
(OPAC) queries [14] can construct sets of tuples that collectively
satisfy summation constraints. However, existing solutions to OPAC
queries have several shortcomings: (1) they do not handle tuple repe-
titions; (2) they only address multi-attribute knapsack queries, a sub-
class of package queries where all global constraints are of the form
SUM()≤ c, with a MAXIMIZE SUM() objective criterion; (3) they
may return infeasible packages; (4) they are conceptually different
from SKETCHREFINE, as they generate approximate solutions in
a pre-processing step, and packages are simply retrieved at query
time using a multi-dimensional index. In contrast, SKETCHREFINE
does not require pre-computation of packages. Package queries
also encompass submodular optimization queries, whose recent
approximate solutions use greedy distributed algorithms [23].

7. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced a complete system that supports

the specification and efficient evaluation of package queries. We
presented PaQL, a declarative extension to SQL, and theoretically
established its expressiveness, and we developed a flexible approxi-
mation method, with strong theoretical guarantees, for the evaluation
of PaQL queries on large-scale datasets. Our experiments on real-
world and benchmark data demonstrate that our scalable evaluation
strategy is effective and efficient over varied data sizes and query
workloads, and remains robust under suboptimal conditions and
parameter settings.

In our future work, we plan to extend our evaluation methods to
larger classes of package queries, including multi-relation and non-
linear queries, and we intend to investigate parallelization strategies
for SKETCHREFINE. Package queries pose interesting challenges
on usability aspects as well: Our goal is to develop interaction and
learning methods that let users identify their ideal packages without
having to specify a full and precise PaQL query.
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