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ABSTRACT
We introduce and study the problem of computing the simi-
larity self-join in a streaming context (sssj), where the input
is an unbounded stream of items arriving continuously. The
goal is to find all pairs of items in the stream whose similarity
is greater than a given threshold. The simplest formulation
of the problem requires unbounded memory, and thus, it is
intractable. To make the problem feasible, we introduce the
notion of time-dependent similarity: the similarity of two
items decreases with the difference in their arrival time.

By leveraging the properties of this time-dependent sim-
ilarity function, we design two algorithmic frameworks to
solve the sssj problem. The first one, MiniBatch (MB), uses
existing index-based filtering techniques for the static ver-
sion of the problem, and combines them in a pipeline. The
second framework, Streaming (STR), adds time filtering to
the existing indexes, and integrates new time-based bounds
deeply in the working of the algorithms. We also introduce
a new indexing technique (L2), which is based on an existing
state-of-the-art indexing technique (L2AP), but is optimized
for the streaming case.

Extensive experiments show that the STR algorithm, when
instantiated with the L2 index, is the most scalable option
across a wide array of datasets and parameters.

1. INTRODUCTION
Similarity self-join is the problem of finding all pairs of

similar objects in a given dataset. The problem is related
to the similarity join operator [4, 10], which has been stud-
ied extensively in the database and data-mining communi-
ties. The similarity self-join is an essential component in
several applications, including plagiarism detection [11, 16],
query refinement [21], document clustering [8, 9, 15], data
cleaning [10], community mining [22], near-duplicate record
detection [28], and collaborative filtering [12].

The similarity self-join problem is inherently quadratic.
In fact, the brute-force O(n2) algorithm that computes the
similarity between all pairs is the best one can hope for, in
the worst case, when exact similarity is required and when
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Figure 1: Timestamped documents arrive as stream. The
documents on top (in red) have similar content. Among all
pairs of similar documents, we are interested in those that
arrive close in time. In the example, out of all 4-choose-2
pairs only two pairs are reported (shown with blue arrows).

dealing with arbitrary objects. In practice, it is possible to
obtain scalable algorithms by leveraging structural proper-
ties of specific problem instances. A typical desiderata here
is to design output-sensitive algorithms.1

In many real-world applications objects are represented as
sparse vectors in a high-dimensional Euclidean space, and
similarity is measured as the dot-product of unit-normalized
vectors — or equivalently, cosine similarity. The similarity
self-join problem asks for all pairs of objects whose similarity
is above a predefined threshold θ. Efficient algorithms for
this setting are well-developed, and rely on pruning based on
inverted indexes, as well as a number of different geometric
bounds [3, 7, 10, 28]; details on those methods are presented
in the following sections.

Computing similarity self-join is a problem that is ger-
mane not only for static data collections, but also for data
streams. Here we describe two examples of real-world appli-
cations that motivate the problem of similarity self-join in
the streaming setting.

Trend detection: existing algorithms for trend detection
in microblogging platforms, such as Twitter, rely on identi-
fying hashtags or other terms whose frequency suddenly in-
creases. A more focused and more granular trend-detection
approach would be to identify a set of posts, whose frequency
increases, and which share a certain fraction of hashtags or
terms. For such a trend-detection method it is essential to
be able to find similar pairs of posts in a data stream.

Near-duplicate item filtering: consider again a micro-
blogging platform, such as Twitter. When an event occurs,
users may receive multiple near-copies of posts related to the
event. Such posts often appear consecutively in the feed of

1https://en.wikipedia.org/wiki/Output-sensitive_
algorithm
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users, thus cluttering their information stream and degrad-
ing their experience. Grouping these near-copies or filtering
them out is a simple way to improve the user experience.

Surprisingly, the problem of streaming similarity self-join
has not been considered in the literature so far. Possibly,
because the similarity self-join operator in principle requires
unbounded memory: one can never forget a data item, as it
may be similar to another one that comes far in the future.

To the best of our knowledge, this paper is the first to ad-
dress the similarity self-join problem in the streaming set-
ting. We overcome the inherent unbounded-memory bot-
tleneck by introducing a temporal factor to the similarity
operator. Namely, we consider two data items similar, only
if they have arrived within a short time span. More pre-
cisely, we define the time-dependent similarity of two data
items to be their content-based cosine similarity multiplied
by a factor that decays exponentially with the difference in
their arrival times. This time-dependent factor allows us
to drop old items, as they cannot be similar to any item
that arrives after a certain time horizon τ . The concept is
illustrated in Figure 1.

The time-dependent similarity outlined above is very well-
suited for both our motivating applications — trend detec-
tion and near-duplicate filtering: in both cases we are in-
terested in identifying items that not only are content-wise
similar, but have also arrived within a short time interval.

Akin to previous approaches for the similarity self-join
problem, our method relies on indexing techniques. Previous
approaches use different types of index filtering to reduce the
number of candidates returned by the index for full similar-
ity evaluation. Following this terminology, we use the term
time filtering to refer to the property of the time-dependent
similarity that allows to drop old items from the index.

We present two different algorithmic frameworks for the
streaming similarity self-join problem, both of which rely on
the time-filtering property. Both frameworks can be instan-
tiated with indexing schemes based on existing ones for the
batch version of the problem. The first framework, named
MiniBatch (MB), uses existing indexing schemes off-the-shelf.
In particular, it uses two indexes in a pipeline, and it drops
the older one when it becomes old enough. The second
framework we propose, named Streaming (STR), modifies ex-
isting indexing schemes so that time filtering is incorporated
internally in the index.

One of our contributions is a new index, L2, which com-
bines state-of-the art bounds for index pruning from L2AP [3]
in a way that is optimized for stream data. The superior
performance of L2 stems from the fact that it uses bounds
that (i) are effective in reducing the number of candidate
pairs, (ii) do not require collecting statistics over the data
stream (which need to be updated as the stream evolves),
(iii) lead to very lightweight index maintenance, while (iv)
allowing to drop data as soon as they become too old to be
similar to any item currently read. Our experimental eval-
uation demonstrates that the L2 index, incorporated in the
STR framework, is the method of choice for all datasets we
try across a wide range of parameters.

In brief, our contributions can be summarized as follows.

• We introduce the similarity self-join problem in data
streams.

• We propose a novel time-dependent similarity measure,
which allows to forget data items when they become old.

• We show how to solve the proposed problem within two
different algorithmic frameworks, MB and STR: For MB,

any state-of-the-art indexing scheme can be used as a
black box. For STR, we adapt and extend the existing
schemes to be well-suited for streaming data.

• We perform an extensive experimental evaluation, and
test the proposed algorithms on datasets with different
characteristics and for a large range of parameters.

