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ABSTRACT
The recent Programming By Example (PBE) techniques
such as FlashFill have shown great promise for enabling
end-users to perform data transformation tasks using input-
output examples. Since examples are inherently an under-
specification, there are typically a large number of hypothe-
ses conforming to the examples, and the PBE techniques
suffer from scalability issues for finding the intended pro-
gram amongst the large space.

We present a semi-supervised learning technique to signifi-
cantly reduce this ambiguity by using the logical information
present in the input data to guide the synthesis algorithm.
We develop a data structure InputDataGraph to succinctly
represent a large set of logical patterns that are shared across
the input data, and use this graph to efficiently learn sub-
string expressions in a new PBE system BlinkFill. We
evaluate BlinkFill on 207 real-world benchmarks and show
that BlinkFill is significantly faster (on average 41x) and
requires fewer input-output examples (1.27 vs 1.53) to learn
the desired transformations in comparison to FlashFill.

1. INTRODUCTION
The IT revolution has resulted in massive digitization

of data and in making this data accessible to millions of
users. Despite significant advances in technologies for help-
ing users perform data analysis, the process of transforming
and cleaning data before any useful analysis is still challeng-
ing and time consuming. Some studies have reported that
this step of data cleaning and reshaping (also called wran-
gling) can take up to 80% of the data analysts’ time [4].
These data analysts have myriad diverse backgrounds and
lack programming knowledge to automate data wrangling
steps [6]. Simpler specification mechanisms such as exam-
ples [1, 7] and predictive interaction [10] are recently becom-
ing more popular to cater to the needs of these users.

An important subset of the data wrangling problem con-
sists of regular expression based string transformation tasks.
FlashFill [7, 8], a recently introduced feature in Microsoft
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Excel 2013, is a Programming By Example (PBE) system
for helping end-users perform such string transformations
using examples. The key idea in FlashFill is to learn pro-
grams in a Domain-specific language (DSL) that is expres-
sive enough to encode the majority of real-world tasks, but
also restricted enough for efficient learning. Since examples
are often an under-specification of the intended task, there
are typically a large number of programs in the DSL that
conform to the examples. FlashFill uses version-space al-
gebra (VSA) [12, 13] to succinctly represent this large set
of consistent programs and then uses ranking to identify
the most likely program [27]. Since FlashFill only uses
the input-output examples and ignores the other spread-
sheet data items, it needs to learn and maintain a large
set of programs that are consistent with the examples but
may not perform the desired transformation on other data
items. This, in turn, results in scalability issues of the syn-
thesis algorithm on longer strings and also enforces larger
restrictions on the transformations supported in the DSL
(e.g. FlashFill only supports a finite set of pre-defined
regular expression tokens).

In this paper, we present BlinkFill, a PBE system that
efficiently learns string transformations in spreadsheets from
input-output examples by leveraging the logical information
present in the spreadsheet data. We show that this semi-
supervised technique can significantly reduce the inherent
ambiguity in PBE, which in turn results in an efficient learn-
ing algorithm. Moreover, learning from other spreadsheet
data also enables a new class of transformations that use
regular expressions based on arbitrary constant strings.

There are two key challenges in learning from spreadsheet
data: 1) how to efficiently compute the set of all logical
structures (and sub-structures) that are consistent with a
set of column values, and 2) how to use the logical structures
in learning string transformation programs. BlinkFill con-
structs a data structure InputDataGraph that succinctly en-
codes the set of all logical structures that are shared across a
set of column values. It then uses the sub-paths in the graph
data structure to learn and disambiguate between a large
number of DSL expressions that are consistent with a given
set of input-output examples. The DSL for string transfor-
mation tasks in BlinkFill is similar to that of FlashFill
at the top-level, but consists of new substring extraction ex-
pressions based on the InputDataGraph nodes. We present
a sound and complete synthesis algorithm to learn the set
of all expressions in the DSL that conform to a set of input-
output examples, and a ranking algorithm to select the most
likely program amongst them. Unlike FlashFill, the DSL
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for BlinkFill does not support conditionals and loops, but
supports a richer class of substring extraction tasks since
it can learn arbitrary regular expression tokens based on
the spreadsheet data. The substring extraction and merg-
ing tasks supported by BlinkFill account for the majority
(more than 88%) of the real-word FlashFill tasks obtained
from the Excel product team.

The idea of using the data items other than input-output
examples to learn consistent programs is inspired from the
work on Potter’s wheel [22]. Potter’s wheel is a precur-
sor to Trifacta’s pioneering Data Wrangler system [11] for
interactive data wrangling. For column split transforma-
tions, Potter’s wheel learns the most suitable logical struc-
ture consistent with the set of column strings based on the
Minimum Description Length metric [23]. Our technique
of semi-supervised learning in BlinkFill is different from
Potter’s wheel in three key ways. First, BlinkFill learns
the complete set of logical structures (and sub-structures)
that are consistent with a given set of column values in-
stead of learning only one structure as there might be mul-
tiple consistent sub-structures. Second, the learnt structures
are represented succinctly using a VSA so that they can be
integrated in VSA-based program synthesis techniques such
as FlashFill. Finally, the class of string transformations
supported by BlinkFill (concatenation of substrings and
constant strings) is richer than the string transformations
supported by Potter’s wheel.

We evaluate BlinkFill on 207 benchmarks [27] obtained
from the Excel team and online help forums. In comparison
to FlashFill, BlinkFill takes significantly less time to
learn the desired transformations and requires fewer input-
output examples (in spite of FlashFill using a highly-tuned
machine learning based ranking technique). BlinkFill is
on average 41× (median 11×) faster than FlashFill. It
requires on average 1.27 examples per benchmark as opposed
to 1.53 examples needed by FlashFill. This paper makes
the following key contributions:

• We present a new data structure InputDataGraph to
succinctly represent the set of all logical structures in a
DSL that are consistent with a given set of strings, and
present an efficient algorithm to learn the structure.

• We present a new PBE system BlinkFill, whose DSL
consists of concatenated expressions of constant string
expressions and substring expressions (based on the
InputDataGraph). We present a sound and complete
synthesis algorithm to learn expressions in the DSL.

• We evaluate BlinkFill on 207 real-world benchmarks
obtained from the Excel product team and online help
forums. BlinkFill is significantly faster (41×) and
requires fewer input-output examples (1.27 vs 1.53) in
comparison to FlashFill.

2. PRELIMINARIES
Without loss of generality, we assume that the string trans-

formation task involves transforming a set of n input row
strings {(v11 , · · · , v1k), · · · , (vn1 , · · · , vnk )}, and the user has
provided a set ofm input-output examples {((v11 , · · · , v1k), o1s),
· · · , ((vm1 , · · · , vmk ), oms )}. A string s is considered as simply
a sequence of characters, where s[1] denotes the first charac-
ter of the string and len(s) denotes the length of the string.
We use the notation s[i..j] to denote the substring of s that

Token Regex Abbr.
ProperCase rp ≡\p{Lu}(\p{Ll})+ p

CAPS rC ≡\p{Lu}+ C
lowercase rl ≡\p{Ll}+ l
Digits \d+ d

Alphabets rα ≡[\p{Lu}\p{Ll}]+ α
Alphanumeric [\p{Lu}\p{Ll}0-9]+ αn
Whitespace rws ≡\p{Zs}+ ws

StartT ∧ ∧

EndT $ $

ProperCaseWSpaces rp(rwsrp)* ps
CAPSWSpaces rC(rwsrC)* Cs

lowercaseWSpaces rl(rwsrl)* ls
AlphabetsWSpaces rα(rwsrα)* αs

Table 1: The set of base regular expression based
tokens supported by BlinkFill.

starts at index i and ends at index j, where j ≥ i and length
of the substring is j − i+ 1.

