
Cleaning Timestamps with Temporal Constraints

Shaoxu Song Yue Cao Jianmin Wang
Tsinghua National Laboratory for Information Science and Technology

KLiss, MoE; School of Software, Tsinghua University, China
{sxsong, caoyue10, jimwang}@tsinghua.edu.cn

ABSTRACT
Timestamps are often found to be dirty in various scenar-
ios, e.g., in distributed systems with clock synchronization
problems or unreliable RFID readers. Without cleaning the
imprecise timestamps, temporal-related applications such as
provenance analysis or pattern queries are not reliable. To
evaluate the correctness of timestamps, temporal constraints
could be employed, which declare the distance restrictions
between timestamps. Guided by such constraints on times-
tamps, in this paper, we study a novel problem of repairing
inconsistent timestamps that do not conform to the required
temporal constraints. Following the same line of data repair-
ing, the timestamp repairing problem is to minimally modify
the timestamps towards satisfaction of temporal constraints.
This problem is practically challenging, given the huge space
of possible timestamps. We tackle the problem by identify-
ing a concise set of promising candidates, where an opti-
mal repair solution can always be found. Repair algorithms
with efficient pruning are then devised over the identified
candidates. Experiments on real datasets demonstrate the
superiority of our proposal compared to the state-of-the-art
approaches.

1. INTRODUCTION
Imprecise timestamps are very prevalent, e.g., owing to

clock synchronization, granularity mismatch, latency or out-
of-order delivery of events in distributed systems [3]. Clean-
ing the imprecise timestamps is necessary for reliable ap-
plications, such as provenance analysis [15], identifying the
sequence of steps leading to a data value, or complex event
processing (CEP) [9], returning the occurrences of requested
event patterns.

Constraints are essential in evaluating the correctness of
data, such as integrity constraints for relational data [11].
Regarding temporal data, we employ temporal networks [8],
specifying temporal constraints on timestamp differences be-
tween nodes/variables (see examples below). The aforesaid

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 10
Copyright 2016 VLDB Endowment 2150-8097/16/06.

Event Timestamp

1 (Submit) 09:05

2 (Normalize) 23:53

3 (Proofread) 09:25

4 (Examine) 09:48

5 (Authorize) 09:54

(a) Trace σ1

Event Timestamp

3 (Proofread) 14:

1 (Submit) 14:16

2 (Normalize) 14:35

4 (Examine) 14:52

5 (Authorize) 15:29

(b) Trace σ2

(c) Temporal constraint network
Figure 1: Event logs with temporal constraints

imprecise timestamps could be identified as violations of the
temporal constraints.

Inspired by data repairing w.r.t. integrity constraints [4],
the timestamp repairing proposes to modify the timestamps
towards satisfaction of the given temporal constraints.

Example 1. Figure 1 presents some example segments of
real event logs in the ERP system of a train manufacturer
(see Section 6 of experiments for more information). A trace,
a.k.a. workflow run or process instance, is a collection of
events. For instance, trace σ1 in Figure 1(a) records five
steps (events) for processing a part design work, including
Submit, Normalize, Proofread, etc. Each event is associated
with a timestamp on when this event occurred. Every part
design process yields a trace, e.g., σ2 in Figure 1(b) is the
trace of designing another part.

Since the events are collected from various external sources,
imprecise timestamps are prevalent, e.g., 23:53 of event 2 in
σ1, which is delayed until just before midnight owing to
latency. Another example of granularity mismatching ap-
pears in event 3 in σ2. Proofread of the part is processed by
an outsourcing company, which records timestamps in hour
granularity, i.e., 14: .

The events are obviously not occurring in random, but
constrained by certain workflow discipline. Figure 1(c) illus-
trates a temporal network (abstracted from workflow spec-
ifications), specifying constraints on occurring timestamps
of events (denoted by nodes). For instance, the temporal
constraint [1, 30] from events 1 to 3 in Figure 1(c), indi-
cates the minimum and maximum restrictions on the dis-
tance (delay) of these two events’ timestamps. That is, event
3 (Proofread) should be processed within 30 minutes after
event 1 (Submit). Events 3 and 1 in σ1 satisfy this temporal

708



constraint, since their timestamp distance 09:25−09:05 = 20
is in the range of [1, 30].

Multiple intervals may also be declared between two events.
For instance, in Figure 1(c), [1,10][30,40] on edge 4→ 5 de-
note that 5 (Authorize) can be processed after 4 (Examine)
either by the department head in 1-10 minutes or by the divi-
sion head in 30-40 minutes. Such temporal constraints can
either be extracted from workflow/process specifications, or
obtained from data [16].

The aforesaid imprecise timestamps are then identified as
violations of the temporal constraints, such as events 2 and
1 in σ1 with timestamp distance 23:53 − 09:05 = 888 > 30.
Similarly, events 3 and 1 in σ2 with distance 14: − 14:16 =
−16 are identified as inconsistent timestamps as well.

To address the imprecise timestamps, similar to other
constraint-based repairing [7], the temporal constraint net-
work is given in advance as inputs. Although only five events
are presented in this example, a trace could be longer, con-
taining events that are not specified in the constraints. The
events are not necessary to be ordered by timestamps, since
their timestamps are imprecise. �

The challenge of repairing the inconsistent timestamps is
obvious, given the huge volume of possible timestamps. To
capture reasonable repairs, we follow the minimum change
principle in data repairing [4], i.e., to find a repair that is as
close as possible to the original observation. The rationale
behind is that systems or human always try to minimize
their mistakes in practice.

The timestamp repairing problem is thus, given an assign-
ment of timestamps violating a temporal network, to find a
repaired timestamp assignment that (1) satisfies the tempo-
ral constraints and (2) is closest to the initial assignment.

Example 2 (Example 1 continued). To eliminate the viola-
tion between events 2 and 1 in σ1, one may modify the times-
tamp of event 1 (e.g., to 23:23, referring to the constraint
[1, 30] on 1→ 2). However, it introduces new violations be-
tween events 1 and 3, and leads to further modifications on
events 3, 4 and 5. Alternatively, we can repair the times-
tamp of event 2 by 09:35, which satisfies the time constraint
and does not evoke further timestamp modification. It is
true that the repaired timestamp (09:35 with the minimum
change) may not be exactly the original true timestamp.
Nevertheless, without further knowledge, repairing slightly
a single event 2 is more reasonable than modifying signifi-
cantly over almost the entire trace 1, 3, 4 and 5, under the
discipline that people and systems always try to minimize
mistakes in practice. Indeed, such a minimum repair does
help in applications as illustrated in Section 6.4. �

Preliminary studies [10, 19] handle the imprecise times-
tamps by an uncertainty model on possible timestamps. The
probabilistic-based repairing is thus performed via proba-
bilistic inference in Bayesian Networks [13]. A key issue of
this method (as analyzed in Section 7 of related work and
evaluated in Section 6 of experiments) is that its repairing
heavily relies on an essential preliminary step of correctly
ordering data points before adapting the timestamps.

Beside the probabilistic-based approach, we may model
the temporal constraints as integrity constraints (e.g., denial
constraints [6]), and employ existing constraint-based data
repairing methods [7]. Unfortunately, according to our anal-
ysis (in Section 7 as well as in the experimental evaluation),

the soundness w.r.t. satisfaction of temporal constraints is
not guaranteed due to the greedy computation.

Contributions. Our main contributions are summarized as

(1) We propose a solution transformation paradigm, in Sec-
tion 3, the key to identify a finite set of timestamp repair
candidates. Our essential argument is that any repair so-
lution (including the optimal one) can be transformed to
a special form, without increasing modification cost, such
that each changed node (in repairing) is tightly connected
to some unchanged node. By tightly, we mean the times-
tamp difference of two nodes equals to the interval endpoint
of temporal constraints. Intuitively, the tight relationship is
important since it significantly reduces the number of times-
tamp candidates considered between two nodes.

(2) We capture a finite set of timestamp repair candidates,
w.r.t. the aforesaid unchanged nodes and tight connections,
where an optimal repair solution can always be found (Corol-
lary 5) in Section 4. To generate a more concise set of candi-
dates, we show that it is sufficient to consider a special type
of provenance chains, instead of arbitrary tight connections.

(3) We devise exact, heuristic and randomized algorithms
for repairing timestamps, in Section 5. Unlike the constraint-
based greedy repairing [7], satisfaction of temporal constraints
(soundness) is guaranteed in our results. Advanced pruning
techniques are developed, in Section 5.