Finally, we note that all the code2 we developed and all
datasets3 used for validation are publicly available.

2. RELATED WORK
The problem of streaming similarity self-join has not been

studied previously. Work related to this problem can be clas-
sified into two main areas: similarity self-join (also known
as all-pairs similarity), and streaming similarity.

Similarity self-join. The similarity self-join problem has
been studied extensively. It was introduced by Chaudhuri
et al. [10], and many works have followed up [4, 5, 7, 10,
27, 28], including approaches that use parallel computa-
tion [1, 2, 6, 13, 24]. Discussing all these related papers is
out of the scope of this work. The most relevant approaches
are those by Bayardo et al. [7], which significantly improved
the scalability of the previous indexing-based methods, and
by Anastasiu and Karypis [3], which represents the cur-
rent state-of-the-art for sequential batch algorithms. Our
work relies heavily on these two papers, and we summarize
their common filtering framework in Section 5. For a good
overview, refer to the work of Anastasiu and Karypis [3].

Streaming similarity. The problem of computing simi-
larities in a stream of vectors has received surprisingly little
attention so far. Most of the work on streaming similarity
focuses on time series [14, 17, 19].

Lian and Chen [20] study the similarity join problem for
uncertain streams of vectors in the sliding-window model.
They focus on uncertain objects moving in a low-dimensional
Euclidean space (d ∈ [2, 5]). Similarity is measured by the
Euclidean distance, and therefore the pruning techniques are
very different than the ones employed in our work; e.g., they
use space-partition techniques, and use temporal correlation
of samples to improve the efficiency of their algorithm.

Wang and Rundensteiner [26] study the more general prob-
lem of multi-way join with expensive user-defined functions
(UDFs) in the sliding-window model. They present a time-
slicing approach, which has some resemblance to the time-
based pruning presented in this paper. However, their focus
in on distributing the computation on a cluster via pipelined
parallelism, and ensuring that the multiple windows of the
multi-way join align correctly. Differently from this paper,
their method treats UDFs as a black box.

Valari and Papadopoulos [23] focus on graphs, rather than
vectors, and study the case of Jaccard similarity of nodes
on a sliding window over an edge stream. They apply a
count-based pruning on edges by keeping a fixed-size win-
dow, and leveraging an upper bound on the similarity within
the next window. Instead, in this work we consider time-
based pruning, without any assumption on the frequency
of arrival of items in the stream. Furthermore, the arrival
of edges changes the similarity of the nodes, and therefore
different indexing techniques need to be applied; e.g., nodes
can never be pruned.

2Code: http://github.com/gdfm/sssj
3Data: http://research.ics.aalto.fi/dmg/sssj-datasets/
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3. PROBLEM STATEMENT
We consider data items represented as vectors in a d-

dimensional Euclidean space Rd. In real-world applications,
the dimensionality d is typically high, while the data items
are sparse vectors. Given two vectors x = 〈x1 . . . xd〉 and
y = 〈y1 . . . yd〉, their similarity sim(x,y) is the dot-product

sim(x,y) = dot(x,y) = x · y =

d∑
j=1

xj yj .

We assume that all vectors x are normalized to unit length,
i.e., ||x||2 = 1, so that the dot-product of two vectors is
equal to their cosine similarity; cos(x,y) = dot(x,y).

In the standard all-pairs similarity search problem (apss),
also known as similarity self-join, we are given a set of vec-
tors and a similarity threshold θ, and the goal is to find all
pairs of vectors (x,y) for which sim(x,y) ≥ θ.

In this paper we assume that the input items arrive as a
data stream. Each vector x in the input stream is times-
tamped with the time of its arrival t(x), and the stream is
denoted by S = 〈. . . , (xi, t(xi)), (xi+1, t(xi+1), . . .〉.

We define the similarity of two vectors x and y by con-
sidering not only their coordinates (xj , yj), but also the dif-
ference in their arrival times in the input stream ∆txy =
|t(x)− t(y)|. For fixed coordinates, the larger the arrival
time difference of two vectors, the smaller their similarity.
In particular, given two timestamped vectors x and y we
define their time-dependent similarity sim∆t(x,y) as

sim∆t(x,y) = dot(x,y) e−λ|t(x)−t(y)|,

where λ is a time-decay parameter.
This time-dependent similarity reverts to the standard

dot-product (or cosine) similarity when ∆txy = 0 or λ = 0,
and it goes to zero as ∆txy approaches infinity, at an ex-
ponential rate modulated by λ. As in the standard apss
problem, given a similarity threshold θ, two vectors x and y
are called similar if their time-dependent similarity is above
the threshold, i.e., sim∆t(x,y) ≥ θ.

We can now define the streaming version of the apss prob-
lem, called the streaming similarity self-join problem (sssj).

Problem 1 (sssj). Given a stream of timestamped vec-
tors S, a similarity threshold θ, and a time-decay factor λ,
output all pairs of vectors (x,y) in the stream such that
sim∆t(x,y) ≥ θ.

Time filtering. The main challenge of computing a self-
join in a data stream is that, in principle, unbounded mem-
ory is required, as an item can be similar to any other item
that will arrive arbitrarily far in the future. By adopting
the time-dependent similarity measure sim∆t, we introduce
a forgetting mechanism, which not only is intuitive from an
application point-of-view, but also allows to overcome the
unbounded-memory requirement. In particular, since for
`2-normalized vectors dot(x,y) ≤ 1, we have

sim∆t(x,y) = dot(x,y) e−λ∆txy ≤ e−λ∆txy .

Thus, ∆txy > λ−1 log θ−1 implies sim∆t(x,y) < θ, and as
a result a given vector cannot be similar to any vector that
arrived more than

τ =
1

λ
log

1

θ
time units earlier. Consequently, we can safely prune vectors
that are older than τ . We call τ the time horizon.

Parameter setting. The sssj problem, defined in Prob-
lem 1, requires two parameters: a similarity threshold θ and
a time-decay factor λ. The time-filtering property suggests
a simple methodology to set these two parameters:

1. Select θ as the lowest value of the similarity between two
simultaneously-arriving vectors that are deemed similar.

2. Select τ as the smallest difference in arrival times be-
tween two identical vectors that are deemed dissimilar.

3. Set λ = τ−1 log θ−1.

Setting θ and τ in steps 1 and 2 depends on the application.

Additional notation. When referring to the non-streaming
setting, we consider a dataset D = {x1, . . . ,xn} consisting
of n vectors in Rd.