Tokens: BlinkFill supports two kinds of token patterns
at the base level of the DSL: (i) regular expression tokens
and (ii) constant string tokens. The regular expression to-
kens match a string with a predefined regular expression
pattern. There are 13 such tokens supported by BlinkFill,
which are shown in Table 1. The constant string tokens
match a string with the corresponding constant string pat-
tern and are learnt automatically by BlinkFill during the
synthesis process.

Definition 1 (Token Match). Let n be the number
of matches of the pattern defined by a token τ in a given
string s. We define a token match (τ, k) as the kth ((n+k)th

if k < 0) match of token τ in s. We denote the set of
all token matches as τ � s, such that size(τ � s) = n,
(τ, k) ≡ (τ � s)[k] if k > 0, and (τ, k) ≡ (τ � s)[n + k + 1]
if k < 0. We denote the start and end indices of a token
match as (τ � s)[k] ↪→ and (τ � s)[k]←↩ respectively.

For example, given a string s = "Mumbai, India", the
token match (C,1) denotes the 1st match of the CAPS token
(matching the substring "M"), where size(C � s) = 2, (C �
s)[1] ↪→= 1, (C � s)[1] ←↩= 1. The token match (C,-1)
(matching the substring "I") is defined by (C � s)[2] ↪→= 8,
(C � s)[2]←↩= 8. Similarly, the token match (p,2) matches
the substring "India", (l,1) matches "umbai", the constant
token match ("M",1) matches "M", and the constant token
match (", ", 1) matches the substring ", ".

Version space algebra: Version-space Algebra (VSA)
was first introduced by Mitchell [19] in the context of ma-
chine learning and was later used in Programming by Ex-
amples/Demonstration systems such as SmartEdit [12] and
FlashFill [7]. The key idea in VSA is to succinctly repre-
sent an exponential number of programs in polynomial space
and can be intuitively viewed as a directed graph with three
types of nodes: 1) leaf nodes with direct set of programs, 2)
intermediate union nodes representing a set-union of its chil-
dren VSAs, and 3) intermediate join nodes with k children
VSAs annotated with a k-ary function F such that it rep-
resents all resulting application of F to the cross-product of
children values. More details about the VSA formalization
and applications can be found in [21, 27].
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3. MOTIVATING EXAMPLES
In this section, we present a few motivating scenarios that

demonstrate the usefulness of semi-supervised learning for
string transformation tasks. BlinkFill efficiently learns the
set of all logical structures consistent with the input strings
and uses it to learn the desired transformation from only 1
or 2 input-output examples for each of these scenarios.

Example 1. An Excel user had a list of city and country
names in a column, and needed to extract the country name.
The user provided an input-output example (emphasized in
bold) to express the intent as shown in Figure 1.

Input v1 Output

1 Mumbai, India India
2 Los Angeles, United States of America
3 Newark, United States
4 New York, United States of America
5 Wellington, New Zealand
6 New Delhi, India

Figure 1: Extracting country from input column.

Given the first input-output example "Mumbai, India"

→ "India", there are a large number of possible logical ex-
pressions to extract the substring "India". The substring
expression in the DSL that extracts such substrings from the
input strings is defined using two position expressions: one
position expression for the left index of the substring and
the other for the right index. For example, some possible
logics to identify the left index of the substring "India"

in the input string "Mumbai, India" are: i) start of 2nd

Alphabets token, ii) start of 2nd Alphanumeric, iii) end of
1st Whitespace, iv) end of 1st comma followed by whites-
pace, etc. There are more than 103 different logics in our
DSL that can identify this position. Similarly, there are
more than 103 different logics for identifying the right index
of the substring. Given just the input-output example, it is
challenging to select the desired expression from more than
106 different choices of conforming logics.

BlinkFill uses semi-supervised learning to identify that
the most desirable logic for left index of substring "India"

is the end of 1st ConstantStr(", ") (comma followed by a
whitespace), whereas the most desirable logic for the right
index is the end of −1st lowercase (where negative values
denote match occurrences from the end). BlinkFill prefers
token sequences that have larger contexts around them in
input data as they are more likely to correspond to the de-
sired logic. For this example, it finds that the left index logic
is preceded by the context StartT ◦ 1stProperCaseWSpaces,
and the right index logic is followed by the context EndT.

Example 2. An Excel user wanted to abbreviate a list of
names to the corresponding initials of First and Last names
as shown in Figure 2. The presence of optional middle names
in different formats made it challenging for the user.

This example requires extraction of multiple substrings.
Given an input-output example "Brandon Henry Saunders"

→ "B.S.", BlinkFill needs to learn substring expressions
to extract the substrings "B" and "S". For the substring
"B", there are again many different possible logics for the

Input v1 Output

1 Brandon Henry Saunders B.S.
2 William Lee
3 Dafna Q. Chen
4 Danelle D. Saunders
5 Emilio William Concepcion

Figure 2: Abbreviating names to initials.

left index such as start of 1stCAPS, start of 1stProperCase,
end of StartT, etc. Machine learning based techniques can
reasonably identify that 1stCAPS is a more commonly-used
expression globally and can rank them higher than other
choices. But for the left index of the second substring "S",
identifying the correct logic is quite challenging as there
are many equally likely hypotheses such as end of −1st

Whitespace, end of 2nd Whitespace, start 3rd CAPS, end of
−1stProperCase◦Whitespace, etc. BlinkFill uses the log-
ical patterns shared by the input column strings to learn the
following index expressions:

• For substring "B", left: start of 1stProperCaseWSpaces

(end of StartT as context), right: end of 1stCAPS (end
of StartT and start of 1stlowercase as contexts)

• For substring "S", left: end of −1stWhitespace ( start
of −1stProperCase ◦ EndT as context), right: start of
−1stlowercase (start of EndT as context)

Example 3. A user posted the following spreadsheet on
an Excel help-forum consisting of a list of medical billing
codes, where some codes had a missing "]" at the end. The
user wanted to clean the data by adding the missing "]"

only for the strings where it was missing, and didn’t want
to duplicate "]" for the strings where it was already present.

Input v1 Output

1 [CPT-00350 [CPT-00350]
2 [CPT-00340
3 [CPT-11536]
4 [CPT-115]

Figure 3: Adding "]" to codes with a missing "]".