(4) We report an extensive experimental evaluation over
a real dataset, in Section 6. The results demonstrate that
our proposed methods show significantly higher repair accu-
racy compared to the state-of-the-art approaches, including
probabilistic-based [13] and constraint-based [7], while time
cost of our proposal is lower (see Section 6.3 for details).
In particular, the higher repair accuracy compared to the
probabilistic and randomized methods (that do not strictly
follow the minimum modification principle) verifies the ra-
tionale of minimizing changes in timestamp/data repairing.

The remaining of this paper is organized as follows. In
Section 2, we show np-hardness of the repairing problem
(Theorem 1). The major challenge originates from the nu-
merous possible timestamps. Intuitively, instead of consid-
ering arbitrary combination of timestamps, in Section 3, we
show that any repair could be transformed to a special class
of solutions with tight chains (Proposition 3). This prop-
erty on tight chains is important, since it implies an optimal
repair, composed of unchanged assignments and tight edges
(Corollary 5). Therefore, we can capture a set of candidates
via unchanged assignments and tight edges in Section 4, and
find the optimal solution from the candidates in Section 5.

2. PRELIMINARIES
Temporal Constraints. Consider a set of variables, X1, . . . ,
Xn. Each variable Xi represents a time point of an event i,
taking values from a domain D of possible timestamps.

A simple temporal network (STN) is a directed constraint
graph, S = (N ,E), whose nodes N = {1, . . . , n} represent
variables/events and an edge i→ j (i, j ∈ N ) indicates that
a constraint Sij is specified. Each constraint Sij specifies a
single interval, [aij , bij ], to constraint the permissible values
for the distance Xj−Xi, represented by aij ≤ Xj−Xi ≤ bij .

A tuple x = (x1, . . . , xn) is called a solution if the assign-
ment {X1 = x1, . . . ,Xn = xn} satisfies all the constraints.

709



(a) (b)

Figure 2: Distance graph for S with one interval
[1,10] on edge 4 → 5 in Figure 1, and the corre-
sponding minimal network representation

Let (xi, xj) � Sij denote xi, xj satisfying the constraint Sij ,
i.e., aij ≤ xj − xi ≤ bij . The solution x satisfying all the
constraints, (xi, xj) � Sij , ∀i, j ∈ N , is denoted by x � S .

A distance graph, Sd = (N ,Ed), is a directed edge-weighted
graph. It has the same node set as S , and each edge, i→ j,
is labeled by a weight cij , representing Xj −Xi ≤ cij .

Let dij denote the length of the shortest path from i to j,
w.r.t. the edge weights in the distance graph. An equivalent
minimal network representation, R, of S is defined by Rij =
[−dji, dij ], ∀i, j ∈ N . It implies −dji ≤ Xj −Xi ≤ dij .

A general temporal network G generalizes STN by labeling
multiple intervals to an edge. A tuple x satisfies G, x � G,
if one of the intervals in Gij is satisfied for each edge i→ j,
denoted by (xi, xj) � Gij . Considering the combinations of
intervals among edges, G can be represented by a set of
STNs S . A minimal network M for G is obtained by the
union of minimal network representations R of all S [8].

Example 3 (Example 1 continued). Consider a simple tem-
poral network S with one interval [1,10] on edge 4 → 5 in
Figure 1. Its corresponding distance graph is plotted in Fig-
ure 2(a). An edge, e.g., 4 → 5 in the distance graph, with
weight d45 = 10, denotes that X5 − X4 ≤ d45 = 10. To-
gether with X4 − X5 ≤ d54 = −1, it is equivalent to the
constraint [1, 10] in Figure 1, i.e., 1 ≤ X5−X4 ≤ 10. Figure
2(b) presents the equivalent minimal network representation
R for S , by considering the shortest paths for each pair of
nodes in Figure 2(a).

Timestamps in trace σ1 in Figure 1(a) are represented by a
tuple x=(09:05, 23:53, 09:25, 09:48, 09:54), where x1=09:05
denotes the timestamp of event 1, and so on. We say that
x1, x3 satisfy the temporal constraints, (x1, x3) � R13, since
x3 − x1 = 20 < 30 and x1 − x3 = −20 < −1, where 30 and
−1, corresponding to edges 1→ 3 and 3→ 1 in Figure 2(b),
respectively, are the temporal constraints [1, 30] in Figure 1.

Consider the simple temporal network S ′ with another in-
terval [30,40] on edge 4→ 5 in Figure 1. Referring to [8], by
combining the minimal network representation for S ′ with
Figure 2(b) for S , the minimal network M equivalent to the
temporal network G in Figure 1 is obtained, as shown in
Table 1. For instance, [1,10][30,40] on edge 4→ 5 in Figure
1 is represented by [1,10][30,40] in the cell at row 4 column
5, in the minimal network M in Table 1; or equivalently by
[-10,-1][-40,-30] in the cell at row 5 column 4. �

As studied in [8], by applying all-pair-shortest-paths al-
gorithm to the distance graph, the minimal network rep-
resentation R can be constructed from the simple temporal
network S , in O(n3) time. Since such construction is out the

Table 1: Minimal network M equivalent to the tem-
poral constraints G in Figure 1

1 2 3 4 5

1 [0] [1,30] [1,30] [2,60] [3,100]

2 [-30,-1] [0] [-29,29] [-28,59] [-27,69]

3 [-30,-1] [-29,29] [0] [1,30] [2,70]

4 [-60,-2] [-59,28] [-30,-1] [0]
[1,10]

[30,40]

5 [-100,-3] [-69,27] [-70,-2]
[-10,-1]

[0]
[-40,-30]

scope of this study and could be done in preprocessing, we
start directly from the minimal network M given as input,
and focus on the timestamp repairing w.r.t. M .

Repair Model. For a tuple x that does not satisfy the
temporal constraints M , denoted by x 6� M , the repairing is
to find another tuple x ′ by modifying the assignment in x
such that x ′ � M . Along the same line of minimum change
principle in data repairing [4, 5] (with an intuition that hu-
man or machines always try to minimize their mistakes), the
repair cost is evaluated by

∆(x , x ′) =

n∑
i=1

|xi − x ′i |, (1)

where |xi − x ′i | denotes the absolute difference between the
original timestamp xi and the repaired timestamp x ′i .

Given a tuple x of assignment over temporal constraints
M , the timestamp repairing problem is to find a repair x ′ of
x such that x ′ � M and ∆(x , x ′) is minimized.

Theorem 1. The timestamp repairing problem is np-hard.

Proof sketch. To prove np-hardness, we build a reduction
from the 3-coloring problem. We show that a tuple x has a
repair x ′ with cost ∆(x , x ′) = k iff the graph in reduction is
3-colorable (see proof details in technical report [1]). �

3. SOLUTION TRANSFORMATION
In this section, we transform a given repair x ′ to another

x ′′ such that each changed node (x ′′i 6= xi) is tightly con-
nected to some unchanged node (see tight definition below).
Intuitively, this transformation applies to the optimal solu-
tion as well, and enlightens the candidate generation w.r.t.
unchanged timestamps and tight connections (in Section 4).

3.1 Tightly Connected Nodes
Consider any repair x ′ � M . We call i → j a tight edge

if x ′j − x ′i = dij . Nodes connected via tight edges are then
grouped together as follows (for transformation).

Definition 1. A tight chain between i and j, denoted by
〈k0 = i, k1, . . . , k` = j〉, includes ` tight edges, having either

x ′ky−1
− x ′ky

=dkyky−1 (i.e., tight edge ky → ky−1) or

x ′ky
− x ′ky−1

=dky−1ky (i.e., tight edge ky−1 → ky),

∀y = 1, . . . , `.

For example, Figure 4(a) shows a tight chain, with 4 tight
edges, between nodes 1 and 5. The numbers attached to
nodes denote timestamps, e.g., x ′1 = 10, while edges are

710



associated with weights of temporal constraints (from M in
Table 1/Figure 2), such as d12 = 30 for 1 → 2. Since the
edges in the chain are tight, we have x ′2−x ′1 = 40−10 = d12.

Let Nu denote a set of nodes i that are either unchanged
in repairing (x ′i = xi) or connected to some unchanged j via
a tight chain between i and j. The goal of transformation
is to move all nodes into Nu without increasing repair cost.

Moving Tightly Connected Nodes Together. Consider
a changed node i, x ′i 6= xi (say x ′i > xi; similar moving trans-
formation can be made for x ′i < xi too). To ensure the non-
increasing repair cost, we could decrease x ′i . However, there
may exist some other x ′j having x ′j − x ′i = dij . That is, x ′i
could not decrease solely, owing to the temporal constraints.
Instead, we need to alter some other assignments, such as
x ′j with tight edge i→ j, together with the decrease of x ′i .