Following Anastasiu and Karypis, we use the notation
x′ = x′p = 〈x1, .., xp−1, 0, .., 0〉 and to denote the prefix of
a vector x. For a vector x, we denote by vmx its maximum
coordinate, by Σx =

∑
j xj the sum of its coordinates, and

by |x| the number of its non-zero coordinates.
Given a static dataset D we use mj to refer to the maxi-

mum value along the j-th coordinate over all vectors in D.
All values of mj together compose the vector m. Our meth-
ods use indexing schemes which build an index incremen-
tally, vector-by-vector. We use m̂ to refer to the vector m,
restricted to the dataset that is already indexed, and we
write m̂j for its j-th coordinate. Furthermore, we use m̂λ

(and m̂λ
j for its j-th coordinate) to denote a time-decayed

variant of m̂, whose precise definition is given in Section 5.3.

4. OVERVIEW OF THE APPROACH
In this section we present a high-level overview of our main

algorithms for the sssj problem.
We present two different algorithmic frameworks: MB-IDX

(MiniBatch-IDX) and STR-IDX (Streaming-IDX), where IDX

is an indexing method for the apss problem on static data.
To make the presentation of our algorithms more clear, we
first give an overview of the indexing methods for the static
apss problem, as introduced in earlier papers [3, 7, 10].

All indexing schemes are based on building an inverted
index. The index is a collection of d posting lists, I =
{I1, . . . , Id}, where the list Ij contains all pairs (ι(x), xj)
such that the j-th coordinate of vector x is non-zero, i.e.,
xj 6= 0. Here ι(x) denotes a reference to vector x.

Some methods optimize computation by not indexing the
whole dataset. In these cases, the un-indexed part is still
needed in order to compute exact similarities. Thus, we
assume that a separate part of the index I contains the un-
indexed part of the dataset, called residual direct index R.

All schemes build the index incrementally, while also com-
puting similar pairs. In particular, we start with an empty
index, and we iteratively process the vectors in D. For each
newly-processed vector x, we compute similar pairs (x,y)
for all vectors y that are already in the index. Thereafter,
we add (some of) the non-zero coordinates of x to the index.

Building the index and computing similar pairs can be
seen as a three-phase process:

index construction (IC): adds new vectors to the index I.

candidate generation (CG): uses the index I to generate
candidate similar pairs. The candidate pairs may contain
false positives but no false negatives.
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Algorithm 1: MB-IDX (MiniBatch with index IDX)

input : Data stream S, threshold θ, decay λ
output: All pairs x,y ∈ S s.t. sim∆t(x,y) ≥ θ

1 I ←∅
2 t0← 0; t← 0

3 τ←λ−1 log θ−1

4 while true do
5 W ←∅
6 t0← t0 + τ
7 while t ≤ t0 + τ do
8 x← read(S)
9 t← t(x)

10 C← CandGen-IDX(I,x, θ)
11 P ← CandVer-IDX(I,x, C, θ)
12 report ApplyDecay(P, λ)
13 W ←W ∪ {x}
14 (I, P )← IndConstr-IDX(W, θ)
15 report ApplyDecay(P, λ)

candidate verification (CV): computes true similarities be-
tween candidate pairs, and reports true similar pairs,
while dismissing false positives.

More concretely, for an indexing scheme IDX we assume
that the following three primitives are available, which cor-
respond to the three phases outlined above:

(I, P )← IndConstr-IDX(D, θ): Given a dataset D consist-
ing of n vectors, and a similarity threshold θ, the func-
tion IndConstr-IDX returns in P = {(x,y)} all similar
pairs (x,y), with x,y ∈ D. Additionally, IndConstr-IDX
builds an index I, which can be used to find similar pairs
between the vectors in D and another query vector z.

C← CandGen-IDX(I,x, θ): Given an index I, built on a dataset
D, a vector x, and a similarity threshold θ, the function
CandGen-IDX returns a set of candidate vectors C = {y},
which is a superset of all vectors that are similar to x.

P ← CandVer-IDX(I,x, C, θ): Given an index I, built on a
dataset D, a vector x, a set of candidate vectors C, and a
similarity threshold θ, the function CandVer-IDX returns
the set P = {(x,y)} of true similar pairs.

Both proposed frameworks, MB-IDX and STR-IDX, rely on
an indexing scheme IDX, and adapt it to the streaming set-
ting by augmenting it with the time-filtering property. The
difference between the two frameworks is in how this adap-
tation is done. MB-IDX uses IDX as a “black box”: it uses
time filtering in order to build independent instances of IDX
indexes, and drops them when they become obsolete. Con-
versely, for STR-IDX we opportunely modify the indexing
method IDX by directly applying time filtering.

The presentation of the STR-IDX framework is deferred to
the next section, following the details of the specific index-
ing methods IDX we use. The MB-IDX framework is presented
below, as we only need to know the specifications of an in-
dex IDX, not its internal workings. In particular, we only
assume the three primitives, IndConstr-IDX, CandGen-IDX,
and CandVer-IDX, are available.

The MB-IDX framework works in time intervals of dura-
tion τ . During the k-th time interval it reads all vectors
from the stream, and stores them in a buffer W . At the end
of the time interval, it invokes IndConstr-IDX to report all
similar pairs in W , and to build an index I on W . During

the (k + 1)-th time interval, the buffer W is reset and used
to store the new vectors from the stream. At the same time,
MB-IDX queries I with each vector x read from the stream,
to find similar pairs between x and vectors in the previous
time interval. Similar pairs are computed by invoking the
functions CandGen-IDX and CandVer-IDX. At the end of the
(k + 1)-th time interval, the index I is replaced with a new
index on the vectors in the (k + 1)-th time interval.
MB-IDX guarantees that all pairs of vectors whose time

difference is smaller than τ are tested for similarity. Thus,
due to the time-filtering property, it returns the complete set
of similar pairs. Algorithm 1 shows pseudocode for MB-IDX.

One drawback of MB-IDX is that it reports some similar
pairs with a delay. In particular, all similar pairs that span
across two time intervals are reported after the end of the
first interval. In applications that require to report similar
pairs as soon as both vectors are present, this behavior is un-
desirable. Moreover, to guarantee correctness, MB-IDX needs
to tests pairs of vectors whose time difference is as large as
2τ , which can be pruned only after they are reported by the
indexing scheme IDX, thus wasting computational power.

5. FILTERING FRAMEWORK
We now review the main indexing schemes used for the

apss problem. For each indexing scheme IDX, we describe
its three phases (IC, CG, CV), and discuss how to adapt it
to the streaming setting, giving the STR-IDX algorithm. One
of our main contributions is the adaptation of well-known
algorithms for the batch case to the streaming setting. To
make the paper self-contained, in each of the following sub-
sections we first present the indexing schemes in the static
case (state of the art) and how they are used in the MB

framework, and then we describe their adaptation to the STR
framework (contribution of this paper). Furthermore, sec-
tion 5.4 describes our improved `2-based indexing scheme.