This is an interesting example as it requires FlashFill
to learn a conditional program to insert "]" to only strings
that do not already have "]" at the end. After the first
example, FlashFill learns the simplest program to insert
"]" at the end of every input. The user needs to provide an
additional example corresponding to the distinct behavior
to help FlashFill learn the conditional program. On the
other hand, BlinkFill learns the desired transformation
from the first example itself. Instead of selecting the sub-
string between the StartT and EndT (i.e. the complete in-
put), it learns that the most common logical pattern shared
by the input strings is: StartT◦1stConstantStr("[CPT-")◦
1stDigits. It then learns the program that concatenates
the substring between end of StartT and end of 1stDigits

with the constant string "]". For inputs without "]" at
the end, the substring expression extracts the complete sub-
string. For inputs ending with "]", the substring expression
extracts only the substring before the last "]".
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Example 4. A user posted the following spreadsheet on
StackOverflow, where the user wanted to extract the infor-
mation (of varying length) that was present between two
strings "nextData" and "moreInfo" as shown in Figure 4.

Input v1 Output

1 nextData 12 Street moreInfo 35 12 Street
2 nextData Main moreInfo 36 Main
3 nextData Albany Street moreInfo 37
4 nextData 134 Green Street moreInfo 39

Figure 4: Extracting message between the constant
strings "nextData" and "moreInfo".

The transformation in this example cannot be learnt by
FlashFill since it is limited by a finite predefined list of reg-
ular expression tokens and does not consider constant string
based tokens such as "nextData". BlinkFill, however, is
not limited by a finite list of tokens, and considers different
possible logical structures in the input strings including all
possible combinations of constant string tokens and regular
expression tokens. It learns the substring expression to ex-
tract the desired substring whose left and right indices are
defined by the logics end of 1stConstantStr(" nextData ")
and start of 1stConstantStr(" moreInfo ”), with StartT

and −1stDigits ◦ EndT as contexts respectively.

4. OVERVIEW OF THE APPROACH
We first define the abstract semi-supervised PBE problem.

LetD denote the set of data items, I = {(i1, o1), · · · , (in, on)}
denote the set of n input-output examples, and L denote the
DSL that defines the possible space of programs. The tra-
ditional PBE techniques solve the following problem: ∃P ∈
L ∀(i, o) ∈ I : P (i) = o, i.e. find a program P in DSL L
that is consistent with all input-output examples. The semi-
supervised approach also takes into account the dataset D
for learning the program and solves the following constraint:
∃P ∈ L ∀(i, o) ∈ I : P (i) = o ∧ SubExpr(P ) ⊆ G(D,L),
where G(D,L) denotes a data structure that represents a
set of sub-expressions in L and SubExpr(P ) denotes the set
of sub-expressions of P . For a sound and complete synthe-
sis algorithm, we require that the data structure G(D,L)
consists of all sub-expressions in L that are consistent with
each data item in the dataset D.

An overview of our instantiation of the semi-supervised
PBE approach in BlinkFill is shown in Figure 5. The syn-
thesis algorithm takes two kinds of inputs: 1) the traditional
input-output examples given by users in the form of a set of
tuples of spreadsheet rows and the corresponding outputs,
and 2) the InputDataGraph. The GenInputGraph module
uses the spreadsheet data to construct the InputDataGraph

that succinctly represents the set of all logical patterns that
are shared across the spreadsheet data. The synthesis al-
gorithm then uses the InputDataGraph to efficiently learn a
program in the DSL that is consistent with the input-output
examples, and executes it on the spreadsheet data to com-
pute the outputs for the remaining spreadsheet rows.

5. INPUT DATA GRAPHS
Given a set of strings in a spreadsheet column, our goal

is to learn the set of all logical patterns (in a DSL) that are

(a1,a2)  o1

I/O examples

Synthesis

Algorithm

GenInputGraph

InputDataGraph

a1 a2

b1 b2

c1 c2

d1 d2

a1 a2 o1

b1 b2 o2

c1 c2 o3

d1 d2 o4
Spreadsheet Data

Resulting Spreadsheet

Learnt  Transformation

Figure 5: An overview of our approach in BlinkFill.

consistent with any substring of these strings. This is chal-
lenging because of two reasons: 1) there are a huge number
of token sequences that are consistent with the quadratic
number of substrings of a single string, and 2) there are
exponentially many possible alignments of the strings in a
column. A näıve approach would first enumerate exponen-
tially many token sequences for each string in a column, and
then compute all matching sub-sequences in double expo-
nential time. We present a data structure InputDataGraph

that succinctly represents a large number of token sequences
that are consistent with a set of input strings, and can be
constructed efficiently in practice.

Definition 2. An InputDataGraph G = (V, E, I, L) is a
4-tuple where V denotes the set of nodes, E denotes the set
of edges corresponding to a set of ordered node pairs, I :
V→ {(id, idx)i}i is a labeling function that labels each node
with a set of string id and index pair (id,idx), and L : E→
{(τ, k)i}i maps each edge to a list of token matches.

The nodes in an InputDataGraph correspond to different
indices of a set of strings, where the indices are represented
using the labeling function I. An edge between two nodes
v1 and v2 in the graph represents all token matches that
match the substrings corresponding to the indices of the
two nodes. The token matches on an edge are represented
using the edge labeling function L. A path in the graph
between two nodes represents a sequence of token matches
that match the corresponding substrings. In this manner,
an InputDataGraph represents an exponential number of se-
quence of token matches succinctly using polynomial space.

Consider the input strings: {"1 lb", "23 g", "4 tons",
"102 grams", "75 kg"}. The InputDataGraph G1 for the
input string "1 lb" is shown in Figure 6(a). We have G1 =
(V1, E1, I1, L1), where V1 = {v0, v1, v2, v3, v4, v5, v6}, and E1 =
{(vi, vj)|j > i ∧ vi ∈ V1 ∧ vj ∈ V1}. The node labeling
function I1(vi) = {(1, i)} for all vi ∈ V1, where 1 is the
unique identifier assigned to the string "1 lb". The edge
labeling function L1 for each edge is shown in the figure, e.g.
L1(v1, v2) = {(d, 1), (d, -1), (αn, 1)(αn, -1), ("1", 1), ("1", -1)}
and L1(v1, v3) = {("1 ", 1), ("1 ",−1)}. Similarly, the graph
for the input string "23 g" is shown in Figure 6(b).

5.1 Generation of InputDataGraphs
Given a set of n input rows each consisting of k columns,

the GenInpDataGraph algorithm constructs the correspond-
ing InputDataGraph G as shown in Figure 7. The key idea of
the algorithm is to first construct a graph for each spread-
sheet column, and then return the union of these graphs
as the resulting graph for the spreadsheet data. Given a
column of string values, it uses the GenGraphStr algorithm
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{0} {1} {2} {3} {4} {5} {6}
^ $

α α

α α αn αn αs αs “lb” lb”

{0} {1} {2} {3} {4} {5} {6}
^ $

α α

α α αn αn αs αs “g” g”

(a) (b)

Figure 6: The InputDataGraph for the input strings (a) "1 lb" and (b) "23 g".

GenInpDataGraph({(v11 , · · · , v1k), · · · , (vn1 , · · · , vnk )})
for i = 1 to k:

Gi := GenGraphColumn({v1i , · · · , vni })
return

⋃
1≤i≤kGi

GenGraphColumn({(s1, · · · , sn)})
G := GenGraphStr(s1)
for i = 2 to n:

G := Intersect(G, GenGraphStr(si))
return G

Figure 7: The GenInpDataGraph algorithm for con-
structing the input graph for a set of n input rows
each consisting of k strings.

to construct the graphs for individual strings and then uses
the intersection algorithm (§5.2) to intersect these graphs to
compute the graph consisting of all logical patterns that are
shared across the set of column strings.