Let Nm denote a set of changed nodes connected via tight
chains, which are proposed to vary together, such as the
aforesaid i, j connected by tight edge i→ j. We consider

Np = {j ∈ Nm | x ′j > xj},Nq = {j ∈ Nm | x ′j < xj},

where Np are the nodes preferring to decrease, while Nq are
the nodes who want increasing.

Example 4. Consider a tuple x = (10, 35, 0, . . . ), and a
repair x ′ = (15, 35, 45, . . . ) of x , as illustrated in Figure 3.
We have node 2 ∈ Nu, since x2 = x ′2 = 35 is unchanged.

Nodes in Nm = {1, 3} are proposed to move (decrease)
together, given x ′1 > x1 and the tight edge 1 → 3 with
x ′3 − x ′1 = 30 = d13. By solely decreasing x ′1 (e.g., to 5)
without changing x ′3, it leads to violation to x ′3− x ′1 ≤ d13 =
30. Thereby, x ′3 should decrease together with x ′1.

Np = {1, 3} indicates that decreasing is preferred, since
x ′1 > x1, x

′
3 > x3 (see details soon). �

3.2 Transformation without Increasing Cost
Intuitively, if |Np| ≥ |Nq|, by decreasing a very small δ, δ >

0, for all x ′j in Nm, we can obtain another x ′′, having x ′′j =
x ′j − δ, j ∈ Nm, such that for any x ′j > xj it retains x ′′j > xj .
That is, the sets Np,Nq have no change. It follows

∆(x , x ′)−∆(x , x ′′) =
∑
j

|xj − x ′j | − |xj − x ′′j |

=|Np|δ − |Nq|δ ≥ 0 (2)

If there is no other node k outside Nm which prevents the
decrease, we still have x ′′ � M after transformation.

For the amount δ that is allowed to move, we consider

η = min
j∈Nm,k 6∈Nm,djk∈M

djk − (x ′k − x ′j). (3)

It denotes the maximum amount of allowed variation such
that no violation will be introduced to any k, k 6∈ Nm. Equa-
tion 3 ensures that, after reducing x ′j by η, x ′k−(x ′j−η) ≤ djk

is still satisfied, for all j ∈ Nm, k 6∈ Nm, djk ∈ M . That is,
decreasing x ′j by η, ∀j ∈ Nm, is allowed.

Recall that the goal of solution transformation is to show
that a repair x ′j is either unchanged (x ′j = xj) or tightly
connected to some other unchanged x ′i . We consider the
following amount θ of variation that can make x ′j unchanged,

θ = min
j∈Np

x ′j − xj . (4)

The min operator ensures that any variation less than θ will
not change the relationship between x ′j and xj for all j ∈ Np.

Figure 3: Example of transformation

And thus, |Np| ≥ |Nq| retains (as decreasing x ′j will never
affect x ′j < xj in Nq).

While θ denotes the variation that is sufficient to obtain an
unchanged node, η specifies the maximum variation amount
allowed. The moving amount is thus determined by δ =
min(θ, η), which corresponds to two cases below:

Case 1. For θ > η, we assign x ′′j = x ′j − η,∀j ∈ Nm. It
creates a new solution with tight edge j → k, x ′′k −x ′′j = djk,
for some j ∈ Nm, k 6∈ Nm, djk ∈ M , having djk−(x ′k−x ′j) = η
before decreasing x ′j by η.

If k ∈ Nu, all the nodes j in Nm find their connections to
unchanged nodes in Nu (recall that nodes in Nm are con-
nected with each other by tight edges so that have to vary
together), and Nm can be merged with Nu; otherwise, k is
moved to Nm, and the transformation carries on over Nm.

Case 2. For θ ≤ η, we assign x ′′j = x ′j − θ,∀j ∈ Nm. It
creates a new solution with unchanged x ′′j = xj , for some
j ∈ Nm, having x ′j − xj = θ before reducing x ′j by θ.

Hence, we move all the nodes in Nm to Nu.

Example 5 (Example 4 continued). |Np = {1, 3}| ≥ |Nq| =
∅ implies that by decreasing together the assignments of
nodes in Nm, the repair cost will not increase.

Referring to Equation 3, η = d12 − (x ′2 − x ′1) = 30 −
(35 − 15) = 10 requires the amount of decreasing should
not exceed 10, otherwise violation occurs between x ′1 and x ′2
(where 2 6∈ Nm). For instance, an assignment x ′′1 = 4 with
decreasing amount 15 − 4 = 11 > η = 10 is not allowed,
since 35− 4 = 31 > d12 = 30.

Referring to Equation 4, θ = x ′1− x1 = 15− 10 = 5 means
that a decreasing amount less than 5 will not change |Np =
{1, 3}| ≥ |Nq| = ∅. It ensures the non-increasing repair cost.

After decreasing δ = 5 (according to Case 2 since θ < η),
x ′′1 = x1 = 10 becomes unchanged. Node 3 moving together
with 1, having x ′′3 = 40, is still tightly connected to node 1.
Therefore, both nodes 1 and 3 in Nm are moved to Nu. �

Proposition 2. The transformation from repair x ′ to an-
other x ′′ satisfies that (1) the repair cost does not increase,
∆(x , x ′′) ≤ ∆(x , x ′), and (2) each changed node (x ′′i 6= xi)
in the new x ′′ is tightly connected to some unchanged node.

Proof sketch. Each transformation step ensures no cost in-
crease. By moving changed nodes to Nu, the conclusion is
proved. �

3.3 Transformation Algorithm
Algorithm 1 shows the procedure of the aforesaid trans-

formation from x ′ to x ′′. Lines 6 to 8 assemble Nm w.r.t.
tight edges. For |Np| ≥ |Nq|, Nm proposes to decrease as
presented in Section 3.2. Otherwise, Lines 21 to 24 increase
the assignment for nodes in Nm.

711



Algorithm 1: Transform(M , x , x ′)

Input: a repair x ′ of x
Output: a repair x ′′ with repair cost no greater than that

of x ′, and each changed node in x ′′ is connected to
some unchanged node by a tight chain.

1 Nv ← the set of n (unvisited) nodes;
2 Nu ← ∅;Nm ← ∅;
3 while Nv is not empty do
4 move one node i from Nv to Nm;
5 while Nm is not empty do
6 for each j ∈ Nm, i ∈ Nv , dji, dij ∈ M do
7 if x ′i − x ′j = dji or x ′j − x ′i = dij then

8 move node i from Nv to Nm;
9 for each j ∈ Nm, k ∈ Nu, djk, dkj ∈ M do

10 if x ′k − x ′j = djk or x ′j − x ′k = dkj then

11 move all nodes j from Nm to Nu;

12 for each j ∈ Nm do
13 if x ′j = xj then // unchanged repair

14 move all nodes j from Nm to Nu;

15 Np ← {j ∈ Nm | x ′j > xj};
16 Nq ← {j ∈ Nm | x ′j < xj};
17 if |Np| ≥ |Nq | then // decrease Nm

18 η ← minj∈Nm,k∈Nv∪Nu,djk∈M djk − (x ′k − x ′j);

19 θ ← minj∈Np x ′j − xj ;

20 x ′j ← x ′j −min(η, θ), ∀j ∈ Nm;

21 else // increase Nm

22 η ← minj∈Nm,k∈Nv∪Nu,dkj∈M dkj − (x ′j − x ′k);

23 θ ← minj∈Nq xj − x ′j ;

24 x ′j ← x ′j + min(η, θ), ∀j ∈ Nm;

25 return x ′ as a new repair x ′′

Proposition 3. Algorithm 1 runs in O(n2) time, and out-
puts a repair x ′′, such that (1) ∆(x , x ′′) ≤ ∆(x , x ′) and (2)
for each x ′′j 6= xj, there is a tight chain, 〈k0 = i, k1, . . . , k` =
j〉, where x ′′i = xi.

Proof sketch. The correctness of Algorithm 1 could be illus-
trated similar to the proof of Proposition 2. A node will be
moved to Nu or Nm only once. For each node, checking its
tight connections costs O(n). The algorithm runs in O(n2)
time. �

Example 6 (Example 5 continued). For a given tuple x =
(10, 35, 0, 52, 60) and its repair x ′ = (15, 35, 45, 52, 60), with
cost ∆(x , x ′) = 50. After applying the transformation in
Example 5 (decreasing Nm = {1, 3}), it forms another repair
x ′′ = (10, 35, 40, 52, 60), with lower cost ∆(x , x ′′) = 40.

For the remaining nodes, they are unchanged, such as
x ′4 = x4 = 52, and will be moved to Nu directly in Line 13.
Algorithm 1 terminates. �

4. CANDIDATE GENERATION
Intuitively, given any optimal repair, we transform it to

a special form that (1) consists of unchanged assignments
and tight edges, and (2) is still optimal, referring to the
non-increasing cost during transformation. Such property
enlightens us on capturing a set of candidates via unchanged
assignments and tight edges (in this section), and finding the
optimal solution from the candidates (in Section 5).