For all the indexing schemes we present, except INV, we
provide pseudocode. Due to lack of space, and also to high-
light the differences among the indexing schemes, we present
our pseudocode using a color convention:
− L2AP index: all lines are included (black, red, and green).
− AP index: red lines are included; green lines excluded.
− L2 index: green lines are included; red lines excluded.

5.1 Inverted index
The first scheme is a simple inverted index (INV) with no

index-pruning optimizations. As with all indexing schemes,
the main observation is that for two vectors to be similar,
they need to have at least one common coordinate. Thus,
two similar vectors can be found together in some list Ij .

In the IC phase, for each new vector x, all its coordinates
xj are added to the index. In the CG phase, given the query
vector x, we use the index I to retrieve candidate vectors
similar to x. In particular, the candidates y are all vectors
in the posting lists where x has non-zero coordinates.

The result of the CG phase is the exact similarity score
between x and each candidate vector y. Therefore, the CV

phase simply applies the similarity threshold θ and reports
the true similar pairs.

MB framework (MB-INV): The functions IndConstr-INV,
CandGen-INV, and CandVer-INV, needed to specify the MB-INV
algorithm follow directly from the discussion above. Since
they are rather straightforward, we omit further details.

795



Algorithm 2: IndConstr-L2AP

input : Dataset D, threshold θ
output: Similarity index I on D, and

set of pairs P = {(x,y) | sim(x,y) ≥ θ}
1 I ←∅
2 P ←∅
3 foreach x ∈ D do
4 C← CandGen-L2AP(I,x, θ)
5 P ←P ∪ CandVer-L2AP(I,x, C, θ)
6 b1← 0
7 b2← 0; bt← 0
8 foreach j = 1 . . . d s.t. xj > 0 do
9 pscore← min{b1, b2}

10 b1← b1 + xj min{mj , vmx}
11 bt←bt + xj

2; b2←
√

bt
12 if min{b1, b2} ≥ θ then
13 if R[ι(x)] = ∅ then
14 R[ι(x)]←x′j
15 Q[ι(x)]← pscore

16 Ij← Ij ∪ {(ι(x), xj , ||x′j ||)}
17 return (I, P )

STR framework (STR-INV): The description of INV given
above considers the apss problem, i.e., a static dataset D.
We now consider a data stream S, where each vector x in the
stream is associated with a timestamp t(x). We apply the
INV scheme by adding the data items in the index in the or-
der they appear in the stream. The lists Ij of the index keep
pairs (ι(x), xj) ordered by timestamps t(x). Maintaining a
time-respecting order inside the lists is easy. We process
the data in the same order, so we can can just append new
vector coordinates at the end of the lists.

Before adding a new item x to the index, we use the index
to retrieve all the earlier vectors y that are ∆t-similar to x.
Due to the time-filtering property, vectors that are older
than τ cannot be similar to x. This observation has two
implications: (i) we can stop retrieving candidate vectors
from a list Ij upon encountering a vector that is older than
τ ; and (ii) when encountering such a vector, the part of the
list preceding it can be pruned away.

5.2 All-pairs indexing scheme
The AP [7] scheme improves over the simple INV method

by reducing the size of the index. When using AP, not all
the coordinates of a vector x need to be indexed, as long
as it can be guaranteed that x and all its similar vectors y
share at least one common coordinate in the index I.

Similarly to the INV scheme, AP incrementally builds an
index by processing one vector at a time.

In the IC phase (function IndConstr-AP, shown as Algo-
rithm 2, including red lines and excluding green), for each
new vector x, the algorithm scans its coordinates in a pre-
defined order. It keeps a score pscore, which represents an
upper bound on the similarity between a prefix of x and any
other vector in the dataset. To compute the upper bound,
AP uses the vector m, which keeps the maximum of each
coordinate in the dataset. As long as pscore is smaller than
the threshold θ, given that the similarity of x to any other
vector cannot exceed θ, the coordinates of x scanned so far
can be omitted from the index without the danger of missing
any similar pair. As soon as pscore exceeds θ, the remain-

Algorithm 3: CandGen-L2AP

input : Index I, vector x, threshold θ
output: Accum. score array C for candidate vectors

(candidate set is C = {y ∈ D | C[ι(y)] > 0})
1 C←∅
2 sz1← θ/vmx

3 rs1←dot(x, m̂)
4 rs2← 1; rst← 1
5 foreach j = d . . . 1 s.t. xj > 0 do //reverse order

6 foreach (ι(y), yj , ||y′j ||) ∈ Ij do
7 remscore← min{rs1, rs2}
8 if |y| vmy ≥ sz1 then
9 if C[ι(y)] > 0 or remscore ≥ θ then

10 C[ι(y)]←C[ι(y)] + xj yj
11 l2bound←C[ι(y)] + ||x′j || ||y′j ||
12 if l2bound < θ then
13 C[ι(y)]← 0

14 rs1← rs1 − xj m̂j

15 rst← rst − xj
2; rs2←

√
rst

16 return C;

Algorithm 4: CandVer-L2AP

input : Index I, vector x, candidate vector array C,
threshold θ

output: Set of pairs P = {(x,y) | sim(x,y) ≥ θ}
1 P ←∅
2 foreach y s.t. C[ι(y)] > 0 do
3 ps1←C[ι(y)] +Q[ι(y)]
4 ds1←C[ι(y)] + min{vmx Σy′ , vmy′ Σx}
5 sz2←C[ι(y)] + min{|x|, |y′|} vmx vmy′

6 if ps1 ≥ θ and ds1 ≥ θ and sz2 ≥ θ) then
7 s←C[ι(y)] + dot(x,y′)
8 if (s ≥ θ) then
9 P ←P ∪ {(x,y, s)}

10 return P

ing suffix of x is added to the index, and the prefix x′ is
saved in the residual direct index R.

In the CG phase (function CandGen-AP, shown as Algo-
rithm 3, including red lines and excluding green), AP uses
a lower bound sz1 for the size of any vector y that is similar
to x, so that vectors that have too few non-zero entries can
be ignored (line 8). Additionally, it uses a variable rs1 to
keep an upper bound on the similarity between x and any
other vector y. This upper bound is computed by using the
residual direct index R and the already accumulated dot-
product, and is updated as the algorithm processes the dif-
ferent posting lists. When the upper bound becomes smaller
than θ, vectors that have not already been added to the set
of candidates can be ignored (line 9). The array C holds
the candidate vectors, together with the partial dot-product
that is due to the indexed part of the vectors.

Finally, in the CV phase (CandVer-AP function, shown as
Algorithm 4), we compute the final similarities by using the
residual index R, and report the true similar pairs.