The GenGraphStr algorithm for constructing the input
graph for an input string s is shown in Figure 8. The algo-
rithm first creates len(s) + 1 number of nodes for denoting
different indices of the input string, and two special nodes
v0 and vlen(s)+2 for denoting the start and end tokens re-
spectively. The labeling function I labels each node vi with
(id,i), where id denotes the unique string identifier for s. For
each node pair (vi, vj), the algorithm adds an edge with the
labeling function L such that L(vi, vj) consists of all token
matches that match the substring s[i..(j − 1)]. The com-
plexity of the algorithm is O(n2) (by using hash lookup for
GetMId), where n is the length of the input string s.

5.2 Intersection of InputDataGraphs
The intersection of two InputDataGraphs results in an

InputDataGraph that consists of all patterns that are com-
mon to both graphs. Formally, the intersection of two graphs
G1 = (V1, E1, I1, L1) and G2 = (V2, E2, I2, L2) is defined as
G = Intersect(G1, G2) = (V, E, I, L), where

V = {(vi, vj)|vi ∈ V1, vj ∈ V2}
E = {((vi, vj), (vk, vl))|(vi, vk) ∈ E1, (vj , vl) ∈ E2}

I((vi, vj)) = I1(vi) ∪ I2(vj),∀vi ∈ V1, vj ∈ V2

L(((vi, vj), (vk, vl))) = {(τ, k)|(τ, k) ∈ L1((vi, vk))

∧(τ, k) ∈ L2((vj , vl))}∀(vi, vk) ∈ E1, (vj , vl) ∈ E2

The Intersect algorithm creates the Cartesian product
of the nodes in the two graph V1 and V2 to create the nodes V
for the new graph G. The node labeling function I((vi, vj))

GenerateInputGraph(s: Input string)

1 V = ∅, E = ∅
2 id = string2Id[s]

3 foreach i ∈ range(0, len(s)+3):

4 V = V ∪ vi
5 I(vi) = { (id,i) }
6 L((v0, v1) = {(∧, 1)}
7 L((vlen(s)+1, vlen(s)+2) = {($, 1)}
8 foreach i ∈ range(1,len(s)+1):

9 foreach j ∈ range(i+1,len(s)+2):

10 leftIdx = i, rightIdx = j-1

11 E = E ∪ (vi, vj)
12 cs = s[leftIdx..rightIdx]

13 L((vi, vj)) = {(cs,GetMId(cs,s,i))}
14 foreach τ ∈ T ∧ Match(τ, cs):
15 L((vi, vj)) = L((vi, vj)) ∪ (τ, GetMId(τ,s,i))
16 return (V, E, I, L)

Figure 8: The generateInputGraph algorithm for con-
structing the input graph for an input string s.

takes the union of the labels of the corresponding nodes I(vi)
and I(vj). For each edge (vi, vk) ∈ E1 and edge (vj , vl) ∈ E2,
the algorithm adds an edge ((vi, vj), (vk, vl)) to the new set
of edges E. The edge labeling function L(((vi, vj), (vk, vl)))
labels each edge with the token set that is common to both
sets L((vi, vk)) and L((vj , vl)). The worst-case complexity
of the algorithm is O(n4), where n is the length of the in-
put strings. However, in practice, we do not see a quadratic
blowup in the graph size after the intersection algorithm as
shown in §8.3. The key reason behind this is the fact that
even though the two initial InputDataGraphs are complete
with O(n2) edges, a lot of these edges do not remain after
the intersection operation because of the strong constraint
that token match (τ, k) should be the same for both the
intersecting edges. For example, the token match ("a", 1)
(matching the first occurrence of constant string "a") can
not match with the token match (”a”, 2) (the second occur-
rence of "a"). As a result, the InputDataGraph obtained af-
ter intersection becomes very sparse in the number of edges.

The InputDataGraph for the intersection of graphs for the
strings "1 lb" and "23 g" is shown in Figure 9. The inter-
sected graph consists of 6 nodes and 5 edges. Note that the
node labels in the figure only show the string indices and not
the string ids for brevity. The InputDataGraph obtained af-
ter intersecting the graphs for the set of input strings {"1
lb", "23 g", "4 tons", "102 grams", "75 kg"} also consists
of same number of nodes and edges. The InputDataGraph
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^
{0,0} {1,1} {2,3} {3,4} {5,5} {6,6}

α α

α α αn αn αs αs

$

Figure 9: The intersection of InputDataGraphs for
strings "1 lb" and "23 g".

for the six input strings in Example 1 is shown in Figure 14,
which consists of 40 nodes and 32 edges.

6. STRING TRANSFORMATIONS
In this section, we describe the String Transformation

Language Ls of BlinkFill and the Dag data structure used
to succinctly represent a large number of Ls expressions
that are consistent with a given set of input-output exam-
ples. The DSL and the data structure are similar to the
corresponding DSL and data structure of FlashFill at the
top-level, but the key difference is in the representation of
position expressions in the substring expressions, which are
defined using the token match expressions from the edges of
the InputDataGraph data structure.

6.1 String Transformation Language Ls

The DSL for BlinkFill is shown in Figure 10(a) with the
key differences from FlashFill highlighted. The top-level
string expression e is a concatenation of a finite list of sub-
string expressions [f1, · · · , fn]. A substring expression f can
either be a constant string s (denoted by ConstantStr(s))
or a substring extraction expression that is defined using
two position logics pl and pr, which correspond to the left
and right indices in the input string vi respectively. The
position logic expression p is either a constant integer value
k or a token match expression. The token match expression
(τ, k, Dir) returns the start index (Dir = Start) or the end
index (Dir = Start) of the token match (τ, k).

The semantics of Ls is shown in Figure 10(b). The envi-
ronment state σ maps the input variables vi to their corre-
sponding string values. The semantics of a concatenate ex-
pression is to recursively evaluate each individual substring
expression fi and then concatenate them. The semantics
of a constant string expression ConstantStr(s) is to simply
return the constant string s. The semantics of a substring
expression SubStr(vi, pl, pr) is to first evaluate index posi-
tions l = pl and r = pr, and then return the corresponding
substring s[l..r], where s = σ(vi). The semantics of the con-
stant position expression ConstantPos(k) is to return k if
k > 0 and len(s) + k otherwise. The semantics of a token
match expression (τ, k, Start) (resp. (τ, k, End)) is to return
the start index (resp. end index) of the kth occurrence of
the match of token τ in the string s.

A possible Ls expression to perform the desired trans-
formation of extracting country names in Example 1 is:
e1 ≡ Concat(SubStr(v1, (", ", 1, End), (l,−1, End)). The ex-
pression e1 extracts the substring from the input string v1
whose left index is the end position of the match of 1st con-
stant string ", " (comma followed by a whitespace) and the
right index is the end position of the match of last lowercase

token match. For example, for the input string "Mumbai,

India", the position expression (", ", 1, End) returns the in-
dex 9 and matches the substring ", ", whereas the position
expression (l,−1, End) returns the index 14 and matches the
substring "ndia". For abbreviating the initials of first and
last names in Example 2, a possible Ls expression is: e2 ≡
Concat(f1, ConstantStr(”.”), f2, ConstantStr(”.”)), where
f1 ≡ SubStr(v1, (C, 1, Start), (C, 1, End)) and f2 ≡
SubStr(v1, (C,−1, Start), (l,−1, Start)).