4.1 Candidates from Tight Chains
Consider an optimal repair solution x∗ of x whose repair

cost ∆(x , x∗) is minimized and x∗ � M . We first show that
the nodes must be tightly connected in the assignment.

(a) (b)
Figure 4: Example of (a) tight and (b) provenance
chains, for repairing x = (10, 40, 11, 41, 13)

Lemma 4. For any x∗i > xi in an optimal solution x∗ =
(x∗1 , . . . , x

∗
n), there must exist some j such that x∗j −x∗i = dij.

Proof sketch. Assuming reducing x∗i without modifying the
corresponding x∗j , we prove by contradiction. �

Similarly, for x∗i < xi, there must exist an tight edge in
the form of j → i that x∗i − x∗j = dji, i.e., increasing x∗i is
impossible. In the following, we consider x∗i > xi by default,
while the same results apply to the other case x∗i < xi.

Moreover, the following conclusion states that there is an
optimal solution x∗ whose nodes are not only tightly con-
nected but also connected to unchanged nodes.

Corollary 5. An optimal solution x∗ = (x∗1 , . . . , x
∗
n) can

always be found such that each changed x∗j , x
∗
j 6= xj , is con-

nected to some unchanged x∗i = xi via a tight chain.

Proof sketch. The conclusion can be proved by conducting
Transform(M , x , x ′) for any optimal solution x ′. �

We now generate the repair candidate for node j w.r.t.
unchanged node i and tight chain 〈k0 = i, k1, . . . , k` = j〉.
By summation of x ′ky

− x ′ky−1
= dky−1ky (or −x ′ky−1

+ x ′ky
=

−dkyky−1) for all tight edges in the chain, the repair candi-
date for x ′j is computed by

x ′j = xi +
∑̀
y=1

ky−1→ky in chain

dky−1ky −
∑̀
y=1

ky→ky−1 in chain

dkyky−1 .

(5)

Considering all the tight chains connecting to possible un-
changed node i, we generate a set of repairing candidates Tj

for each node j. According to Corollary 5, an optimal repair
solution can always be found over Tj for all nodes j.

Example 7. Consider a tuple x = (10, 40, 11, 41, 13). Fig-
ure 4(a) illustrates a tight chain for generating repair can-
didates for x . The number on each edge denotes the con-
straint from the minimal network M . For instance, 29 on
3→2 corresponds to [-29,29] in row 3 column 2 in Table 1,
or more specifically, d32=29 on 3→2 in Figure 2(b). Sim-
ilarly, -1 on 5→4 corresponds to [-10,-1][-40,-30] in row 5
column 4 in Table 1, or more specifically, d54=-1 on 5→4
in Figure 2(b). All the nodes are connected via this tight
chain to the unchanged node x ′1 = x1 = 10. The number
attached to each node i represents a repair candidate x ′i ,
which is computed by Equation 5. For instance, we have
x ′4 = x1 + d12 − d32 − d43 = 10 + 30− 29 + 1 = 12.

The correctness of computing candidates by Equation 5
is verified by showing that each edge in Figure 4(a) w.r.t. x ′i
is tight, e.g., for 1→ 2, having x ′2 − x ′1 = d12 = 30. Indeed,
this x ′ = (10, 40, 11, 12, 13) forms an optimal repair with the
minimum cost ∆(x , x ′) = 29. �

For a node j, there are n−1 possible unchanged nodes for
tight chains with length 1. Each may suggest 2c candidates,
where c is the maximum number of intervals labeling an

712



edge in M . For tight chains with length 2, there are at most
(2c)2(n− 1)(n− 2) candidates. For tight chains with length
n− 1, the maximum size of candidates is (2c)n−1(n− 1)!.

4.2 Towards More Concise Candidates
In the following, we show that it is not necessary to con-

sider all the possible tight chains with arbitrary tight edge
combinations. Instead, the chains in the transformation re-
sult follow certain patterns (namely provenance chains, a
particular class of structures with alternating edges). In-
tuitively, since any tight chain can be reduced to a prove-
nance chain (Lemma 6), it is sufficient to consider prove-
nance chains in candidate generation (Propositions 7).

Definition 2. A provenance chain between i and j is a tight
chain, 〈k0 = i, k1, . . . , k` = j〉, such that the tight edges are
in the form of either

k0 → k1, k1 ← k2, k2 → k3, k3 ← k4, k4 → k5, . . . or

k0 ← k1, k1 → k2, k2 ← k3, k3 → k4, k4 ← k5, . . .

That is, the directions of consecutive tight edges are al-
ways flipped in the chain (see Figure 4(b) for example).

Lemma 6 (Transitivity on tight edges). For any x ′, if there
are two tight edges i → j and j → k, having x ′j − x ′i = dij

and x ′k − x ′j = djk, respectively, it always implies the tight
edge i→ k with x ′k − x ′i = dik.

Proof sketch. Since edges i → j and j → k are tight, we
can infer the relationship of i → k referring to the shortest
paths in the minimal network. �

With this transitivity on tight edges, all the tight chains
(by transformation) can be reduced to provenance chains.

Proposition 7. An optimal solution x∗ = (x∗1 , . . . , x
∗
n) can

always be found such that each changed x∗j , x
∗
j 6= xj , is con-

nected to some unchanged x∗i = xi via a provenance chain.

Proof sketch. Referring to Corollary 5, the conclusion is
proved by applying the transitivity in Lemma 6. �

According to Proposition 7, it is sufficient to consider can-
didates w.r.t. provenance chains. Instead of two alternative
directions in expanding a tight chain, the provenance chain
has only one choice determined by the preceding one. The
number of candidates is thus significantly reduced.

Example 8 (Example 7 continued). Figure 4(b) illustrates
a provenance chain. As shown, the directions of edges ap-
pear alternatively in the chain. For example, the direction
of edge 3→ 4 (in red) should be different from the previous
2← 3 in Figure 4(b). The tight chain in Figure 4(a) has no
such constraint, e.g., the edge 3← 4 (in blue) is acceptable.

As a special tight chain, the repair candidates w.r.t. the
provenance chain, x ′ = (10, 40, 11, 41, 42), are computed by
Equation 5 as well. While candidate generation via tight
chains has to consider both Figures 4(a) and (b), the gen-
eration over provenance chains considers Figure 4(b) only.
It is not surprising that, provenance chains lead to more
concise candidate sets, and are more efficient. �

Provenance chains with length 2 suggest at most 2c2(n−
1)(n−2) candidates rather than (2c)2(n−1)(n−2) by tight
chains, where c is the maximum number of intervals labeling
an edge in M . For provenance chains with length n− 1, the
maximum size of candidates is 2cn−1(n− 1)!.

4.3 Candidate Generation Algorithm
Algorithm 2 generates a finite set of candidates for times-

tamp repairing, by considering (all) the possible provenance
chains. Line 2 initializes the start point of all possible prove-
nance chains, whose timestamps are not changed, i.e., the
original xi. Procedure Generate(Nc, t , i, direction) recursively
expands the chain on the remaining variables, where Nc is
the currently processed nodes, t is the tuple of candidates
over Nc, i is the current ending (latest expanded) point of
the chain, and “direction” is the direction of the last edge
(on i). Finally, the algorithm returns T , where each Ti ∈ T
is a set of candidate timestamps for variable Xi.

Suppose that a solution xmin is known in advance to be
feasible w.r.t. M (see Section 5.2.2 below for how to obtain
such a solution from the aforesaid solution transformation).
Let ∆c(x , t) =

∑
i∈Nc

|xi − ti | denote the currently paid cost

for generating the chain over Nc. If ∆c(x , t) has already ex-
ceeded ∆(x , xmin) of the given repairing solution xmin, there
is no need to further expand the chain, i.e., pruning candi-
dates by xmin in Line 2 in Generate.

Moreover, if the currently generated candidates in the
chain already violates the temporal constraints M , the ex-
pansion terminates. We say that t over Nc partially satisfies
M , denoted by t �c M , if ∀i, j ∈ Nc having (ti, tj) � Mij .
Line 2 in Generate carries on chain expansion if t �c M .

Lines 7 to 15 of Generate consider the possible chain ex-
pansion on each remaining node j ∈ N \Nc.