The streaming versions of AP, in both MB and STR frame-
works, are not efficient in practice, and thus, we omit further
details. Instead, we proceed presenting the next scheme, the
L2AP index, which is a generalization of AP.
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5.3 L2-based indexing scheme
L2AP [3] is the state-of-the-art for computing similarity

self-join. The scheme uses tighter `2-bounds, which reduce
the size of the index, but also the number of generated can-
didates and the number of fully-computed similarities.

The L2AP scheme primarily leverages the Cauchy-Schwarz
inequality, which states that dot(x,y) ≤ ||x|| ||y||. The same
bound applies when considering a prefix of a query vector x.
Since we consider unit-normalized vectors (||y|| = 1),

dot(x′,y) ≤ ||x′|| ||y|| ≤ ||x′||.

The previous bound produces a tighter value for pscore,
which is used in the IC phase to bound the similarity of the
vector currently being indexed, to the rest of the dataset.
In particular, L2AP sets pscore = min{pscoreAP, ||x

′||}.
Additionally, the L2AP index stores the value of pscore

computed when x is indexed. L2AP keeps these values in an
array Q, index by ι(x), as shown in line 15 of Algorithm 2.
The L2AP index also stores in the index the magnitude of
the prefix of each vector x, up to coordinate j. That is,
the entries of the posting lists are now triples of the type
(ι(x), xj , ||x′j ||).

Both pieces of additional information, the array Q and
the values ||xj || stored in the posting lists, are used during
the CG phase to reduce the number of candidates.

In the CG phase, for a given query vector x, we scan its
coordinates backwards, i.e., in reverse order with respect to
the one used during indexing, and we accumulate similarity
scores for suffixes of x. We keep a remscore bound on the
remaining similarity score, which combines the rs1 bound
used in AP and a new `2-based rs2 bound that uses the prefix
magnitude values (||y′j ||) stored in the posting lists. The
remscore bound is an upper bound on the similarity of the
prefix of the current query vector and any other vector in
the index, thus as long as remscore is smaller than θ, the
algorithm can prune the candidate.

Pseudocode for the three phases of L2AP, IC, CG, and CV,
is shown in Algorithms 2, 3, and 4, respectively, including
both red and green lines. More details on the scheme can
be found in the original paper of Anastasiu and Karypis [3].

MB framework (MB-L2AP): As before, the MB-L2AP algorithm
is a direct instantiation of the generic Algorithm 1, using the
functions that implement the three different phases of L2AP.

STR framework (STR-L2AP): To describe the modifications
required for adapting the L2AP scheme in the streaming
framework, we need to introduce some additional notation.

First, we assume that the input is a stream S of vectors.
The main difference is that now both m and m̂ are function
of time, as the maximum values in the stream evolve over
time. We adapt the use of the two vectors to the streaming
case differently.

The vector m̂ is used in the CG phase to generate candi-
date vectors. Given that we are looking at vectors that are
already indexed (i.e., in the past), it is possible to apply the
definition of sim∆t between the query vector x and m̂. In
particular, given that the coordinates of m̂ originate from
different vectors in the index, we can apply the decay factor
to each coordinate to m̂ separately.

More formally, let m̂λ(t) be the worst case indexed vector
at time t, that is, m̂λ(t) is the representation of the vector in
the index that is most ∆t-similar to any vector in S arriving

Algorithm 5: STR-IDX (Streaming with index IDX)

input : Data stream S, threshold θ, decay λ
output: All pairs x,y ∈ S s.t. sim∆t(x,y) ≥ θ

1 I ←∅
2 P ←∅
3 while true do
4 x ← read(S)
5 (I, P )← IndConstr-IDX-STR(I,x, θ, λ)
6 report P

at time t. Its j-th coordinate m̂λ
j (t) is given by

m̂λ
j (t) = max

x∈S
t(x)≤t

{
xj e
−λ|t−t(x)|

}
.

To simplify the notation, we omit the dependency from
time when obvious from the context, and write simply m̂λ.

An upper bound on the time-dependent cosine similarity
of any newly arrived vector x at time t can be obtained by

remscore(t) = dot(x, m̂λ) =
d∑
j=1

xj m̂λ
j .

Conversely, the vector m is used in the IC phase to decide
which coordinates to add to the index. Its purpose is to
guarantee that any two similar vectors in the stream share
at least a coordinate. As such, it needs to look at the future.
In a static setting, and in MB, maximum values in the whole
dataset can easily be accumulated beforehand. However,
in a streaming setting these maximum values need to be
kept online. This difference implies that when the vector m
changes, the invariant on which the AP index is built is lost,
and we need to restore it. We call this process re-indexing.

At a first glance, it might seem straightforward to use
sim∆t to decide what to index, i.e., adding the decay factor
to line 10 in Algorithm 2. However, the decay factor causes
m to change rapidly, which in turn leads to a larger number
of re-indexings. Re-indexing, as explained next, is an ex-
pensive operation. Therefore, we opt to avoid applying the
time decay when computing the b1 bound with m.

Re-indexing (IC). For each coordinate xj of a newly ar-
rived vector x, one of three cases may occurr.

− xj = 0: no action is needed.

− 0 < xj ≤ mj : the posting list Ij can be pruned via time
filtering, as explained next.

− xj > mj : the upper bound vector m needs to be updated
with the new value just read, i.e., mj← xj . In this case,
parts of the pruned vectors may need to be re-indexed.

When m is updated (xj > mj) the invariant of prefix
filtering does not hold anymore. That is, there may be vec-
tors similar to x that are not matched in I. To restore the
invariant, we re-scan R (un-indexed part of vectors within
horizon τ). If the similarity of a vector y ∈ R and m has
increased, we will reach the threshold θ while scanning the
prefix y′p (before reaching its end). Therefore, we just need
to index those coordinates yp′ < yj ≤ yp, where p′ is the
newly computed boundary.

Given that the similarity can increase only for vectors
that have non-zero value in the dimensions of m that got up-
dated, we can keep an inverted index of R to avoid scanning
every vector. We use the updated dimensions of the max
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Algorithm 6: IndConstr-L2AP-STR

input : Index I, vector x, threshold θ, decay λ
output: Updated similarity index I including x, and

set of pairs P = {(x,y) | sim∆t(x,y) ≥ θ}
1 b1← +∞; b2← +∞
2 b1← 0
3 b2← 0; bt← 0
4 C← CandGen-L2AP-STR(I,x, θ, λ)
5 P ← CandVer-L2AP-STR((I,x, C, θ, λ)
6 foreach j = 1 . . . d s.t. xj > 0 do
7 pscore← min{b1, b2}
8 b1←b1 + xj min{mj , vmx}
9 bt← bt + xj

2; b2←
√

bt
10 if min{b1, b2} ≥ θ then
11 if R[ι(x)] = ∅ then
12 R[ι(x)]←x′j
13 Q[ι(x)]← pscore

14 Ij← Ij ∪ {(ι(x), xj , ||x′j ||)}
15 return (I, P )

vector mj to select the possible candidates for re-indexing,
and then scan only those from the residual index R.