6.2 DAG Data Structure

{0} {1} {2} {3} {4} {5}

𝒑 𝒑
𝒑
𝒑

Figure 12: The Dag data structure for representing
a set of string expressions to generate the string
"India" from an input string "Mumbai, India".

The Dag data structure is used to succinctly represent a
large number of Ls expressions that are consistent with a
given set of input-output examples. The syntax of the Dag

data structure is shown in Figure 11(a). The set of top-level
concatenate expressions are represented using paths in the
Dag in a way similar to their Dag based representation in
FlashFill. The key difference is in the way the substring
expressions are represented as a pair of two independent sets
of InputDataGraph nodes on the Dag edges.

A set of Ls expressions is represented using a Dag consist-
ing of a set of nodes η̃, a start node ηs, a final node ηf , a set
of edges ξ̃, and a mapping function W that maps each edge
ξ ∈ ξ̃ to a set of substring expressions. The set of substring
expressions f consists of either a constant string expression
or a set of substring expressions SubStr(vi, {p̃j}j , {p̃′k}k),
where the set of position expressions {p̃j}j and {p̃′k}k are
represented as independent sets. A set of position expres-
sions p̃ consists of either a constant position or a set of

InputDataGraph nodes Ṽ .
The semantics of the Dag data structure is shown in Fig-

ure 11(b). A path from the start node ηs to the final node ηf

in the Dag represents a Concat(f1, · · · , fn) expression, where
the substring expressions fi are obtained from the edges ξi
on the path. The semantics of a set of substring expres-
sions SubStr(vi, {p̃j}j , {p̃′k}k) is to first independently eval-
uate the set of left and right position expressions, and then
compute the set of substring expressions corresponding to
the cross-product of the set of position expressions. The set
of constant string and constant position expressions have ex-
pected semantics as shown in the figure. Intuitively, the se-

mantics of a set of InputDataGraph nodes Ṽ is to return the
set of token matches on the edge labels for all incoming and

outgoing edges to nodes v ∈ Ṽ . For each node v ∈ Ṽ and
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String expr e := Concat(f1, · · · , fn)

Substring expr f := ConstantStr(s)

| SubStr(vi, pl, pr)

Position p := (τ, k, Dir)

| ConstantPos(k)

Direction Dir := Start | End

JConcat(f1, · · · , fn)Kσ = Concat(Jf1Kσ, · · · , JfnKσ)

JConstantStr(s)Kσ = s

JSubStr(vi, pl, pr)Kσ = s[JplKs..JprKs],where s = σ(vi)

JConstantPos(k)Ks = k > 0?k : len(s) + k

J(τ, k, Start)Ks = k > 0?(τ � s)[k] ↪→: (τ � s)[len(s) + k] ↪→

J(τ, k, End)Ks = k > 0?(τ � s)[k]←↩: (τ � s)[len(s) + k]←↩

(a) (b)

Figure 10: The (a) syntax and (b) semantics of the string transformation language Ls of BlinkFill.

ẽ := Dag(η̃, ηs, ηf , ξ̃,W )

f̃ := SubStr(vi, {p̃j}j , {p̃′k}k)

| ConstantStr(s)

p̃ := ConstantPos(k)

| Ṽ

JDag(η̃, ηs, ηf , ξ̃,W )K = {Concat(f1, · · · , fn)|fi ∈ JW (ξi)K
ξ1  ξncorresponds to path between ηs and ηf}

JSubStr(vi, {p̃j}j , {p̃′k}k)K = {SubStr(vi, pl, pr)|pl ∈ Jp̃jK, pr ∈ Jp̃′kK}
JConstantStr(s)K = {ConstantStr(s)}
JConstantPos(k)K = {ConstantPos(k)}

JṼ K = {(τ, k, Start)|v ∈ Ṽ , ∃vi ∈ V : (v, vi) ∈ E, (τ, k) ∈ L((v, vi))}

∪{(τ, k, End)|v ∈ Ṽ , ∃vi ∈ V : (vi, v) ∈ E, (τ, k) ∈ L((vi, v))}

(a) (b)

Figure 11: The (a) syntax and (b) semantics of the Dag data structure used to succinctly represent a large
number of Ls expressions.

outgoing edge (v, vi) ∈ E, the resulting set consists of a to-
ken match expression (τ, k, Start), where (τ, k) ∈ L((v, vi)).
Similarly, it also consists of token matches (τ, k, End) for

each v ∈ Ṽ , (vi, v) ∈ E, (τ, k) ∈ L((vi, v)).
The Dag data structure that succinctly represents the set

of all Ls expressions consistent with the input-output ex-
ample "Mumbai, India" → "India" is shown in Figure 12,
where the set of nodes η̃ = {0, 1, 2, 3, 4, 5}, the start node

ηs = 0, the final node ηf = 5, and ξ̃ = {(i, j)|0 ≤ i < j ≤ 5}.
Intuitively, the Dag nodes correspond to the indices of the
output string "India" and an edge from node i to node j
represents the set of substring expressions that can generate
the substring between indices i and j. The edge mapping
function W is shown for one of the edges (0, 5) (correspond-
ing to the sub-string "India"), where W ((0, 5)) consists of
a set of substring expressions and a constant string expres-
sion. The set of position expressions for the left index p̃l
consists of a constant position expression and 4 nodes from
the InputDataGraph in Figure 14 :{v2, v7, v15, v25}. The
node labeling function for these nodes contains the tuple
(id, 9), where id is the unique identifier for the input string
"Mumbai, India" and 9 is the left index of sub-string "India"

in the input string. Similarly, the set of position expressions
for the right index also consists of 4 input graph nodes and
a constant position expression.

7. SYNTHESIS ALGORITHM
The LearnProgram algorithm for learning an Ls expres-

sion that conforms to a given set of m input-output exam-
ples {((v11 , · · · , v1k), o1s), · · · , ((vm1 , · · · , vmk ), oms )} and n in-

LearnProgram({(v11 , · · · , v1k), · · · , (vn1 , · · · , vnk )},
{((v11 , · · · , v1k), o1s), · · · , ((vm1 , · · · , vmk ), oms )})

1 G := GenInpDataGraph({(v11 , .., v1k), · · · , (vn1 , .., vnk )})
2 Dag d := GenerateDag((v11 , · · · , v1ks), o1s, G)
3 for i = 2 to m:

4 Dag d’ := GenerateDag((vi1, · · · , viks), ois, G)
5 d := Intersect(d,d’)

6 return TopRankExpr(d)

Figure 13: The LearnProgram procedure for learning
an expression that conforms to a set of m examples.

put rows {(v11 , · · · , v1k), · · · , (vn1 , · · · , vnk )} is shown in Fig-
ure 13. The algorithm first constructs the InputDataGraph

G corresponding to the set of n input rows. It then con-
structs the Dag d denoting the set of all consistent Ls ex-
pressions that conform to the first input-output example.
Next, it iterates over other input-output examples and in-
tersects the corresponding dags to compute the resulting dag
d that consists of Ls expressions that are consistent with all
m examples. Finally, the algorithm uses a ranking function
to find the best expression path in the dag and returns it as
the learnt program. We now describe each of the individual
algorithms GenSubStrExpr, GenerateDag, and TopRankExpr.