Algorithm 2: Candidate(M , x , xmin)

Input: a minimal network M , a tuple x , a currently known
feasible solution xmin

Output: T where each Ti ∈ T is a set of candidate
timestamps for variable Xi

1 N := {1, . . . , n};
2 initialize T := {Ti | i ∈ N} where each Ti := {xi};
3 visited := ∅;
4 for each i ∈ N do
5 ti := xi;
6 Generate ({i}, t , i, out);
7 Generate ({i}, t , i, in);
8 return T ;
1 Procedure Generate(Nc, t , i, direction)
2 if ∆c(x , t) < ∆(x , xmin) and t �c M and

(Nc, t , j,direction) 6∈ visited then
3 visited := visited ∪ {(Nc, t , i, direction)};
4 if Nc = N then
5 xmin := t ;
6 return;
7 for each j ∈ N \Nc, dij , dji ∈ M do
8 if direction = out then
9 tj := ti + dij ;

10 flipped := in;

11 else if direction = in then
12 tj := ti + dji;
13 flipped := out;

14 Tj := Tj ∪ {tj} for Tj ∈ T ;
15 Generate(Nc ∪ {j}, t , j,flipped);

Example 9 (Example 8 continued). Figure 5 illustrate the
provenance chains connected to the unchanged x1. It is in-
deed a tree rooted in node 1 with height n−1. The two num-
bers attached to each node i denotes the candidate ti and
the partial cost ∆c(x , t). For example, (t2,∆c) = (41, 98)
attached to node 2 denotes that the cost of generating the
current chain 〈1, 5, 2〉 is |10−10|+ |110−13|+ |41−40| = 98.

713



Figure 5: Example of generating candidates for re-
pairing x = (10, 40, 11, 41, 13)

It is notable that not all the provenance chains generate
feasible candidate sets. For example, for the chain 〈1, 5, 4, 2〉
with t1 = 10, t5 = 110, t4 = 70, t2 = 98 (in red), we have t2−
t1 = 88 > d12 = 30, i.e., t 6�c M . Such chains with violations
to temporal constraints are not necessary to consider.

Suppose that Algorithm 2 first expands the left most chain
〈1, 2, 3, 4, 5〉, with t = (10, 40, 11, 41, 42) and ∆(x , t) = 29,
which will be used as xmin in pruning the subsequent chains.
Consequently, the expansion on chain 〈1, 2, 4〉, whose ∆c

cost is 29 (in blue), terminates. �

The correctness is verified by showing that the product
of candidates in Ti, i.e.,

∏
Ti∈T Ti, includes all the possi-

ble provenance chains. In other words, an optimal solution
always exists by assembling candidate timestamps in Ti for
each Xi. (It is worth noting that there may be multiple un-
changed nodes in an optimal solution, that is, we might not
be able to obtain the optimal solution by simply considering
all the provenance chains with length n− 1 in Figure 5.)

Although the candidate size could be very large w.r.t. n, as
shown in the experiments, by restricting a maximum length
of provenance chains in expanding, the number of candidates
as well as generation time costs can be significantly reduced,
while the corresponding repair accuracy keeps high.

5. TIMESTAMP REPAIRING
Once a finite set of timestamp candidates Ti are obtained

for each variable Xi, we next compute the (optimal) repair
solution over the generated timestamp candidates. Intu-
itively, candidates can be efficiently pruned if their corre-
sponding costs exceed certain bounds (in Section 5.1).

5.1 Repair Algorithm
We rewrite the repairing problem as

min ∆(x , x ′) (6)

s.t. x ′i ∈ Ti, 1 ≤ i ≤ n, x ′ � M (7)

denoted by 〈x ,T 〉, where T consists of all candidate sets Ti.

5.1.1 Branch and Bound
We call T ′ a branch of T on a tk ∈ Tk,Tk ∈ T , where

(1) T ′k = {tk}, and (2) T ′j = Tj ,∀j, j 6= k. The candidate is
fixed to tk in T ′k, when branching from T to T ′. A branch
T ′ on tk is feasible, if ∀Ti ∈ T with |Ti| = 1, we have
(ti, tk) � Mik, ti ∈ Ti. That is, the new fixed tk does not
introduce violations to the previously fixed candidate ti.

Figure 6: Process for repairing a tuple x = (0, 30, 66),
with temporal constraints over three nodes

Let ∆p(x ,T ) denote the repair cost paid on those Xi

whose candidates are fixed with |Ti| = 1, i.e., ∆p(x ,T ) =∑
ti∈Ti,|Ti|=1,Ti∈T |xi − ti|.
Algorithm 4 considers a feasible branch T ′ in each iter-

ation in Line 9, and carries on branching if ∆p(x ,T ′) is
less than the bound ∆(x , xmin), where xmin is the currently
known best solution.

Example 10. For simplicity, let us consider a small tempo-
ral constraints network over three nodes in Figure 6. Sup-
pose that the candidate sets are obtained for repairing a
tuple x = (0, 30, 66), as shown in Figure 6(a). For instance,
the candidates for node 2 are T2 = {12, 30, 36, 60}, where
x2 ∈ T2 as well. The number attached to each candidate ti
denotes |ti − xi|, i.e., the cost needs for such a repair.

Suppose that t1 = 0 ∈ T1 of 〈x ,T 〉 in Figure 6(a) is
considered for branching. It yields a branch with new T1 =
{t1 = 0} as shown in Figure 6(b). The paid repair cost is
∆p(x ,T ) = |t1 − x1| = 0, where t1 is 0. �

5.1.2 Candidate Pruning during Repairing
Given any T together with a currently known best solu-

tion xmin, Algorithm 3 considers the pruning of candidates
in Ti ∈ T in the following aspects.

(1) Any ti ∈ Ti can be removed, if |ti− xi| > ∆(x , xmin), in
Lines 4-5 of Algorithm 3. That is, the cost of repairing by
ti is already greater than the currently known solution.

(2) For a Ti = {ti}, any tj ∈ Tj such that (ti, tj) 6� Mij

can be pruned. In other words, the remaining candidates tj
should not have violation to any ti with no other choices.

(3) For any ti, t
′
i ∈ Ti, |ti − xi| ≤ |t ′i − xi|, if (ti, tj) � Mij

and (t ′i , tj) � Mij , ∀j, then t ′i can be pruned, in Lines 6-10.
The rationale is that ti, t

′
i have no difference in determining

the remaining repairs.

Algorithm 3: Prune(M ,T , x , xmin)

1 for each Ti ∈ T , |Ti| > 1 do
2 wmin := +∞;
3 for each ti ∈ Ti do
4 if |ti − xi| > ∆(x , xmin) then
5 Ti := Ti \ {ti};
6 if (ti, tj) � Mij , ∀tj ∈ Tj ,Tj ∈ T then
7 Ti := Ti \ {ti};
8 if |ti − xi| < wmin then
9 wmin := |ti − xi|, tmin := ti;

10 Ti := Ti ∪ {tmin};
11 for each ti ∈ Ti, |Ti| = 1,Ti ∈ T do
12 for each tj ∈ Tj , |Tj | > 1,Tj ∈ T do
13 if (ti, tj) 6� Mij then
14 Tj := Tj \ {tj} for Tj ∈ T ;
15 return T

714



Proposition 8. The pruning in Algorithm 3 is safe, and
runs in O(a2n2) time, where a is the maximum size of can-
didates in Ti.

Proof sketch. By comparing all the pairs of candidates across
two nodes, it needs O(a2n2) comparisons. �

Example 11 (Example 10 continued). Suppose that a cur-
rently known feasible solution xmin has cost ∆(x , xmin) = 36.
For the problem 〈x ,T 〉 in Figure 6(b), the candidate t3 =
24 ∈ T3 with |t3 − x3| = 42 > 36 can be directly removed
according to the pruning rule (1).

Moreover, consider T1 = {t1 = 0}. According to pruning
rule (2), t2 = 60 ∈ T2 with t2 − t1 = 60 > d12 = 30 can be
removed. Similar pruning applies to 36 ∈ T2 and 66 ∈ T3.
Figure 6(c) shows the problem 〈x ,T 〉 after pruning. �

5.2 Putting Techniques Together
We now present the consolidated repair procedure. As

interesting by-products, we also devise a simple randomized
repairing via transformation, and a heuristic repairing by
greedily considering only one branch (instead of all).

5.2.1 Repairing with Pruning
In Algorithm 4, Line 1 employs candidate pruning by

Prune(M ,T , x , xmin) in Algorithm 3. In each iteration, Line
7 chooses a branch. By removing Lines 13-14 (which are
used for heuristic approximation, see details in Section 5.2.2),
the branching will continue to compute other solutions. Fi-
nally, the program outputs xmin as the optimal solution.