Note that re-indexing inserts older vectors in the index.
As the lists always append items at the end, re-indexing
introduces out-of-order items in the list. As explained in
Section 6, the loss of the time-ordered property hinders one
of the optimizations in pruning the index based on time
filtering (explained next).

Time filtering (CG). To avoid continuously scanning the
index, we adopt a lazy approach. The posting lists Ij are
(partially) sorted by time, i.e., newest items are always ap-
pended to the tail of the lists. Thus, a simple linear scan
from the head of the lists is able to prune the lists lazily while
accumulating the similarity in the CG phase. More specifi-
cally, when a new vector x arrives, we scan all the posting
lists Ij such that xj 6= 0, in order to generate its candidates.
While scanning the lists, we drop any item (ι(y), yj , ||y′j ||)
such that |t(x)− t(y)| > τ .

The main loop of STR-L2AP is shown in Algorithm 5. The
algorithm simply reads each item x in the stream, adds x
to the index, and computes the vectors that are similar to
it, by calling IndConstr-L2AP-STR (Algorithm 6, including
both red and green lines).

5.4 Improved L2-based indexing scheme
The last indexing scheme we present, L2, is an adaptation

of L2AP, optimized for stream data.
The idea for the improved index is based on the obser-

vation that L2AP combines a number of different bounds:
the bounds inherited from the AP scheme (e.g., b1 for in-
dex construction, and rs1 for candidate generation) and the
new `2-based bounds introduced by Anastasiu and Karypis
[3] (e.g., b2 for index construction, and rs2 and l2bound for
candidate generation).

We have observed that in general the `2-based bounds are
more effective than the AP-based bounds. In almost all cases
the `2-based bounds are the ones that trigger. This observa-
tion is also verified by the results of Anastasiu and Karypis
[3]. Furthermore, as can be easily seen (by inspecting the
red and green lines of Algorithms 2, 3, and 4), while the AP

bounds use statistics of the data in the index, the `2-based

Algorithm 7: CandGen-L2AP-STR

input : Index I, vector x, threshold θ, decay λ
output: Accum. score array C for candidate vectors

(candidate set is C = {y ∈ D | C[ι(y)] > 0})
1 C←∅
2 rs1← +∞; rs2← +∞
3 rs1←dot(x, m̂λ)
4 rs2← 1; rst← 1
5 foreach j = d . . . 1 s.t. xj > 0 do //reverse order

6 foreach (ι(y), yj , ||y′j ||) ∈ Ij s.t. ∆txy ≤ τ do
7 remscore← min{rs1, rs2 e

−λ∆txy}
8 if (C[ι(y)] > 0 or remscore ≥ θ) then
9 C[ι(y)]←C[ι(y)] + xj yj

10 l2bound← (C[ι(y)] + ||x′j || ||y′j ||) e−λ∆txy

11 if l2bound < θ then
12 C[ι(y)]← 0

13 rs1← rs1 − xj m̂λ
j

14 rst← rst − xj
2; rs2←

√
rst

15 return C;

Algorithm 8: CandVer-L2AP-STR

input : Index I, vector x, candidate vector array C,
threshold θ, decay λ

output: Set of pairs P = {(x,y) | sim∆t(x,y) ≥ θ}
1 P ←∅
2 foreach y s.t. C[ι(y)] > 0 do
3 ps1← (C[ι(y)] +Q[ι(y)]) e−λ∆txy

4 ds1← (C[ι(y)] + min{vmx Σy′ , vmy′ Σx}) e−λ∆txy

5 sz2← (C[ι(y)] + min{|x|, |y′|} vmx vmy′) e−λ∆txy

6 if ps1 ≥ θ and ds1 ≥ θ and sz2 ≥ θ) then
7 s←C[ι(y)] + dot(x,y′)
8 if s ≥ θ then
9 P ←P ∪ {(x,y, s)}

10 return P

bounds depend only on the vector being index. This im-
plies that by using only the `2-based bounds, one does not
need to maintain the worst case vector m(t), and thus, no
re-indexing is required.

Thus, the L2 index uses only the `2-based bounds and
discards the AP-based bounds. The static version of L2 (used
in MB) is shown at Algorithms 2, 3, and 4, including the green
lines and excluding the red ones. The main loop for the
streaming case is IndConstr-L2-STR, shown as Algorithm 6,
including the green lines and excluding the red ones.

6. IMPLEMENTATION
This section presents additional details and optimizations

for both of our algorithmic frameworks, MB and STR.

6.1 Minibatch
Recall that in the MB framework, we construct the index

for a set of data items that arrive within horizon τ . However,
the L2AP scheme requires that we know not only the data
used to construct the index, but also the data used to query
the index, e.g., see Algorithm 2, line 10 This assumption
does not hold for MB, as shown in Algorithm 1, as the data

798



used to query the index arrive in the stream after the index
has been constructed.

To address this problem, we modify the MB framework as
follows. At any point of time we consider two windows,
Wk−1 and Wk, each of size τ , where Wk is the current win-
dow and Wk−1 is the previous one. The input data are
accumulated in the current window Wk, and the vector m
is maintained. When we arrive at the end of the current
window, we compute the global vector m, defined over both
Wk−1 and Wk, by combining the m vectors of the two win-
dows. We then use the data in Wk−1 to build the index, and
the data in Wk to query the index built over Wk−1.

When moving to the next window, Wk+1 becomes current,
Wk becomes previous, and Wk−1 is dropped.

6.2 Streaming
Next we discuss implementation issues related to the stream-

ing framework.

Variable-size lists. The streaming framework introduces
posting lists of variable size. The size of the posting lists
not only increases, but due to time filtering it may also de-
crease. In order to avoid many and small memory (de)al-
locations, we implement posting lists using a circular byte
buffer. When the buffer becomes full we double its capacity,
while when its size drops below 1/4 we halve it.

Time filtering. In the INV and L2 schemes it is easy to
maintain the posting lists in time-increasing order. This
ordering introduces a simple optimization: by scanning the
posting lists backwards — from the newest to the oldest
item — during candidate generation, it is possible to stop
scanning and truncate the posting list as soon as we find the
first item over the horizon τ . Truncating the circular buffer
requires constant time (if no shrinking occurs).

In L2AP it is not possible to keep the posting lists in
time order, as re-indexing may introduce out-of-order items.
Thus, L2AP scans the lists forward and needs to go through
all the expired items to prune the posting list.