7.1 Learning Substring Expressions
The GenSubStrExpr algorithm, shown in Figure 15, takes

as input an input string s, two integer positions l and r

corresponding to the left and right indices of the desired
substring, and the InputDataGraph G, and returns the set of
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Figure 14: The InputDataGraph for the set of input strings in Example 1. Note that some constant string edges
and the corresponding nodes are not shown here for brevity.

GenSubStrExpr(s, l, r, G)

1 id = string2Id[s]

2 Ṽl = ∅, Ṽr = ∅
3 foreach v ∈ V(G):

4 if (id,l) ∈ I(v): Ṽl = Ṽl ∪ {v}
5 if (id,r) ∈ I(v): Ṽr = Ṽr ∪ {v}
6 p̃l = Ṽl ∪ {ConstantPos(l)}
7 p̃r = Ṽr ∪ {ConstantPos(r)}
8 return SubStr(s, p̃l, p̃r)

Figure 15: The GenSubStrExpr algorithm for gener-
ating a set of substring expressions given an input
string s, the left and right indices l and r of the
substring, and the InputDataGraphG.

substring expressions that can generate the corresponding
substring. It searches the graph G for all nodes v ∈ V(G)

such that (id, l) ∈ I(v) to create the set of nodes Ṽl corre-
sponding to the left index l of the substring. Similarly, the

algorithm constructs the node set Ṽr corresponding to the
right index r. It finally adds the constant position logics
ConstantPos(l) and ConstantPos(r) to the respective set of
position expressions p̃l and p̃r, and returns the set of sub-
string expressions SubStr(s, p̃l, p̃r).

An example substring extraction task from Example 1 is
to extract the substring "India" from s = "Mumbai, India"

(GenSubStrExpr(s, 9, 14, G)), where 9 and 14 respectively de-
note the left and right index nodes of the substring "India"

in the input graph, and G denotes the InputDataGraph

shown in Figure 14. Let id denote the unique identifier for
the input string s. For the left index 9, the GenSubStrExpr

algorithm adds all nodes in G to p̃l whose labeling function I

contains the tuple (id, 9). From the figure, we observe that
there are 4 such nodes in G: {v2, v7, v15, v25}. It also adds
the constant position expression ConstantPos(9) to the set.
Similarly, for the right index 14, the algorithm adds all nodes
whose label contains the tuple (id, 14) and ConstantPos(14)
to the set p̃r. Finally, the algorithm returns the set of sub-
string expression W05 as shown in Figure 12.

7.2 Learning Dag Data Structure
The GenerateDag algorithm for learning the Dag data struc-

ture is similar to the Dag learning algorithm of FlashFill.
The algorithm takes as input an input row {v1, · · · , vk}, an
output string os, and an InputDataGraph G, and returns a
Dag that represents all string expressions in the language Ls
that can transform the input strings to the output string.
The algorithm first creates len(os) number of nodes with
labels η̃ = {0, · · · , len(os)}, and sets the start node ηs to
be the node with label 0 and the final node ηf with label
len(os). It then iterates over all substrings os[i..j] of the out-
put string, and adds an edge (i, j) between the nodes with
labels i and j. For each edge (i, j), the algorithm learns
the function W that maps the edge to a constant string
expression ConstantStr(os[i..j]) and a set of substring ex-
pressions obtained by calling GenSubStrExpr(vk, l, r, G) (for
each (k, l, r) such that vk[l..(r − 1)] = os[i..j]).

The Dag data structure learnt by GenerateDag algorithm
for the input-output example v1 = "Mumbai, India" →
os = "India" is shown in Figure 12. The algorithm first
creates len(os) = 6 nodes labeled η̃ = {0, · · · , 5}, with the
starting node ηs = 0 and final node ηf = len(os) = 5. The
algorithm then adds an edge (i, j) between nodes i and j,
and assigns the labeling function W ((i, j)) to the set of con-
stant string expressions and substring expressions that can
generate the substring v1[i..(j − 1)].

Dag Intersection: Given two dags, the intersection al-
gorithm computes a dag that consists of expressions common
to both the dags. The main idea in the intersection proce-
dure is to compute the Cartesian product of the nodes in the
two dags, such that for a node η1 ∈ Dag1, and a η2 ∈ Dag2, we
have a node (η1, η2) in the resulting dag. The set of labels on
the edges between these nodes is computed by intersecting
the corresponding pair of edges in the two dags. For inter-
secting two sets of substring expressions, the corresponding
sets of left and right position expressions are intersected in-

dependently. For intersecting the position expressions Ṽ1

and Ṽ2, the intersection algorithm selects the set of nodes v

that are common to both Ṽ1 and Ṽ2. The worst-case com-
plexity of the LearnProgram algorithm is O((k|s|2)m), where
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RankInpGNodes(G)

foreach v ∈ V(G):
v.out := 0, v.in := 0, v.score := 0

foreach v ∈ V(G) in topological order:

foreach (v, vi) ∈ E(G):
v.out := Max(v.out, vi.out + φη(v, vi))

foreach v ∈ V(G) in reverse topological order:

foreach (vi, v) ∈ E(G):
v.in := Max(v.in, vi.in + φη(vi, v))

foreach v ∈ V(G):
v.score := v.in + v.out

return v with the highest v.score

φη(v1, v2) := Σid∈I(v1)|v2[id]− v1[id]|

Figure 16: The ranking algorithm for assigning
scores to the nodes of an InputDataGraph G.

|s| denotes the length of output string, k is the size of G,
which is bounded by O(|i|4n).

7.3 Ranking of Dag Expressions
We now describe the ranking strategy used by BlinkFill

to select the desirable expression amongst the large num-
ber of expressions represented by a Dag. The key idea is to
first prefer token sequences that have larger contexts around
them as they are more likely to correspond to the desired
transformation logic. The algorithm then computes the best
concatenation of substring expressions in a Dag using Dijk-
stra’s algorithm. There are several other alternative rank-
ing strategies. One ranking strategy is to use Occam’s razor
principle to prefer shortest and simplest token sequences,
which has previously been shown to perform quite poorly
on this dataset [27]. Another strategy is to use machine
learning techniques to learn a ranking function over features
of the expressions based on observed preferences. We com-
pare our ranking strategy with this machine learning based
ranking in FlashFill in §8.2. It is important to note that
ranking only aims to reduce the number of examples needed
to learn the transformation and does not have any effect
on the completeness of the synthesis algorithm. Since our
synthesis algorithm is complete, a user can always provide
additional examples to learn the intended transformation in
case ranking fails to learn it from fewer examples.