Algorithm 4: Repair(M ,T , x , xmin, k)

Input: M ,T , x , xmin the currently known best solution, k
the node to branch

Output: xmin

1 T := Prune(M ,T , x , xmin);
2 if k > n then
3 x ′ := solution where x ′i = ti,Ti = {ti},∀Ti ∈ T ;
4 return x ′

5 BC := Tk;
6 while BC 6= ∅ do
7 remove a tk from BC;
8 T ′ := a branch of T on tk;
9 if T ′ is feasible and ∆p(x ,T ′) < ∆(x , xmin) then

10 x ′ := Repair(M ,T ′, x , xmin, k + 1);
11 if ∆(x , x ′) < ∆(x , xmin) then
12 xmin := x ′;
13 if xmin is feasible/not null then
14 break; // for heuristic approximation

15 return xmin

Proposition 9. Algorithm 4 (without Lines 13-14 for heuris-
tic) returns the optimal solution, and runs in O(an) time,
where a is the maximum size of candidates in Ti.

Proof sketch. Referring to the branch and bound computa-
tion, it is not surprising to see the O(an) complexity. �

5.2.2 Simple Randomized/Heuristic Repair
Random Assignment Transformation. Besides exact
computation, a simple randomized algorithm can be devised
by solution transformation. It is worth noting that the input
x ′ of Transform(M , x , x ′) in Algorithm 1 is not necessary to
be a feasible repair solution. Indeed, given some x ′ 6� M ,

the transformation can still output a feasible solution x ′′ to-
wards a smaller distance (lower repair cost) to x . Thereby,
we can randomly draw an assignment x ′, and transform it
to a feasible repair solution x ′′ by the Transform algorithm.

Heuristic Repair. While the exact repairs (Algorithm 4)
costly consider all possible branches, a simple heuristic ap-
proximation is to greedily consider only one branch (e.g.,
eliminating violations most) in each iteration. If it forms a
feasible solution, as presented in Lines 13-14 in Algorithm
4, the program stops branching and directly returns this
solution as the repair result.

5.2.3 Consolidated Repairing Procedure
In summary, given temporal constraints M and a tuple x ,

the overall repairing procedure is:

(1) Refining the random solution x̃ ′ via the transformation
Algorithm 1, xmin := Transform(M , x , x̃ ′);

(2) Generating candidates T according to M and x , by Al-
gorithm 2 (with pruning by xmin), T := Candidate(M , x , xmin);

(3) Solving 〈x ,T 〉 by Repair(M ,T , x , xmin, 1) in Algorithm 4.

6. EXPERIMENT
In this section, we present the experimental evaluation,

with particular focus on comparing our proposed methods
to the existing approaches, Probabilistic [13] and Holistic [7]
(see Section 6.3 for details of these compared methods).

Data Set. We use a real dataset of event logs collected
from the ERP systems of a train manufacturer. Temporal
constraints are abstracted from the workflow specifications
in the company. In total, there are 38 different workflow
specifications, with the number of nodes/variables (analo-
gous to number of attributes in a relation) ranging from 5
to 37, and 8612 event traces (tuples).

Criteria. Following the same line of evaluating data re-
pairing [4], we inject faults in timestamps. Let xtruth be the
original correct timestamps of a trace, xfault be the error
timestamps with injected faults, and xrepair be the repaired
timestamps. We observe the accuracy measure of repair-

ing [14], accuracy = 1− ∆error(xrepair,xtruth)

∆cost(xrepair,xfault)+∆inject(xtruth,xfault)
,

where ∆error(xrepair, xtruth) is the error distance between true
timestamps and repair results, ∆cost(xrepair, xfault) is the dis-
tance cost paid in repair, and ∆inject(xtruth, xfault) is the dis-
tance injected between true and fault timestamps. All the
distances are defined on absolute differences, i.e., the ∆ dis-
tance function defined in Equation 1. The accuracy measure
takes ∆cost(xrepair, xfault) into consideration, in order to nor-
malize the measure, following the same line in [14]. That is,
according to triangle inequality on distances, in the worst
case, we have ∆error(xrepair, xtruth) = ∆cost(xrepair, xfault) +
∆inject(xtruth, xfault) with accuracy=0. For the best repair
results, ∆error(xrepair, xtruth) = 0, we have accuracy=1.

6.1 Evaluation on Candidate Generation
This experiment evaluates the generation of candidates

in Section 4. The experiment is performed on 10 workflow
specifications which have 5 nodes/variables. The results are
averages over 1750 traces. Figure 7 reports the average size
of candidate timestamps generated for each node, the corre-
sponding generation time cost, and the accuracy of repairing
with such candidates. The x-axis considers various limits on
the maximum lengths of provenance chains in generation.

715



 0

 10

 20

 30

 40

 50

 60

1 2 3 4

#
 c

a
n

d
id

a
te

Limit of chain length

(a)

 0

 1

 2

 3

 4

1 2 3 4
G

e
n

e
ra

ti
o

n
 t

im
e

 c
o

s
t 

(s
)

Limit of chain length

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4

R
e

p
a

ir
 a

c
c
u

ra
c
y

Limit of chain length

(c)

Figure 7: Candidate generation with various lengths
of provenance chains

 1

 10

 100

 1000

 5  10  15  20  25  30  35  40

T
im

e
 c

o
s
t 

(s
)

# nodes

(a)

Baseline
Prune

 1

 10

 100

 1000

5 10 15 20 25 30 35 40 45 50

T
im

e
 c

o
s
t 

(s
)

# traces

(b)

Figure 8: Repairing with pruning

As shown in Figure 7(a), by considering longer lengths
of provenance chains, more candidates could be generated.
The number of candidates does not increase fast, which illus-
trates the effectiveness of avoiding unnecessary candidates
by provenance chains and pruning techniques in Section 4.

The time cost of candidate generation, in Figure 7(b),
however, increases significantly. It is not surprising that,
with more candidates, the corresponding time cost of re-
pairing will be significantly higher as well (see more details
in the following experiments).

Nevertheless, Figure 7(c) illustrates that by considering
provenance chains with length 1 or 2, the repair accuracy is
already high, while further increasing the chain length leads
to only a slight improvement in accuracy. The corresponding
generation (as well as repairing) time cost for longer chains
will be much higher as aforesaid.

Motivated by this result that longer provenance chains
have significantly higher time cost but little contribution in
improving repair accuracy, we consider below the candidate
generation with provenance chain length 4.

6.2 Efficiency of Proposed Techniques
Next, we evaluate the performance of prune techniques in

Section 5.1.2 for repairing. The experiment in Figure 8(b)
considers various numbers of traces under the same tempo-
ral constraints. Therefore, only 50 traces w.r.t. the same
temporal constraint network (among 8000 traces w.r.t. dif-
ferent temporal constraint networks) are considered. The
size of each trace is 5. A fault rate 0.3 is considered in the
experiments, i.e., 30% events (nodes/variables) are injected
with fault timestamps. Figure 8 reports the time perfor-
mance of our Baseline repair method in Section 5.1.1, and
Prune in Algorithms 3 and 4. Results in different numbers
of nodes (analogous to schema sizes in relational settings)
and traces (number of tuples) are presented. It is clear to
see the significantly reduced repair time cost by prune.

6.3 Comparison to Existing Methods
This experiment compares our proposal with two other

repairing methods, Probabilistic [13] and Holistic [7].

Exact

Heuristic

Randomized

Probabilistic

Holistic

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
c
c
u

ra
c
y

Fault rate

(a)

 1

 10

 100

 1000

 10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
im

e
 c

o
s
t 

(s
)

Fault rate

(b)

Figure 9: Comparison on various fault rates

Exact

Heuristic

Randomized

Probabilistic

Holistic

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40

A
c
c
u

ra
c
y

# nodes

(a)

 0.1

 1

 10

 100

 1000

 10000

 5  10  15  20  25  30  35  40

T
im

e
 c

o
s
t 

(s
)

# nodes

(b)

Figure 10: Comparison on various event type sizes

(1) For our proposed Exact repairing, we use the most ad-
vanced Algorithm 4 with prune techniques.

(2) Heuristic approximation (in Section 5.2.2, with termi-
nation in Line 14 in Algorithm 4) is also evaluated.

(3) To illustrate the rationale of the minimum cost repair-
ing (widely considered in data repairing [4]), we compare a
Randomized repair as well, which is not strictly guided by
repair cost as presented in Section 5.2.2).

(4) Rather than random selection, the Probabilistic approach
[13] studies the distribution of timestamps and uses Bayesian
Network to determine repair values.

(5) The Holistic approach [7] greedily repairs data (times-
tamps) in violations to the given denial constraints [6]. By
representing temporal constraints as denial constraints, this
repairing method is applicable to timestamp repairing.

Figure 9 reports the results under various fault rates, e.g.,
a fault rate 0.3 denotes that 30% events (nodes/variables)
are injected with fault timestamps. It is not surprising that
the accuracy drops with the increase of fault rate. In Fig-
ure 10, while the accuracy is relatively stable, the time cost
increases heavily with the number of nodes.