Data structures. The residual direct index R and the
Q array in L2AP and L2 need to be continuously pruned.
To support the required operations for these data strunc-
tures, we implement them using a linked hash-map, which
combines a hash-map for fast retrieval, and a linked list for
sequential access. The sequential access is the order in which
the data items are inserted in the data structure, which is
also the time order. Maintaining these data structures re-
quires amortized constant time, and memory linear in the
number of vectors that arrive within a time interval τ .

Applying decay-factor pruning (λ). Central to adapt-
ing the indexing methods in the streaming setting, is the use
of the decay factor λ for pruning. In order to make decay-
factor pruning effective we apply the following principles.

Index construction: As the decay factor is used to prune
candidates from the data seen in the past, decay-factor
pruning is never applied during the index-construction
phase.

Candidate generation: Decay-factor pruning is applied dur-
ing candidate generation when computing the remscore

bound (line 7 of Algorithm 7), as well as when applying
the early `2 pruning (line 10).

For L2AP, it is also applied when computing rs1 (line 13),
with a different decay factor for each coordinate (as spec-
ified in the definition of m̂λ).

Candidate verification: In the candidate-verification phase,
decay-factor pruning is easily applied when computing
all of the bounds (lines 3–5 of Algorithm 8).

7. EXPERIMENTAL EVALUATION
The methods presented in the previous sections combine

four indexing schemes into two algorithmic frameworks (mini-
batch vs. streaming). Altogether, they lead to a large num-
ber of trade-offs for increased pruning power vs. index main-
tainance. In order to better understand the behavior and
evaluate the efficiency of each method we perform an exten-
sive experimental study. The objective of our evaluation is
to experimentally answer the following questions:

Q1: Which framework performs better, STR or MB?

Q2: How effective is L2, compared to L2AP and INV?

Q3: What are the effects of the parameters λ and θ?

Datasets. We test the proposed algorithms on several real-
world datasets. RCV1 is the Reuters Corpus volume 1 dataset
of newswires [18], WebSpam is a corpus of spam web pages [25],
Blogs is a collection of one month of WordPress blog posts
crawled in June 2015, and Tweets is a sample of tweets col-
lected in June 2009 [29]. All datasets are available online in
text format, while for the experiments we use a more com-
pact and faster-to-read binary format; the text-to-binary
converter is also included in the source code we provide.
These datasets exhibit a wide variety in their characteris-
tics, as summarized in Table 1, and allow us to evaluate our
methods under very different scenarios. Specifically, we see
that the density of the four datasets varies greatly. With re-
spect to timestamps, items in WebSpam and RCV1 are assigned
an artificial timestamp, sampled from a Poisson and a se-
quential arrival process, respectively. For Blogs and Tweets

the publication time of each item is available, and we use it
as a timestamp.

Algorithms. We test the two algorithmic frameworks, STR
and MB, with the three index variants, INV, L2AP, and L2, on
all four datasets. For the similarity threshold θ we explore
a range of values in [0.5, 0.99], which is typical for the apss
problem [3, 7], while for the time-decay factor λ we use
exponentially increasing values in the range [10−4, 10−1].

Our code also includes an implementation of AP for MB, but
in preliminary experiments we found it much slower than
L2AP, therefore we omit it from the set of indexing strate-
gies under study. Some configurations are very expensive in
terms of time or memory, and we are unable to run some of
the algorithms. We set a timeout of 3 hours for each experi-
ment, and we abort the run if this timout limit is exceeded,
or if the JVM crashes because of lack of memory. In all cases
of failure during our experiments, MB fails due to timeout,
while STR because of memory requirements.

Setting. We run all the experiments on a computer with
an Intel Xeon CPU E31230 @ 3.20 GHz with 8 MB of cache,
32 GB of RAM (of which 16 GB allocated for the JVM heap),
and a 500 GB SATA disk. All experiments run sequentially
on a single core of the CPU. We warm up the disk cache for
each dataset by performing one run of the algorithm before
taking running times. Times are averaged over three runs.
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Table 1: Datasets used in the experimental evaluation. n: number of vectors; m: number of coordinates;
∑
|x|: number of

non-zero coordinates; ρ =
∑
|x|/nm: density; |x| =

∑
|x|/n: average number of non-zero coordinates; and type of timestamps.

Dataset n m
∑

|x| ρ (%) |x| Timestamps

WebSpam 350 000 680 715 1305 M 0.55 3728.00 poisson
RCV1 804 414 43 001 61 M 0.18 75.72 sequential
Blogs 2 532 437 356 043 356 M 0.04 140.40 publishing date
Tweets 18 266 589 1 048 576 173 M 0.001 9.46 publishing date

Table 2: Fraction of the 24 configurations of (θ,λ) that suc-
cessfully terminate within the allowed time budget (closer to
1.00 is better).

Dataset
MB STR

INV L2AP L2 INV L2AP L2

WebSpam 1.00 1.00 1.00 1.00 0.83 0.96
RCV1 1.00 1.00 1.00 1.00 0.96 1.00
Blogs 0.25 0.25 0.25 1.00 0.96 1.00
Tweets 0.25 0.25 0.25 1.00 0.96 0.96

7.1 Results
Q1 (MB vs. STR): Of the four datasets we use, MB success-
fully runs with all configurations on only two of them (RCV1
and WebSpam). As can be seen from Table 1, Blogs and
Tweets are the largest datasets, and MB is not able to scale
to these sizes. On the other hand, STR is able to run with all
configurations on all four datasets. The overhead of MB be-
comes too large when the horizon τ becomes small enough,
as a new index needs to be initialized too frequently. Table 2
shows a summary of the outcomes of the experimental eval-
uations for the various configuration. Therefore, we restrict
this comparison to RCV1 and WebSpam.

Most of the time of STR and MB, according to our profiling
results, is spent in the CG phase while scanning the posting
lists. Hence, we first compare the algorithms on the number
of posting entries traversed. Figure 2 shows that STR usually
does less total work, and traverses around 65% of the entries
traversed by MB. The figure shows the ratio for L2, but other
indexing strategies show the same trend (plots are omitted
for brevity).

We now turn our attention to running time. Figures 3
and 4 compare the running time of STR and MB on RCV1

and WebSpam for all configuration on which both are able to
run. The decay factor λ varies with the columns of the grid,
while the indexing scheme with the rows. The two datasets
present a different picture.

Clearly, for RCV1 (Figure 3) algorithm STR is faster than MB

in most cases. More aggressive pruning reduces the differ-
ence, while in some cases with low θ (useful for recommender
systems) algorithm STR can be up to 4 times faster than MB.
L2AP is the exception, and for smaller τ its performance is
subpar, as detailed next.