Ranking Substring Expressions We now describe the
RankInpGNodes algorithm that assigns scores to nodes in
an InputDataGraph G to find token matches with longest
contexts. The algorithm maintains two scores for each node
v ∈ V(G): v.in for incoming score and v.out for the outgoing
score. The v.in score corresponds to the number of nodes
from which there exists a path to v, whereas the v.out score
captures the number of nodes that are reachable from v. The
algorithm also uses the node distance function φη to assign
higher scores to nodes that are farther (in terms of string in-
dices) to prefer longer token matches. Finally, the algorithm
returns the node v with the highest score v.in + v.out. For
the nodes in expressions p̃l and p̃r from Figure 12, the rank-
ing algorithm assigns highest score to node v25 (correspond-
ing to token match (”, ”, 1, End)) and v18 (corresponding to
token match ($, 1, Start) ) respectively.

Ranking Dag Paths The ranking algorithm first assigns
a score to each individual edge of the DAG, and then uses an

efficient modification of Dijkstra’s shortest path algorithm
for DAGs (by considering nodes in topological order) to re-
turn the maximum score path. A constant string expression
ConstantStr(s) is assigned a low score proportional to the
length of the constant string: |s|2 ∗ ε, where we set ε = 0.1
for our experiments. A substring expression corresponding
to an output substring s is assigned a higher score: |s|2 ∗ κ,
where we set κ = 1.5 for our experiments.

Theorem 1 (Soundness). The LearnProgram algo-
rithm is sound, i.e. the program e learnt by the algorithm
from a set of input-output examples {(σi = (vi1, · · · , vik), ois)}i
always produces the corresponding output when evaluated on
the example inputs: ∀i : JeKσi = ois.

Theorem 2 (Completeness). The LearnProgram al-
gorithm is complete, i.e. if there exists an Ls string ex-
pression that is consistent with the given set of input-output
examples, the algorithm is guaranteed to learn the expression
given sufficient input-output examples.

8. EXPERIMENTS
We now present the experimental evaluation of BlinkFill

on 207 real-world string transformation tasks and compare
it with FlashFill. We then present an evaluation to show
that the intersection of InputDataGraphs does not lead to
quadratic blowup in practice. Finally, we present the scala-
bility of learning InputDataGraphs with increasing number
of input strings. The experiments were performed on a 6-
core Intel Xeon 3.5GHz processor with 32 GB RAM.

Implementation: We have implemented the inductive
synthesis algorithm for the string transformation language
of BlinkFill in C# as an add-in for Microsoft Excel as well
as a Web app1. The implementation also supports casing
transformations such as lowercase to propercase etc., but
we omit them from the technical section (§6) for clarity of
the novel ideas in the semi-supervised learning technique.

Benchmarks: The 207 benchmarks were obtained from
the Excel product team and online help forums. These
benchmarks constitute a super-set of the benchmarks used
for learning the ranking function in FlashFill [27] and
come from the suite of 235 FlashFill benchmarks. We cat-
egorize the 235 benchmarks into 5 categories: 1) Substring:
88 benchmarks that require only the substring expressions,
2) Concat: 92 benchmarks that need concatenation of mul-
tiple substring and constant string expressions, 3) MulCol:
27 benchmarks that need concatenation of substrings from
multiple columns, 4) Conditionals: 18 benchmarks that
need conditionals, and 5) Loops: 10 benchmarks that need
loops. Since BlinkFill currently does not support condi-
tional and loop learning, we only consider 207 benchmarks
for the evaluation. Each benchmark consists of 6 to 10
input-output examples. We automate the user interaction
model by incrementally providing input-output examples to
the two systems until the learnt program generates the ex-
pected output for all input strings.

Baseline: We compare the performance of BlinkFill
with that of FlashFill. For a fair performance comparison,
we remove conditional and loop learning from FlashFill so
that the two domain-specific languages are comparable and
only consists of concatenate expressions over constant string
expressions and substring expressions.

1http://cleandata.azurewebsites.net/
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Figure 17: (a) The learning time for FlashFill and BlinkFill on 207 string transformation benchmarks for the
three categories. (b) The number of examples required by FlashFill and BlinkFill for different benchmarks.

8.1 Learning Time
We first compare the learning times for BlinkFill and

FlashFill on the 207 benchmarks. BlinkFill learns the
desired transformations for all 207 benchmarks in only 7.32
seconds, whereas FlashFill requires 324.64 seconds. The
learning times for individual benchmark problems for differ-
ent benchmark category is shown in Figure 17(a). Within
each category, we further sort the benchmarks by the aver-
age lengths of strings in the input-output examples. In gen-
eral, learning times increase with increasing string lengths,
but several other factors such as number of sub-expressions,
number of token matches etc. also influence the learning
times. As can be observed, BlinkFill is significantly faster
than FlashFill for all the three categories. BlinkFill is
on average 41.5× faster than FlashFill and the median
speedup is 11.25×. The maximum time taken by FlashFill
on any benchmark is 28.6s, whereas the maximum time
taken by BlinkFill on any benchmark is only 0.39s. There
are 57 benchmarks where FlashFill takes more than 1s
each to learn the transformation. For these 57 challenging
benchmarks, BlinkFill is on average 124× (median 68.1×)
faster than FlashFill.

8.2 Ranking
BlinkFill is not only faster than FlashFill, but it also

learns the transformations from fewer input-output exam-
ples. We compare the ranking of the two systems by mea-
suring the number of examples needed to learn the desired
transformation, which is shown in Figure 17(b). For the
207 benchmarks, FlashFill needs 317 input-output exam-
ples in total, whereas BlinkFill requires only 264 examples.
On average, FlashFill needs 1.53 examples per benchmark,
whereas BlinkFill requires 1.27 examples. For 44 bench-
marks, BlinkFill requires fewer examples than FlashFill,
whereas there are 6 benchmarks where FlashFill needs
fewer examples. Overall, the ranking strategy of selecting
token sequences with largest context works remarkably well.
The few cases where it doesn’t work as well compared to
FlashFill are the cases where there is some unintended
matching of longer contexts. For example, for the input-
output example "457 5th St S, Seattle, WA 98111" →
"from Seattle", the system learns the token match (ws,-3)
(3rd space from end) to extract the left index of the substring
" Seattle". This logic works for most inputs but not for an
input of the form "98743 Edwards Ave, Los Angeles, CA

78911", where it generates the output "from Angeles". The
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Figure 18: The variation in size of the InputDataGraph

after each intersection operation.

context for the token match (ws,-3) (p ◦ "," ◦ ws ◦ C ◦ ws ◦
d) is larger than the context for the desired token match
(",",1). A user can provide an additional example "from

Los Angeles" in this case, and the ranking algorithm then
learns the correct transformation using the 2 examples.

8.3 Intersection of InputDataGraphs
Even though the complexity of the intersection of two

InputDataGraphs is O(n4), we never experience a quadratic
blowup in graph size after intersection in practice. All bench-
marks exhibit the typical variation in the size of the graph
after each intersection as shown in Figure 18. The size of the
graph always reduces after the first intersection, and then
there is a minor variation in the size for later intersections.
We hypothesize the sparsity of edges in the InputDataGraphs
to be the reason for this phenomenon.