Our Exact repair always shows the highest repair accuracy
in all the tests. Remarkably, its corresponding time cost is
surprisingly lower than that of Probabilistic or Holistic. The
reason is that Probabilistic employs the high cost Bayesian
Network inference, while the greedy repair in Holistic could
be trapped in local optima and evokes multiple rounds of
repairing. The accuracy of Heuristic approach is not as high
as Exact (comparable to Holistic), whereas its time cost is
significantly lower than both Exact and Holistic.

The Probabilistic approach has lower accuracy and much
higher time cost, compared to our proposal (Exact and Heuris-
tic). The reason is, as discussed in Section 7, the Probabilistic
repairing heavily relies on obtaining a right order of events
(nodes) in the first step, and the second step of inference
over Bayesian Network is very costly.

716



 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 5  10  15  20  25  30  35  40

R
a

te
 o

f 
s
a

ti
s
fa

c
ti
o

n

# nodes

(a)

Holistic

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
a

te
 o

f 
s
a

ti
s
fa

c
ti
o

n

Fault rate

(b)

Holistic

Figure 11: Soundness of results by Holistic

Exact

Heuristic

Randomized

Probabilistic

Holistic

 0.5

 0.6

 0.7

 0.8

 0.9

 1

20k 40k 60k 80k 100k

A
v
e

ra
g

e
 a

c
c
u

ra
c
y

# traces

(a)

 0.1

 1

 10

 100

20k 40k 60k 80k 100k

A
v
e

ra
g

e
 t

im
e

 c
o

s
t 

(s
)

# traces

(b)

Figure 12: Performance on various traces

The Holistic method also shows lower accuracy but higher
time cost, compared to our Exact approach. As discussed (in
Section 7 as well), the greedy repair may be trapped in local
optima and cannot guarantee to eliminate all the violations.
Figure 11 reports the proportion of traces that satisfy the
temporal constraints after repairing. As shown, only about
90% traces (tuples) can be entirely repaired without retain-
ing any inconsistencies. In contrast, all our proposed algo-
rithms guarantee to entirely repair the inconsistent times-
tamps. That is, the rate of satisfaction is always 100%.

The minimum repair cost aware methods, Exact, Heuristic
and Holistic, show higher repair accuracy than Probabilistic
and Randomized, which do not strictly follow the minimum
change principle. The results verify again the intuition that
systems or human try to minimize their mistakes in practice,
and the rationale of minimizing changes in repairing.

To evaluate the scalability over a larger number of event
traces, we employ a log generation toolkit [12] to generate
up to 100k traces over the real workflow specifications (in-
troduced at the beginning of this section). Figure 12 illus-
trates the average accuracy and the average time cost over
m traces, with m ranging from 1k to 100k. As shown, both
the accuracy and average time cost are stable in various
traces. Similar results are observed about the superiority
of our proposals compared to the simple Randomized and
existing Probabilistic and Holistic approaches.

To evaluate the scalability over a large number of nodes,
we employ the generation toolkit [12] again. Workflow spec-
ifications with up to 1000 nodes are generated. The total
number of traces (tuples) is 1000. A fault rate 0.4 is intro-
duced in the data. As shown in Figure 13, the results are
generally similar to the previously reported Figure 10 (with
at most 37 nodes). That is, while the accuracy is stable, the
time cost increases with the number of nodes. Our proposed
Exact algorithm shows higher repair accuracy, and remark-
ably, lower time costs, compared to the existing Probabilistic
and Holistic approaches.

6.4 Application in Pattern Matching
To demonstrate the effectiveness of repairing, we consider

a real application of event pattern matching query [2]. A

Exact

Heuristic

Randomized

Probabilistic

Holistic

 0

 0.2

 0.4

 0.6

 0.8

 1

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

 8
00

 9
00

 1
00

0

A
c
c
u

ra
c
y

# nodes

(a)

 1

 10

 100

 1000

 10000

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

 8
00

 9
00

 1
00

0

T
im

e
 c

o
s
t 

(s
)

# nodes

(b)

Figure 13: Scalability over a large number of nodes

Exact
Heuristic

Randomized
Probabilistic

Holistic
No-Repair

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40

F
-m

e
a

s
u

re

# nodes

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F
-m

e
a

s
u

re

Fault rate

(b)

Figure 14: Pattern matching application

pattern query is expressed with SEQ and AND predicates. For
instance, a real pattern query over the traces in Figure 1 is
SEQ(Submit, AND(Normalize, Proofread), Examine)

It returns all the traces which first processes a Submit task,
and then performs Normalize and Proofread in parallel, fol-
lowed by an Examine step. Owing to imprecise timestamps,
both the order of events and their timestamp distances may
vary. The query results could be dramatically distracted (as
also observed in the experiments below). For instance, trace
σ1 in Figure 1(a) will not be returned as a result, since event
2 (Normalize) appears after 4 (Examine) owing to the impre-
cise timestamp 23:53. By repairing the timestamp of event
2 to 09:35 as in Example 2, trace σ1 can be successfully
identified as a result of the aforesaid pattern. In addition
to the example results in Figure 1, Figure 14 presents the
corresponding pattern query results over the entire dataset.

Let truth be the set of clean traces that match the query
pattern, and found be the set of results that are returned by
evaluating the pattern query over the fault/repaired traces.
To evaluate the pattern matching accuracy, we employ the

widely used f-measure [17], given by precision= |truth∩found||found| ,

recall= |truth∩found||truth| , and f-measure=2 · precision·recall
precision+recall

.

Figure 14 reports the result accuracy of pattern matching
queries over the data repaired by Exact, Heuristic, Random-
ized, Probabilistic, Holistic approaches and the data without
timestamp repairing (No-Repair). It is not surprising that
the query result accuracy is low if no repair is performed.
The query result accuracy of various repairing approaches
is generally similar to the repair accuracy as presented in
Figures 9(a) and 10(a). That is, (1) the Exact algorithm
can always achieve the highest accuracy, in all the tests; (2)
our Heuristic approach also shows better performance than
the Randomized and Probabilistic methods, and comparable
to Holistic (constraint-based, minimum change guided).

Figure 15 evaluates pattern matching queries involving
much longer event traces (up to 1000 nodes). We use again
the dataset for evaluating the repair scalability in Figure 13
in Section 6.3. As shown in Figure 15(a), the accuracy is

717



Exact
Heuristic

Randomized

Probabilistic
Holistic

No-Repair

PatternMatch

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

 8
00

 9
00

 1
00

0

F
-m

e
a

s
u

re

# nodes

(a)

 1

 10

 100

 1000

 10000

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

 8
00

 9
00

 1
00

0

T
im

e
 c

o
s
t 

(s
)

# nodes

(d)

Figure 15: Scalability for pattern matching

 0

 0.2

 0.4

 0.6

 0.8

 1

 5  10  15  20  25  30  35  40

A
c
c
u

ra
c
y

# nodes

(a)

Difference
Count

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
c
c
u

ra
c
y

Fault rate

(b)

Difference
Count

Figure 16: Comparison on repair cost functions

similar to the results over the real data in Figure 14(a). That
is, our Exact approach still shows the best performance.

Figure 15(b) reports the time cost of pattern matching
together with the time costs of repairing by various ap-
proaches. Since the time costs of pattern matching over the
data repaired by various approaches are almost the same, we
present the average. As shown, the time cost of our Exact
repairing is very close to the time cost of pattern matching
application. In this sense, the approach could meet the real-
time/low-latency requirements of pattern matching queries.

6.5 Evaluation on Cost Functions
Besides the absolute difference-based repair cost metric

in Equation 1, other metrics, such as counting the number
of changed timestamps, could also be applied. Figure 16
compares the results by using the absolute difference-based
and count-based repair cost metrics. As shown, the repair
accuracy with the absolute difference-based cost function
shows higher repair accuracy than the count-based. The
reason is that, compared to the count-based metric, the
absolute difference-based cost can capture more precisely
the “amount” information of the data deviations, and thus
achieve better the minimum change goal.

6.6 Evaluation on Various Error Cases
This experiment considers several representative cases of

timestamp errors that often occur in practice: (1) Random
errors, which take random values from the timestamp do-
main. (2) Certain amount errors, such that all timestamps
being off by a certain amount in some sources. (3) Coun-
terpart correlated errors, where faulty timestamp values are
partially correlated with their correct counterparts through
a normal distribution-based fault model, N (µ, σ2). µ de-
notes the correct counterpart (true timestamp) of an event,
and σ2 is variance. That is, faulty timestamp values are
partially correlated with their correct counterparts µ.