Conversely, for WebSpam the MB algorithm has the upper
hand in most cases, especially for larger decay factors (i.e.,
shorter horizons). The different behavior is caused by the
higher density of WebSpam, which has an average number of
non-zero coordinates per vector, which is almost two orders
of magnitude larger than RCV1 (see Table 1). For STR, this
high density renders the lazy update approach inefficient,
as a large number of posting lists need to be updated and
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Figure 2: Ratio of index entries traversed during CG for
STR compared to MB. For small τ , the ratio tends to one,
while for larger horizons τ , STR needs to traverse only 65%
of the entries compared to MB.

pruned for each vector, especially for short horizons. MB can
simply throw away old indexes, rather than mending them.

Summarizing our findings related to the MB-vs.-STR study,
we conclude that STR is more efficient in most cases, as it is
able to run on all datasets, while MB becomes too slow for
larger datasets. For very specific conditions of high density,
MB has a small advantage on STR.

Q2 (Indexing schemes): Now that we have established
that STR scales better than MB, we focus on the former al-
gorithm: the rest of the experiments are performed on STR.
We turn our attention to the effectiveness of pruning, and
compare L2 with INV and L2AP. For brevity, we show results
for RCV1 only. The other datasets follow the same trends.

Figure 5 shows the comparison in time. Several interest-
ing patterns emerge. First, L2 is almost always the fastest
indexing scheme. Second, INV works well for short horizons,
where the overheads incurred by pruning are not compen-
sated by a large reduction in candidates. Instead, for larger
horizons (low θ and λ) the gains of pruning are more pro-
nounced, thus making INV a poor choice. Finally, L2AP is
slightly slower than L2 in most cases, and much slower when
the horizon is short. Even though L2 uses a subset of the
bounds of L2AP, the overhead of computing the AP bounds
offsets any possible gain in pruning.

In addition, L2AP may need to re-index residuals of vec-
tors, and a shorter horizon causes more frequent re-indexings.
Therefore, the two rightmost plots show an upward trend
in L2AP, which is due to the re-indexing overhead. The
overhead is so large that we were not able to run L2AP for
θ = 0.99 and λ = 0.1. While there are possible practi-
cal workarounds (e.g., use a more lax bound to decrease the
frequency of re-indexing), L2 always provides a better choice
and does not require tinkering with the algorithm.
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Figure 3: Time taken by the MB and STR algorithms as a function of the similarity threshold θ, on the RCV1 dataset.
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Figure 4: Time taken by the MB and STR algorithms as a function of the similarity threshold θ, on the WebSpam dataset.

In general, a shorter horizon makes other pruning strate-
gies less relevant compared to time filtering, as can be seen
from the progressive flattening of the curves from left to
right as λ increases.

Figure 6 shows the comparison in the number of index en-
tries traversed. Clearly, INV has usually the largest amount
due to the absence of pruning. The relative effectiveness of
pruning for L2 is almost constant throughout the range of λ,
however the number of entries traversed decreases, and so

does the importance of filtering the index (compared to the
time filtering). This is in line with the behavior exhibited in
Figure 5 where the difference in time decreases for larger λ.

Interestingly, L2AP starts very close to L2, but as the hori-
zon shortens the number of entries traversed increases sig-
nificantly, evens surpassing INV in the rightmost plot. This
result shows that L2 does not lose much in terms of pruning
power, despite not using the bounds from AP. Furthermore,
the optimization to the implementation of time filtering de-
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Figure 5: Time taken by STR using different indexes as a function of the similarity threshold θ, for the RCV1 dataset.
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Figure 6: Entries traversed by STR using different indexes as a function of the similarity threshold θ, for the Tweets dataset.

scribed in Section 6 (backwards posting-list scanning) is not
applicable. The reason is that the AP bounds required dur-
ing indexing are data-dependent, which leads to re-indexing
and therefore there is no guarantee that the posting lists are
sorted by time. Therefore, L2AP ends up traversing more en-
tries than L2.

Note that the last points on the rightmost plot of Figure 6
(θ = 0.99 and λ = 0.1) are not shown because their value
is zero, which cannot be represented on a logarithmic axis.
Indeed, in this configuration τ = 0.1 which is smaller than
any timestamp delta, so the index gets continuously pruned
before bing traversed, and therefore the output is empty.

Similar trends are observed for the number of candidates
generated and the number of full similarities computed. Those
results are omitted due to space constraints.

Q3 (Parameters θ and λ): Next we study the effect of
the parameters of our methods: the decay factor λ and the
similarity threshold θ. Hereinafter, we present results only
for L2, for which we have established that it is an effective
and efficient pruning scheme.

Figure 7 shows the effect of the decay factor λ. Increas-
ing the decay factor decreases the computation time for all
datasets. However, the decrease is more marked for lower
threshold θ, and flattens out quickly for higher values of λ.

Figure 8 shows the effect of the similarity threshold θ.
The pattern is similar to the previous figure, with the roles
of θ and λ reversed. Increasing the threshold decreases the
computation time for all datasets, but is more marked for
lower λ, and flattens out quickly.

By combining the insights from the previous two figures,
we can infer that both parameters jointly affect the compu-
tation time. The reason is that time is mainly affected by
time filtering, which is the most effective pruning strategy in
this setting, and its effect depends on the horizon τ , which
jointly depends on the other two main parameters.

To explore this hypothesis, we perform a linear regression
of the computation time on the value of the horizon τ . Fig-
ure 9 shows that the computation time is roughly a linear
function of τ . In addition, from the inclination of the regres-
sion line it is clear that WebSpam is an outlier when compared
to the other datasets, as previously mentioned.

8. CONCLUSION
We introduced the problem of computing the similarity

self-join in data streams. Our approach relies on incorpo-
rating a forgetting factor in the similarity measure so as to
be able to prune data items when they become old enough.
Given the new definition of time-dependent similarity, we
developed two algorithmic frameworks that incorporate ex-
isting indexing techniques for computing similarity self-join
on static data, and we extended those techniques to the
streaming case. We explored several different combinations
of bounds used for index pruning, which, in the context of
streaming data, lead to interesting performance trade-offs.
Our extensive analysis allows to understand better these
trade-offs, and consequently, to design an index that is op-
timized for streaming data. Our analysis indicates that the
STR algorithm equipped with the L2 index is the most scal-
able and robust across all datasets and configurations.

One promising direction for future work is to experiment
with dimension-ordering strategies and evaluate the cost-
benefit trade-off of maintaining a dimension ordering. Other
directions include applying the developed techniques in real-
world applications for filtering near-duplicate items in data
streams, as well as extending our model for different defini-
tions of time-dependent similarity.
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