8.4 Scalability on Large Spreadsheets
The construction of the InputDataGraph on very large

spreadsheets can be a bottleneck. For such large spread-
sheets, we randomly sample a constant k number of input
rows to compute the InputDataGraph. The generation times
of input graph for different values of k on a large Excel
spreadsheet2 is shown in Figure 19. The GenInpDataGraph

algorithm takes less than 1s to construct the input graph for
k = 1280 input strings. However, for all real-word bench-
marks, approximately 10 randomly sampled input strings
suffices for learning a representative input graph.

2The spreadsheet comes from the US SSA website consisting
of 33044 popular baby names in 2014 together with their
gender and frequency.
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Figure 19: The time taken by the GenInpDataGraph

algorithm to compute the InputDataGraph for k ran-
domly sampled input strings in a large spreadsheet.

9. RELATED WORK
Comparison with FlashFill The domain-specific lan-

guage and the Dag data structure for BlinkFill at top-
level are similar to that of FlashFill, but the key differ-
ence is in the way position expressions in the substring ex-
pressions are represented and learnt using semi-supervised
learning. The core technical challenge solved by BlinkFill
is in efficiently learning the set of all token sequences (and
sub-sequences) that are consistent with a set of strings in
a column using the InputDataGraph, and then using it to
efficiently learn substring expressions. This results in a sig-
nificant decrease in the ambiguity of possible transforma-
tions that are consistent with a set of input-output examples
and makes the learning process dramatically more efficient.
This is crucial for increasing the applicability of FlashFill
for longer strings (which is currently automatically disabled
by the Excel team for longer strings). Moreover, learning
from data allows BlinkFill to learn token sequences con-
sisting of arbitrary constant string tokens as opposed to a
finite pre-defined tokens supported by FlashFill, which
has been another major shortcoming of FlashFill. Unlike
FlashFill, BlinkFill currently does not support condi-
tionals and loops. For learning conditionals, a strategy sim-
ilar to FlashFill can be implemented where the synthesis
algorithm in BlinkFill clusters the input strings into dif-
ferent InputDataGraphs if there is no edge in the original
InputDataGraph that corresponds to the substring extrac-
tion task required by the input-output examples.

Version-space Algebra based PBE Systems There
has been a lot of recent work on building PBE systems us-
ing the VSA methodology. The key idea in building these
systems is to first design an expressive DSL that allows for
decomposing the top-level specification to make the learning
efficient [8]. In addition to FlashFill, it has been used to
build PBE systems in the domains of semantic string trans-
formations [26], data extraction from unstructured text [14],
and re-structuring of semi-structured spreadsheets [2]. Re-
cently, a generic meta-algorithm FlashMeta [21] has been
proposed to automatically generate an efficient synthesis al-
gorithm based on VSA from simply the description of the
DSL, where the DSL is designed using a predefined set of
operators. All of these systems synthesize programs by con-
sidering only the input-output examples and unlike our tech-
nique do not use the information present in other inputs in
the learning algorithms.

String Transformation using Examples and Demon-
strations Data Wrangler [11] is an interactive system for

creating reusable data transformations such as map, joins,
aggregation, sorting etc. using examples. It also automati-
cally suggests some transformations based on the context
of user interactions. The Topes system [24] allows end-
users to interactively implement abstractions (called topes)
for validating and transforming data in many different for-
mats. It can also recommend some basic topes given a
set of strings from a predefined set of topes based on key-
word matches [25]. The analysis of user context in Wran-
gler and Topes’ recommendation, however, is not as rich as
that of BlinkFill in finding complex logical patterns that
are shared amongst a set of input strings. LAPIS [18] is a
text editor that allows users to perform multiple selections
using a set of positive and negative examples, and then per-
form simultaneous editing on the selections. It is also able
to identify some outlier selections corresponding to possible
incorrect generalization using machine learning [17]. Our
technique can complement LAPIS in not learning such in-
correct generalizations since such generalizations won’t be
part of large common pattern sequences in InputDataGraph.
DataXFormer [1, 20] is an interactive data transformation
and integration system that leverages Web tables and Web
forms to perform syntactic and semantic data transforma-
tions. The class of transformations supported by DataX-
Former are based on relational mapping of a set of strings
(with some fuzzy matching capabilities), while the transfor-
mations supported by BlinkFill involve concatenation of
logical regular expression based substrings.

Record Alignment The problem of extracting relational
tables from lists using record alignment is also related to our
technique of learning the set of common patterns shared by
a set of strings in a column. TEGRA [3] models the table
extraction problem as an optimization problem to capture
the conceptual goodness of an extracted table based on both
syntactic and semantic information (using Web tables). Lis-
tExtract [5] is another system that greedily segments each
string using various signals such as delimiters and seman-
tic information, and then uses a majority vote to guess the
correct number of segmented columns. BlinkFill, on the
other hand, learns the set of all regular expression based
patterns (and sub-patterns) shared by a set of strings, and
uses it to guide the synthesis algorithm for learning trans-
formations from examples. However, the techniques from
TEGRA and ListExtract can be used to enhance the semi-
supervised learning in BlinkFill by adding the semantic
knowledge and by using approximate inference algorithms
for increasing robustness to noise.

Ranking in Program Synthesis The problem of am-
biguity arises in any inductive synthesis problem where the
specification is incomplete. PROSPECTOR [15] synthesizes jun-
gloid code fragments consisting of a chain of objects and
method calls from a given input type to an output type,
and uses the length of code, generality of the output type,
and number of cross-package boundaries as the criterion for
ranking possible fragments. Lase [16] helps developers per-
form systematic program changes automatically by learning
from few examples. Recently, machine learning based tech-
niques were used for learning the ranking function automat-
ically for FlashFill [27]. These ranking approaches use
manually defined scoring (cost) functions, the specification
constraint, and some global usage information for design-
ing the ranking functions, but do not typically exploit the
information present in other inputs for a given task.
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10. LIMITATIONS AND FUTURE WORK
BlinkFill currently supports only syntactic string trans-

formations. We plan to also support semantic string trans-
formations by enabling DSL designers to declaratively spec-
ify the semantic knowledge [28] and by using the string cor-
relation information from Web tables and forms [9, 20]. Al-
though BlinkFill is able to learn the majority of FlashFill
real-world benchmarks, it currently does not support con-
ditionals and loops. A strategy similar to FlashFill of
clustering input strings into different clusters can be used
for learning conditionals. The combination of approximate
pattern inference techniques used in systems such as Data
Wrangler [11] and TEGRA [3] with our VSA based tech-
nique can also provide a potential solution to learn condi-
tional transformations. Other interesting extensions include
learning substring expressions based on relative logic (e.g.
the right position logic is not independent and depends on
the left position logic) and learning probabilistic transfor-
mations to handle noise.

11. CONCLUSION
PBE techniques are starting to reach mainstream com-

mercial markets for making programming accessible to a
much wider audience. FlashFill is one such system for
enabling Excel users to perform string transformations us-
ing examples. Since examples are an under-specification,
FlashFill needs to learn the desired transformation from
a large space of ambiguous choices. In this paper, we pre-
sented a semi-supervised learning technique to learn logical
patterns present in the input data to guide the synthesis
algorithm, which significantly reduces this ambiguity. We
have implemented this technique in the BlinkFill system.
Our extensive evaluation shows that BlinkFill is signif-
icantly faster and learns the desired transformation using
fewer input-output examples in comparison to FlashFill.
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