Figure 17 reports the results of Exact repairing on var-
ious error cases. Generally, the accuracy drops with the
increase of fault rate. Random errors and certain amount
errors show very similar performance, which illustrates the

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
c
c
u

ra
c
y

Fault rate

(a)

Random
Certain-amount

Counterpart-correlated
 1

 10

 100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
im

e
 c

o
s
t 

(s
)

Fault rate

(b)

Random
Certain-amount

Counterpart-correlated

Figure 17: Comparison on various error cases

Exact

Heuristic

Randomized

Probabilistic

Holistic

 0

 0.2

 0.4

 0.6

 0.8

 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
c
c
u

ra
c
y

Fault rate

(a)

 1

 10

 100

 1000

 10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
im

e
 c

o
s
t 

(s
)

Fault rate

(b)

Figure 18: Repairing temperature data

robustness of proposed methods. The accuracy of counter-
part correlated errors is a bit higher, especially when the
fault rate is large, as illustrated in Figure 17(a). The result
is not surprising given that the faulty timestamp values are
partially correlated with their correct counterparts. Time
costs under various error cases are generally similar.

6.7 Applicability beyond Timestamps
It is remarkable that the proposed repairing could also be

applied to other finite, partially ordered sequences of data,
as long as the corresponding constraints can be represented
in the form of minimal networks. To demonstrate the gen-
eral applicability and the practical value of our proposal, we
consider a temperature dataset1, where each trace recorded
the temperatures of 24 hours in a day, i.e., with 24 nodes.
There are 15,190 traces collected from 2,168 observation sta-
tions. The constraint between two nodes in the minimal
network, e.g., [5, 20] from nodes 6 to 12 denotes that the
temperature difference between 6 o’clock in the morning and
12 o’clock at noon is at least 5 degree but at most 20 degree.
Similar to injecting errors in timestamps, in this experiment,
we inject errors in the temperatures, and apply our proposed
methods to repair the injected temperature errors.

Figure 18 reports the results over various fault rates. Gen-
erally, the results are similar to Figure 9 on repairing times-
tamps. That is, with the increase of fault rate, the repair
accuracy drops. Our proposed Exact algorithm can achieve
higher accuracy and lower time costs, compared to the exist-
ing Probabilistic and Holistic approaches. The results demon-
strate the general applicability and practical value of our
proposal in the fields beyond timestamps.

7. PREVIOUS WORK
Owing to the distinct difference between temporal con-

straints and integrity constraints, most existing data repair-
ing techniques (such as [4] based on functional dependencies)
are not directly applicable to repairing timestamps.

Holistic repair [7] can support repairing w.r.t. temporal
constraints, by expressing them as denial constraints [6]. It

1http://www.cma.gov.cn/

718



greedily modifies values (timestamps) to eliminate the cur-
rently observed violations. This greedy modification may in-
troduce new violations to other data points, and thus evokes
multiple rounds of repairing. Moreover, the greedy repair
could be trapped in local optima, and cannot eliminate all
the violations. It is worth noting that assigning fresh vari-
ables outside the currently known timestamp domain does
not help in eliminating violations of temporal constraints.

To the best of our knowledge, the only existing work ded-
icated to repairing timestamps is [13]. Unlike the holistic
cleaning in a constraint-based approach, the repairing in [13]
consists of two steps: (1) repairing the order of data points
(since the imprecise timestamps may lead to out-of-order
arrival), and (2) then adapting the timestamps. It is worth
noting that if an erroneous order of data points is returned
in the first step, the timestamps would never be repaired
correctly.

Instead of repairing the imprecise timestamps, Zhang et
al. [19] handle the imprecise timestamps in a different set-
ting. A range of possible timestamps is assumed to be given
for each event, together with a probabilistic distribution of
the possible timestamps. The study [19] thus focuses on per-
forming analyses directly over the uncertain timestamps. In
our scenario, we do not have such a given range and distri-
bution of possible timestamps. In this sense, our proposal
of timestamp repairs is not directly comparable to [19].

8. CONCLUSION
This study proposes to repair timestamps that do not con-

form to temporal constraints. The timestamp repairing is
manipulated under the minimum change principle, widely
considered in data repairing [4]. To find the optimal mini-
mum repair over the various combinations of possible times-
tamps, we notice that any optimal repair solution can be
transformed to a special form, such that each changed node
(in repairing) is connected to some unchanged one via a
tight/provenance chain (Corollary 5). A finite set of promis-
ing candidates are thus generated upon the chains and un-
changed timestamps, where an optimal repair can always
be found (Proposition 7). We devise (1) an exact algorithm
for computing the optimal repair from the generated can-
didates, (2) a heuristic approximation by greedily selecting
repairs from the candidates, and (3) a simple randomized
method by applying the aforesaid solution transformation.
Experiments over a real dataset demonstrate that our pro-
posed method has better performance than the state-of-the-
art probabilistic-based and constraint-based repairing ap-
proaches, in both repair accuracy (Section 6.3) and applica-
tion accuracy (Section 6.4).

Besides the widely considered minimum change principle
[4, 5], a novel maximum likelihood principle [18] is recently
proposed for repairing relational data. The repair likelihood
is defined w.r.t. functional dependencies. To adapt the max-
imum likelihood principle in timestamp repairing, we first
need to define the likelihood over timestamps, e.g., w.r.t.
temporal constraints. Repair candidates are then gener-
ated upon the maximum likelihood instead of the minimum
change. We leave this interesting topic as future studies.

Acknowledgement
This work is supported in part by the Tsinghua Univer-
sity Initiative Scientific Research Program; Tsinghua Na-
tional Laboratory Special Fund for Big Data Science and

Technology; China NSFC under Grants 61572272, 61325008,
61370055 and 61202008.

9. REFERENCES
[1] Full version.

http://ise.thss.tsinghua.edu.cn/sxsong/doc/timestamp.pdf.

[2] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman.
Efficient pattern matching over event streams. In
SIGMOD Conference, pages 147–160, 2008.

[3] R. S. Barga, J. Goldstein, M. H. Ali, and M. Hong.
Consistent streaming through time: A vision for event
stream processing. In CIDR, pages 363–374, 2007.

[4] P. Bohannon, M. Flaster, W. Fan, and R. Rastogi. A
cost-based model and effective heuristic for repairing
constraints by value modification. In SIGMOD
Conference, pages 143–154, 2005.

[5] J. Chomicki and J. Marcinkowski. On the
computational complexity of minimal-change integrity
maintenance in relational databases. In Inconsistency
Tolerance, pages 119–150, 2005.

[6] X. Chu, I. F. Ilyas, and P. Papotti. Discovering denial
constraints. PVLDB, 6(13):1498–1509, 2013.

[7] X. Chu, I. F. Ilyas, and P. Papotti. Holistic data
cleaning: Putting violations into context. In ICDE,
pages 458–469, 2013.

[8] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint
networks. Artif. Intell., 49(1-3):61–95, 1991.

[9] L. Ding, S. Chen, E. A. Rundensteiner, J. Tatemura,
W.-P. Hsiung, and K. S. Candan. Runtime semantic
query optimization for event stream processing. In
ICDE, pages 676–685, 2008.

[10] C. E. Dyreson and R. T. Snodgrass. Supporting
valid-time indeterminacy. ACM Trans. Database Syst.,
23(1):1–57, 1998.

[11] W. Fan. Dependencies revisited for improving data
quality. In PODS, pages 159–170, 2008.

[12] T. Jin, J. Wang, and L. Wen. Efficiently querying
business process models with beehivez. In BPM
(demo), 2011.

[13] A. Rogge-Solti, R. Mans, W. M. P. van der Aalst, and
M. Weske. Improving documentation by repairing
event logs. In PoEM, pages 129–144, 2013.

[14] S. Song, A. Zhang, J. Wang, and P. S. Yu. SCREEN:
stream data cleaning under speed constraints. In
SIGMOD Conference, pages 827–841, 2015.

[15] P. Sun, Z. Liu, S. B. Davidson, and Y. Chen.
Detecting and resolving unsound workflow views for
correct provenance analysis. In SIGMOD Conference,
pages 549–562, 2009.

[16] L. Tang, T. Li, and L. Shwartz. Discovering lag
intervals for temporal dependencies. In KDD, pages
633–641, 2012.

[17] C. J. van Rijsbergen. Information Retrieval.
Butterworth, 1979.

[18] M. Yakout, L. Berti-Equille, and A. K. Elmagarmid.
Don’t be scared: use scalable automatic repairing with
maximal likelihood and bounded changes. In
SIGMOD Conference, pages 553–564, 2013.

[19] H. Zhang, Y. Diao, and N. Immerman. Recognizing
patterns in streams with imprecise timestamps.
PVLDB, 3(1):244–255, 2010.

719


